HyTech: A Model Checker for Hybrid Systems

Ming Xiong
James Hill
Motivation

- In mission-critical applications, formal guarantees about the absence of logical and timing errors are desirable
- Time Automata – focus on real-time systems
- Hybrid Automaton – focus on more general hybrid systems
Model-Checking Technology

- Used for system verification
- A formal model of a system is checked, fully automatically, for correctness with respect to a requirement expressed in temporal logic
- Symbolic model checking has been widely used to verify complex systems
Overview of HyTech

- Provides a yes or no to correctness requirement
- Provides diagnostic information that aids in design and debugging, e.g. computes necessary constraints that help finding correct design parameters
- Approximate system using linear hybrid automata
Hybrid Dynamic System

- A dynamic system mixing Boolean-valued variables and real-valued variables, an variant of hybrid system
- Described by $\mathbb{B}^m \times \mathbb{R}^n$
- Example: thermostat

![Thermostat automaton](image)
A **hybrid automaton** is defined as $H = (X, V, \text{flow}, \text{inv}, \text{init}, E, \text{jump}, e, \Sigma, \text{syn})$ where

- V is a set of control modes
- X is a set of continuous variables
- Init is a labeling function that assigns an initial condition to each control mode in V
- flow is a labeling function that assigns a flow condition to each control mode in V
- Inv is a labeling function that assigns an invariant condition to each control mode in V
- E is a collection of control switches
- Jump is a labeling function that assigns a jump condition to each control switch in E
- Σ is a finite set of events
- Syn is a labeling function that assigns an event in Σ to each control switch in E
Safety Requirement

- Asserts that nothing bad will happen
- Safety verification amounts to computing the set of reachable states (to see if it’s unsafe)
- State assertion
 - a function that assigns to each control in $\forall a$ predicate φ over the variables in X
 - the states for which φ is true are called φ-states
 - e.g. inv-states are precisely admissible states
- A hybrid automata H satisfies the safety requirement specified by unsafe if the state assertion unsafe is false for all reachable states of H
Linear Hybrid Automata

- Requirements
 - Linearity
 - Flow independence

- Theorem:
 If A is a linear hybrid automaton, and ϕ is a linear state assertion for A, then $\text{Post}(\phi)$ can be computed and the result is again a linear state assertion for A.

- The above theorem enables safety verification as well as temporal-logic model checking:
 - i.e. in HyTech, the model to be checked has to be a linear model.
What about non-linear model?

- No direct means of automatically verifying non-linear model
- Has to convert a non-linear model to a linear model
 - Clock translation
 - Linear phase-portrait approximation
The idea is sometimes the value of a variable can be determined from a past value (a constant) and the time that has elapsed since the variable had that value

- Solvability
- Initialization
The idea is to relax nonlinear flow, invariant, initial and jump condition using weaker linear condition: each nonlinear predicate \(p \) is replaced by a linear predicate.

Fig. 1. Thermostat automaton

Fig. 4. Linear phase-portrait approximation of the thermostat automaton

Fig. 5. Tighter linear phase-portrait approximation of the thermostat automaton

Need to be careful about the approximation
Safety Verification for Thermostat systems

- Add extra variables or control modes to specify our safety requirement
- Use both *reach* and *unsafe* assertion
 - if there is any state for which reach and unsafe are true, the safety requirement is violated

Now we can specify $y = 60$ and $z \geq \frac{2y}{3}$

Linear phase-portrait approximation

Fig. 1. Thermostat automaton

Fig. 2. Thermostat automaton augmented for safety verification
HyTech performs these computations for us, until neither new jump successors nor new flow successors can be found.
Sometimes it is convenient to build a separate automaton, called a monitor, whose role is to enter an unsafe state precisely when the original system violates a requirement.

Monitor must observe the original system without changing its behavior.