
Sotfware Engineering
CFG Generator

201011318 Kim Seul-Ki

201011334 Park Jin-Sung



1. SA & SD



Original Statement of Purpose
• This program’s goal is to operate in following manners.

First, Receiving C language Source Code.

Second, Analyzing the Source Code.

Third, Running Control Flow Graph Generating Algorithm.

Forth, Complete the suitable Control Flow Graph.

• Control Flow Graph Generating Algorithm is divide into 4 phases. 
Recognizing Edge, Constructing Basic Block, Solving Delay, Solving 
Collision. This Algorithm’s goal is to express program control structure 
into graph form by using Block and Edge.



Modified Statement of Purpose
• This program’s goal is to operate in following manners.

First, Receiving C language Source Code.

Second, Analyzing the Source Code.

Third, Running Control Flow Graph Generating Algorithm.

Forth, Complete the suitable Control Flow Graph and Print message to console depends 
on Result.

1. When CFG generating is started, This program prints ‘Start message’ to 
console.

2. After finishing CFG generating, This program prints only ‘Success message’ 
and saves CFG into the File.



Modified Statement of Purpose

3. If CFG generating is failed, This program prints ‘Error Message’ to 
console and closes all processes.

4. This program handles C language Source code only.

5. This program converts only Main() Function parts.

6. If this source code hasn’t block like a ‘{}’ or path to the file is incorrect, 
CFG Generator is terminated by handling Error because it can’t 
generate CFG.



Modified Statement of Purpose
7. This program has no consideration for whole compile error. The 

program consider only ‘CFG generating error’ which is necessary for 
generating CFG.(e.g. Lack of Block like ‘{}’ or Nonexistence of Main() 
Function.)

8. After generating CFG is completed, This program saves Basic Block 
List and Edge List of CFG on each line into the File.

9. If the path to the C Source Code File is wrong, Help message is printed.
• Help Message follows the form like a next line.

$./cg <source code filepa(*.c)> <report filepath(*.txt)>



Original System Context Diagram



Modified System Context Diagram

Command
CFG

Generator

File I/O

Monitor

Source file

Report file

Console

Output



Event List
Input/Output
Event

Description Format/Type

Source File The path to the C 
Source Code

String(*.c)

Report File The path to the File of 
Complete CFG

String(*.txt)

Console Success/Start/Error 
message that will be 
printed on console.

Message that will be 
printed on console.

Output String that includes 
Basic Block and Edges 
in CFG

String that will be 
printed on File.



Original
Data Flow Diagram – Level 0



Modified
Data Flow Diagram – Level 0

Source
Reader

0

Source file Main
Generator

1

Report file

Source

Console Command

File I/O 
Interface

3

Monitor 
Interface

2

Output Command

Console

Output

• CFG Generator



Data Dictionary – Level 0
Input/Output
Event

Description Format/Type

Source The String that is 
converted from Source 
File.

String/char *

Console 
Command

String for printing on 
Console.

String/char *

Output 
Command

String for writing on 
File.

String/char *



Process Specification– Level 0

Name Source Reader

Reference
Number

0

Input Source File

Output Source

Description This process extracts whole Source from Source File by 
using File I/O. If Source File isn’t correct path, the 
process saves NULL in Source.



Process Specification– Level 0

Name Main Generator

Reference
Number

1

Input Source

Output Console Command, Output Command

Description First, This process parses the received Source.
Next, the process prints the Error message or Success 
message.
Last, the process writes CFG to the Source File.



Process Specification– Level 0
Name Monitor Interface

Reference
Number

2

Input Console Command

Output Console

Description This process takes Console Command and prints the console message 
on the monitor.

Name File I/O Interface

Reference
Number

3

Input Output Command

Output Output

Description This process gets Output Command and outputs Output to Report 
File.



Original
Data Flow Diagram – Level 1



Modified
Data Flow Diagram – Level 1

• Main Generator 1

Pre 
Processor

1.0
Source

Generator
1.1

Pre Processed
Source

Console Command

Output Command



Data Dictionary – Level 1
Input/Output
Event

Description Format/Type

Pre Processed 
Source

String of main function 
is extracted from the 
Source.

String/char *



Process Specification– Level 1

Name Pre Processor

Reference
Number

1.0

Input Source

Output Pre Processed Source

Description This process extracts the inside of main function from 
Source and saves that at the Pre-processed Source. If 
Source is NULL, the process saves NULL at the Pre-
processed Source.



Process Specification– Level 1

Name Generator

Reference
Number

1.1

Input Pre Processed Source

Output Output Command, Console Command

Description After Converting from pre-processed source to CFG 
form, this process outputs appropriate Output 
Command and Console Command.



Original
Data Flow Diagram – Level 2



Modified
Data Flow Diagram – Level 2

• Generator 1.1

CFG 
Parser

1.1.0

File 
Report

1.1.2

Pre Processed
Source

Output Command

Message
Print
1.1.1

Console Command

CFG
CFG 

Maker
1.1.2

Basic Block List



Data Dictionary – Level 2
Input/Output
Event

Description Format/Type

Message String included the 
Error/Success/Start 
message.

String/char *

Basic Block List List of the Basic Blocks 
that is made in each 
phases. The Basic 
Block is connected 
with each others.

Connected List and 
Source

CFG The final result of 
connected Basic Blocks

Basic Block is 
connected with each 
others./Graph



Process Specification– Level 2

Name CFG Parser

Reference
Number

1.1.0

Input Pre Processed Source

Output Message, Basic Block List(+ Data structure)

Description This process parses Pre-processed Source to Basic Block List. 

If the process fails to parsing, the process outputs Fail 
message.(In this case, Basic Block List isn’t outputted.) 

Or If the process successes to parsing, the process outputs 
Basic Block List.(In this case, Message isn’t outputted.)



Process Specification– Level 2

Name Print

Reference
Number

1.1.1

Input Message

Output Console Command

Description This process takes Message and converts to Console 
Command.



Process Specification– Level 2

Name File Report

Reference
Number

1.1.2

Input CFG

Output Output Command

Description While this process explores CFG in hierarchy structure 
form, this process extracts Basic Blocks and Edges. 
And this process outputs them to Output Command.



Original
Data Flow Diagram – Level 3



Modified
Data Flow Diagram – Level 3

• CFG Parser 1.1.0

Parser
1.1.0.0

Detected 

if
1.1.0.3

Detected 

switch
1.1.0.4

Detected

while
1.1.0.5

Detected 

for
1.1.0.6Not

Parsing
1.1.0.7

Not 
Exist

Source
1.1.0.8

Sub Source 
& Character

Next
1.1.0.2Valid

1.1.0.1

Pre-Processed
Source

Trigger

Trigger

Trigger

Trigger

Trigger

Trigger

Trigger

Message

Message

Basic Block List

Basic Block List

Basic Block List

Basic Block List

Valid



Data Dictionary – Level 3
Input/Output
Event

Description Format/Type

Valid The result of checking 
pre-processed source is 
correct.

String/ char *

Sub Source (After the ), A piece of 
the source that is 
combination of letters.
The letters are 
outputted from the 
Next process.

String / char *

Character Words from the Next 
process.

Words / char



Process Specification– Level 3
Name Parser

Reference
Number

1.1.0.0

Input Pre Processed Source(PPS), Valid(V), Sub Source(SS), 
Character(C)

Output Trigger

Description If PPS is NULL, this process triggers the Not Exist 
Source process.
Next, this process calls the Next process in each time 
and gets C and SS. And according to their condition, 
the process triggers appropriate Detected process and 
Statement process.



Process Specification– Level 3

Name Valid

Reference
Number

1.1.0.1

Input Pre Processed Source

Output Valid

Description While this process explores Pre-processed Source, the 
process checks parenthesises is correct.



Process Specification– Level 3

Name Next

Reference
Number

1.1.0.2

Input Trigger

Output Sub Source(SS), Character(C)

Description This process saves one letter at the Character.(One 
letter is extracted from Pre-processed Source.)
After SS is cleared, the process saves the word at the 
Sub Source. (the word is made by combinating letters 
from Character.)



Process Specification– Level 3

Name Detected if

Reference
Number

1.1.0.3

Input Trigger

Output Basic Block List

Description This process calls the Next process and makes Basic 
Blocks by parsing whole ‘If statement’.
Next, the process saves them at the Basic Block List.



Process Specification– Level 3

Name Detected switch

Reference
Number

1.1.0.4

Input Trigger

Output Basic Block List

Description This process calls the Next process and makes Basic 
Blocks by parsing whole ‘Switch statement’.
Next, the process saves them at the Basic Block List.



Process Specification– Level 3

Name Detected while

Reference
Number

1.1.0.5

Input Trigger

Output Basic Block List

Description This process calls the Next process and makes Basic 
Blocks by parsing whole ‘While statement’.
Next, the process saves them at the Basic Block List.



Process Specification– Level 3

Name Detected for

Reference
Number

1.1.0.6

Input Trigger

Output Basic Block List

Description This process calls the Next process and makes Basic 
Blocks by parsing whole ‘For statement’.
Next, the process saves them at the Basic Block List.



Process Specification– Level 3
Name Not Parsing

Reference
Number

1.1.0.7

Input Trigger

Output Message

Description This Process saves ‘Error’ at the Message.

Name Not Exist Source

Reference
Number

1.1.0.8

Input Trigger

Output Message

Description This process saves ‘Usage’ at the Message.



State
Transition Diagram – Level 4

Ready

IF[PPS == NULL]
/ Trigger “Not Exist Source”

IF[V]
/ Trigger “Not Parsing”

Valid Valid

Parsing

/ Trigger “Next”,
Clear(SS)

Detect

if

IF[SS==“if”]
/ Trigger “detected if”

Detect 

for

/ Trigger “Next”
Clear(SS)

IF[SS==“for”]
/ Trigger “detected for”

/ Trigger “Next”,
Clear(SS)

Detect 

switch

Detect 

while

IF[SS==“switch”]
/ Trigger “detected switch”

/ Trigger “Next”,
Clear(SS)

IF[SS==“while”]
/ Trigger “detected while”,

/ Trigger “Next”,
Clear(SS)

Statement
/ Trigger “Next”,
Clear(SS)

IF[C==‘;’]
/ Trigger “statement”,
Clear(SS)

IF[C==‘}‘]/



Modified
Total Data Flow Diagram

Parser

Detected 

if

Detected 

switch

Detected

while

Detected 

for

Not
Parsing

Not 
Exist

Source

Sub Source 
& Character

Next

Valid
Trigger Trigger

Trigger

Trigger

Trigger

Trigger

Trigger

Message

Valid

Pre-
processed

Source

File 
Rep
ort

Print

CFG 
Mak

er

Report file

File I/O 
Interface

Monitor 
Interface

Console

Output

Source
Reade

r

Source file

Pre 
Process

orSource

Basic 
Block 
List

Basic 
Block 
List

Basic 
Block 
List

Basic 
Block 
List

Message

Console
Command

Output
Command

CFG



Original
Structured Charts



Modified
Structured Charts

Main

Parser

ValidPre Processor

Source 
Reader

Pre Processed
Source Valid

Next

Trigger

Detected 
if

Detected 
for

Detected 
switch

Detected 
while

Not 
Parsing

Not Exist 
Source

CFG 
Maker

Trigger Trigger Trigger Trigger Trigger Trigger

File Report

File I/O 
Interface

Print

File I/O 
Interface



2. Implements



Source File & Header File

• Source File
main.c main_generator.c file.c list.c report.c
Stdafx.c utils.c CFG.c detected_if.c detected_for.c
detected_switch.c detected_while.c

• Header File
main_generator.c CFG.h file.h list.h
report.h stdafx.h utils.h



Modified
Total Data Flow Diagram

Parser

Detected 

if

Detected 

switch

Detected

while

Detected 

for

Not
Parsing

Not 
Exist

Source

Sub Source 
& Character

Next

Valid
Trigger Trigger

Trigger

Trigger

Trigger

Trigger

Trigger

Message

Valid

Pre-
processed

Source

File 
Rep
ort

Print

CFG 
Mak

er

Report file

File I/O 
Interface

Monitor 
Interface

Console

Output

Source
Reade

r

Source file

Pre 
Process

orSource

Basic 
Block 
List

Basic 
Block 
List

Basic 
Block 
List

Basic 
Block 
List

Message

Console
Command

Output
Command

CFG



Source Reader

• Those Function that its 
name starts ‘file_’ is 
function for writing or 
reading File.

• Then, file_read function 
reads the File and moves 
them to ‘buffer’ memory.



Modified
Total Data Flow Diagram

Parser

Detected 

if

Detected 

switch

Detected

while

Detected 

for

Not
Parsing

Not 
Exist

Source

Sub Source 
& Character

Next

Valid
Trigger Trigger

Trigger

Trigger

Trigger

Trigger

Trigger

Message

Valid

Pre-
processed

Source

File 
Rep
ort

Print

CFG 
Mak

er

Report file

File I/O 
Interface

Monitor 
Interface

Console

Output

Source
Reade

r

Source file

Pre 
Process

orSource

Basic 
Block 
List

Basic 
Block 
List

Basic 
Block 
List

Basic 
Block 
List

Message

Console
Command

Output
Command

CFG



Pre-processor

• Pre-precessor function gets 
Source from file_read
function and extracts 
main() function.

• This function’s role is 
modifying String before 
Parsing.



Modified
Total Data Flow Diagram

Parser

Detected 

if

Detected 

switch

Detected

while

Detected 

for

Not
Parsing

Not 
Exist

Source

Sub Source 
& Character

Next

Valid
Trigger Trigger

Trigger

Trigger

Trigger

Trigger

Trigger

Message

Valid

Pre-
processed

Source

File 
Rep
ort

Print

CFG 
Mak

er

Report file

File I/O 
Interface

Monitor 
Interface

Console

Output

Source
Reade

r

Source file

Pre 
Process

orSource

Basic 
Block 
List

Basic 
Block 
List

Basic 
Block 
List

Basic 
Block 
List

Message

Console
Command

Output
Command

CFG



Parse

• This function corresponds 
‘Parser’ process.

• Starting ‘ready’ state first, 
It becomes ‘parsing’ state 
after checking valid.

• If It is failed, This function 
calls print according to 
result_state.



Modified
Total Data Flow Diagram

Parser

Detected 

if

Detected 

switch

Detected

while

Detected 

for

Not
Parsing

Not 
Exist

Source

Sub Source 
& Character

Next

Valid
Trigger Trigger

Trigger

Trigger

Trigger

Trigger

Trigger

Message

Valid

Pre-
processed

Source

File 
Rep
ort

Print

CFG 
Mak

er

Report file

File I/O 
Interface

Monitor 
Interface

Console

Output

Source
Reade

r

Source file

Pre 
Process

orSource

Basic 
Block 
List

Basic 
Block 
List

Basic 
Block 
List

Basic 
Block 
List

Message

Console
Command

Output
Command

CFG



Valid

• This function checks 
parenthesis is correct.



State
Transition Diagram – Level 4

Ready

IF[PPS == NULL]
/ Trigger “Not Exist Source”

IF[V]
/ Trigger “Not Parsing”

Valid Valid

Parsing

/ Trigger “Next”,
Clear(SS)

Detect

if

IF[SS==“if”]
/ Trigger “detected if”

Detect 

for

/ Trigger “Next”
Clear(SS)

IF[SS==“for”]
/ Trigger “detected for”

/ Trigger “Next”,
Clear(SS)

Detect 

switch

Detect 

while

IF[SS==“switch”]
/ Trigger “detected switch”

/ Trigger “Next”,
Clear(SS)

IF[SS==“while”]
/ Trigger “detected while”,

/ Trigger “Next”,
Clear(SS)

Statement
/ Trigger “Next”,
Clear(SS)

IF[C==‘;’]
/ Trigger “statement”,
Clear(SS)

IF[C==‘}‘]/



Ready

• If Pro-processed Source is 
NULL, this function return 
not_existed_source.

• If Valid is NULL, this 
function return 
not_parsing.



State
Transition Diagram – Level 4

Ready

IF[PPS == NULL]
/ Trigger “Not Exist Source”

IF[V]
/ Trigger “Not Parsing”

Valid Valid

Parsing

/ Trigger “Next”,
Clear(SS)

Detect

if

IF[SS==“if”]
/ Trigger “detected if”

Detect 

for

/ Trigger “Next”
Clear(SS)

IF[SS==“for”]
/ Trigger “detected for”

/ Trigger “Next”,
Clear(SS)

Detect 

switch

Detect 

while

IF[SS==“switch”]
/ Trigger “detected switch”

/ Trigger “Next”,
Clear(SS)

IF[SS==“while”]
/ Trigger “detected while”,

/ Trigger “Next”,
Clear(SS)

Statement
/ Trigger “Next”,
Clear(SS)

IF[C==‘;’]
/ Trigger “statement”,
Clear(SS)

IF[C==‘}‘]/



Parsing
• Parsing function gets CFG 

and Pre-processed Source. 
And the function parses 
the Pre-processed Source.

• This function checks 
whether the String is if or 
while or for or switch from 
Pro-processed Source and 
Sub String by the prefix.

• After checking, This 
function calls appropriate 
detected function.



Modified
Total Data Flow Diagram

Parser

Detected 

if

Detected 

switch

Detected

while

Detected 

for

Not
Parsing

Not 
Exist

Source

Sub Source 
& Character

Next

Valid
Trigger Trigger

Trigger

Trigger

Trigger

Trigger

Trigger

Message

Valid

Pre-
processed

Source

File 
Rep
ort

Print

CFG 
Mak

er

Report file

File I/O 
Interface

Monitor 
Interface

Console

Output

Source
Reade

r

Source file

Pre 
Process

orSource

Basic 
Block 
List

Basic 
Block 
List

Basic 
Block 
List

Basic 
Block 
List

Message

Console
Command

Output
Command

CFG



Next, Unnext

• This function needs for 
controls Pre-processed 
Source forward or 
backward.

• In case of ‘next’, the 
function returns character 
while moves forward.

• In case of ‘unnext’, the 
function cancels the parts 
as much as ‘offset’.



State
Transition Diagram – Level 4

Ready

IF[PPS == NULL]
/ Trigger “Not Exist Source”

IF[V]
/ Trigger “Not Parsing”

Valid Valid

Parsing

/ Trigger “Next”,
Clear(SS)

Detect

if

IF[SS==“if”]
/ Trigger “detected if”

Detect 

for

/ Trigger “Next”
Clear(SS)

IF[SS==“for”]
/ Trigger “detected for”

/ Trigger “Next”,
Clear(SS)

Detect 

switch

Detect 

while

IF[SS==“switch”]
/ Trigger “detected switch”

/ Trigger “Next”,
Clear(SS)

IF[SS==“while”]
/ Trigger “detected while”,

/ Trigger “Next”,
Clear(SS)

Statement
/ Trigger “Next”,
Clear(SS)

IF[C==‘;’]
/ Trigger “statement”,
Clear(SS)

IF[C==‘}‘]/



Modified
Total Data Flow Diagram

Parser

Detected 

if

Detected 

switch

Detected

while

Detected 

for

Not
Parsing

Not 
Exist

Source

Sub Source 
& Character

Next

Valid
Trigger Trigger

Trigger

Trigger

Trigger

Trigger

Trigger

Message

Valid

Pre-
processed

Source

File 
Rep
ort

Print

CFG 
Mak

er

Report file

File I/O 
Interface

Monitor 
Interface

Console

Output

Source
Reade

r

Source file

Pre 
Process

orSource

Basic 
Block 
List

Basic 
Block 
List

Basic 
Block 
List

Basic 
Block 
List

Message

Console
Command

Output
Command

CFG



Detected If 
• When ‘If statement’ is 

checked, This function is 
called.

• This function is operated 
internally by calling 
detected function and 
parse function recursively.

• If parsing is failed, this 
function returns ‘false’.



Detected For 
• When ‘For statement’ is 

checked, This function is 
called.

• This function use recursive 
call internally like 
‘detected If’.

• If parsing is failed, this 
function returns ‘false’.



Detected While 
• When ‘While statement’ is 

checked, This function is 
called.

• This function use recursive 
call internally like 
‘detected If’.

• If parsing is failed, this 
function returns ‘false’.



Detected Switch 
• When ‘Switch statement’ is 

checked, This function is 
called.

• This function use recursive 
call internally like 
‘detected If’.

• If parsing is failed, this 
function returns ‘false’.



Modified
Total Data Flow Diagram

Parser

Detected 

if

Detected 

switch

Detected

while

Detected 

for

Not
Parsing

Not 
Exist

Source

Sub Source 
& Character

Next

Valid
Trigger Trigger

Trigger

Trigger

Trigger

Trigger

Trigger

Message

Valid

Pre-
processed

Source

File 
Rep
ort

Print

CFG 
Mak

er

Report file

File I/O 
Interface

Monitor 
Interface

Console

Output

Source
Reade

r

Source file

Pre 
Process

orSource

Basic 
Block 
List

Basic 
Block 
List

Basic 
Block 
List

Basic 
Block 
List

Message

Console
Command

Output
Command

CFG



Print

• According to Result State(rs), 
This function decides Message.

• Case : rs = none,
• Success Message

• Case : rs = not_parsing,
• Error Message

• Case : rs = not_existed_source
• Help Message



Modified
Total Data Flow Diagram

Parser

Detected 

if

Detected 

switch

Detected

while

Detected 

for

Not
Parsing

Not 
Exist

Source

Sub Source 
& Character

Next

Valid
Trigger Trigger

Trigger

Trigger

Trigger

Trigger

Trigger

Message

Valid

Pre-
processed

Source

File 
Rep
ort

Print

CFG 
Mak

er

Report file

File I/O 
Interface

Monitor 
Interface

Console

Output

Source
Reade

r

Source file

Pre 
Process

orSource

Basic 
Block 
List

Basic 
Block 
List

Basic 
Block 
List

Basic 
Block 
List

Message

Console
Command

Output
Command

CFG



CFG Maker

• Our CFG hasn’t Edge.

• Alternatively, Basic Block has 
parent and child.

• This parts includes CFG 
generating function, Making 
end block or extra block 
function, Attaching basic 
block function, Restoring 
memory function/



Modified
Total Data Flow Diagram

Parser

Detected 

if

Detected 

switch

Detected

while

Detected 

for

Not
Parsing

Not 
Exist

Source

Sub Source 
& Character

Next

Valid
Trigger Trigger

Trigger

Trigger

Trigger

Trigger

Trigger

Message

Valid

Pre-
processed

Source

File 
Rep
ort

Print

CFG 
Mak

er

Report file

File I/O 
Interface

Monitor 
Interface

Console

Output

Source
Reade

r

Source file

Pre 
Process

orSource

Basic 
Block 
List

Basic 
Block 
List

Basic 
Block 
List

Basic 
Block 
List

Message

Console
Command

Output
Command

CFG



Report

• Because CFG hasn’t edge, We 
should make edge through 
Basic Block’s information.

• If linked node of parents is 
two or more, It’s critical edge.

• If parents’ ID is larger than 
current’s ID, It’s Back edge.



3. Test



Q n A



THANK YOU!!


