
T7

201011373최지환

201011376한지승

200611449강동원

200611514임진용

1

소프트웨어공학개론 Team Project #1._

2

 C F G란 ?

 O v e r v i e w (S t a t e m e n t o f P u r p o s e)

 V i s u a l i z a t i o n A l g o r i t h m s

1 . R e a d i n g t h e m o d e l (M e t h o d)

2 . P e r s i s t a n c e

 E d i t o r

1 . Z e s t L a y o u t A l g o r i t h m s

2 . V i e w

 O u t l i n e V i e w

1 . M c C a b e m e t r i c

 S o u r c e & R e f e r e n c e s

3

A control flow graph (CFG) is a representation, using graph notation, of all paths that might be

traversed through a program during its execution. It refers to the order in which the individual

statements, instructions, or function calls of an imperative or functional program are executed or

evaluated. If the graph is built from code execution the hole program is first compiled than is

executed with special parameters so that a log file is generated to obtain the necessary information

to build a graph. This makes it only possible if the code can be complied and run, which is not

always the case during testing when parts of the implementation might miss. For this reason the

evaluation of the code looked like a nice try to see if it is possible to build a correct graph from

static analysis only and not compiling or running any of the code which needs to be analyzed. The

methods to do it are explained in details to get a better understanding of how the evaluation of code

can lead to a CFG. Normally when building control flow graphs we focus on a specific method and

very seldom on hole classes. Classes can get big, but methods as well, thats why for this plug-in

special functions like node collapsing and expanding or node hovering where made available to

help viewing the graph. The aim was to build CFG-s form methods in the quickies and best way

possible without extra clicking and compiling, an all-in-one-click operation.

4

We can divide the functionalities into two main parts. The first

one is the collecting of information from the Java source code

and the second part is the processing of the model form a tree

into a graph.

Execution order of the functionalities:

– gaining the Java source

– parsing into a AST

– traversing the AST and building the tree model

– persisting the model

– normalizing

– viewing

5

Method Information

Visit
(ExpressionStatement node)

Insertion of a node into the model if a

expression statement is encountered. This case

covers ternary declarations as well. But they are

inserted as if statements in the model.

Visit
(VariableDeclarationFragment node)

Insertion of a node into the model if a variable

declaration, such as field declaration, local

variable declaration or others are encountered.

Visit
(IfStatement node)

Insertion of a node into the model if a ifstatement

is encountered. This Node contains at

least two children as for the graph empty if

statements need to be considered as well.

6

Method Information

Visit

(TryStatement node)

Insertion of a node into the model if a

trystatement

is encountered. Contains as many

children as catch statements plus the finally

statements and the try block.

Visit

(ForStatement node)

Insertion of a node into the model if a

forstatement

is encountered. It has two children.

Visit

(WhileStatement node)

Insertion of a node into the model if a

whilestatement

is encountered. There is no difference

regarding the possible paths between the for and

while statements so that we treat them the same.

7

Method Information

Visit

(DoStatement node)

Insertion of a node into the model if a trystatement

is encountered. Contains as many children as catch

statements plus the finally statements and the try

block.

Visit

(SwitchStatement node)
Insertion of a node into the model if a forstatement

is encountered. It has two children.

Visit

(BreakStatement node)

Insertion of a node into the model if a whilestatement

is encountered. There is no difference regarding the

possible paths between the for and while statements

so that we treat them the same.

Visit

(ContinueStatement node)
Insertion of a node into the model if a breakstatement

is encountered. Contains no child nodes.

8

ASTNodeMainVisitor

This class implements org.eclipse.jdt.core.dom.ASTVisitor and

builds the simple tree model. The model has some differences

from the original Java source sequence due to optimization for the

building of the graph.

The children of the root element do not hang on it but point to

each other as the next nodes to come.

9

Example:

void expressionTestMethod(int b,int a) {

a = 1;

b = 2; }

From the code above we can build a tree representation as is the next picture. This model type

would fit for the viewer but it would make it very hard and require extra computations to link

children from one branch to anther.

For this reasons the code in example 5.1 is not represented as in the picture 5.2. Instead it is build

as show in the picture 5.3.

We can agree that this model has a higher level of readability for humans as well. From this

example we can see two expression statements which contain no children but the next node. For

other nodes it is necessary to use a convention setting the first node of every parent to be the next

node from the root and not a child node. Remembering that children of a node can be just nodes

within the declared brackets of a statement. An exception is the if-statement but due to the AST

parsing these shortcuts are transparent to us.

10

Ones the model has been built, it gets serialized and saved as a file with the .ff3 extension in a

subfolder of the project called cfg. The name is given by convention from the

<classname>_<methodname>.ff3. To perform this action a serializing class called

NodeSerializer was created. If an older version already exists or same class names with same

method names were already examined then a confirmation is shown asking if it should be

overwritten or not. Changes to the model are not planed so that the reallocation of the graphical

nodes or node folding information are discarded as the editor is closed.

The tree model as it is saved is the plain representation of the Java code with the order changes

shown above. Therefore a reorganization of the node must be done before it is been shown.

NodeNormalizer

11

Eclipse offers a base implementation of all

workbench editors called EditorPart which

can be extended to offer two basic editor

types

– textual

– graphical

12

Zest is a visualization toolkit for Eclipse. It has a predefined set

of classes, interfaces and operations to help building graphics

on a GEF editor. It also has drag and drop support for its

elements and uses animations in the initial time. The layout

algorithms which the library offers are the one listed below

• Spring Layout Algorithm

• Fade Layout Algorithm

• Tree Layout Algorithm

• Radial Layout Algorithm

• Grid Layout Algorithm

13

The viewer/editor class is called FlowChartEditor and as we

already know, it extends EditorPart and implements

IAdaptable.

There are to ways to provide it with the model data.

– To call the editor with the data

– To execute the file which opens the editor

14

15

16

17

18

19

The outline view was implemented to show static information about the graph like the

number of the nodes and the connections. It is shown automatically with the appearance

of the editor so that no extra activation is needed.

MacCabe metric

The measurement of cyclomatic complexity by McCabe was

designed to indicate a program's

 testability and understandability (maintainability).

20

CFG Generator [http://eclipsefcg.sourceforge.net/]

Eclipse Application [http://www.eclipse.org/]

Eclipse SDK API [http://help.eclipse.org/]

Eclipse GEF [http://www.eclipse.org/gef/]

GEF Tutorial [http://www.ibm.com/developerworks/library/os-eclipse-gef11/]

Eclipse Development [http://www.redbooks.ibm.com/redbooks/pdfs/sg246302.pdf]

CodeCover [http://www.codecover.org/]

c1visualizer [https://c1visualizer.dev.java.net/]

Control Flow Graph Factory [http://www.drgarbage.com/]

[linkCTools] [http://java-source.net/open-source/code-coverage]

[OREclipse] O'Reilly Eclipse, Holzner, 2004, Ch 1.3

[AWMeMo02] Metrics and Models in Software Quality Engineering, Second Edition

Kan, 2002, Ch 11.3

