

Institute for Software Integrated Systems Vanderbilt University

HyTech: A Model Checker for Hybrid Systems

Ming Xiong James Hill

- In mission-critical applications, formal guarantees about the absence of logical and timing errors are desirable
- Time Automata focus on real-time systems
- Hybrid Automaton focus on more general hybrid systems

Model-Checking Technology

- Used for system verification
- A formal model of a system is checked, fully automatically, for correctness with respect to a requirement expressed in temporal logic
- Symbolic model checking has been widely used to verify complex systems

- Provides a yes or no to correctness requirement
- Provides diagnostic information that aids in design and debugging, e.g. computes necessary constraints that help finding correct design parameters
- Approximate system using linear hybrid automata

- A dynamic system mixing Boolean-valued variables and real-valued variables, an variant of hybrid system
- Described by

 $\mathbb{B}^m \times \mathbb{R}^n$

Example: thermostat

Fig. 1. Thermostat automaton

Hybrid Automata

- A hybrid automaton is defined as H = (X, V, flow, inv, init, E, jump, e, Σ, syn) where
 - I is a set of control modes
 - X is a set of continuous variables
 - *Init* is a labeling function that assigns an initial condition to each control mode in
 - *flow* is a labeling function that assigns a flow condition to each control mode in
 - *Inv* is a labeling function that assigns a invariant condition to each control mode in *V*
 - *E* is a collection of control switches
 - Jump is a labeling function that assigns a jump condition to each control switch in E
 - Σ is a finite set of events
 - Syn is a labeling function that assigns an event in Σ to each control switch in E

- Asserts that nothing bad will happen
- Safety verification amounts to computing the set of reachable states (to see if it's unsafe)
- State assertion
 - a function that assigns to each control in Va predicate ϕ over the variables in X
 - the states for which ϕ is true are called ϕ -states e.g. *inv*-states are precisely admissible states
- A hybrid automata H satisfies the safety requirement specified by *unsafe* if the state assertion *unsafe* is false for all reachable states of H

Linear Hybrid Automata

- Requirements
 - Linearity
 - Flow independence
- Theorem:

If A is a linear hybrid automaton , and ϕ is a linear state assertion for A, then Post (ϕ) can be computed and the result is again a linear state assertion for A

- The above theorem enables safety verification as well as temporal-logic model checking
 - i.e. in HyTech, the model to be checked has to be a linear model

- No direct means of automatically verifying non-linear model
- Has to convert a non-linear model to a linear model
 - Clock translation
 - Linear phase-portrait approximation

Clock Translation

- The idea is sometimes the value of a variable can be determined from a past value (a constant) and the time that has elapsed since the variable had that value
 - Solvability
 - Initialization

Linear phase-portrait approximation

 The idea is to relax nonlinear flow, invariant, initial and jump condition using weaker linear condition: each nonlinear predicate p is replaced by a linear predicate

Fig. 5. Tighter linear phase-portrait approximation of the thermostat automaton $\label{eq:Fig.5}$

Fig. 1. Thermostat automaton

Fig. 4. Linear phase-portrait approximation of the thermostat automaton

Need to be careful about the approximation

Safety Verification for Thermostat systems

HyTech performs these computations for us, until neither new jump successors nor new flow successors can be found

Parallel Composition

- Sometimes it is convenient to build a separate automaton, called a monitor, whose role is to enter an unsafe state precisely when the original system violates a requirement
- Monitor must observe the original system without changing its behavior

Fig. 10. Parallel composition of thermostat automaton and the