
Linda M. Northrop

200710117 양다빈
200710116 박석희
200711475 허원선
200711476 홍창현

1. Historical perspective

2. Motivation

3. Object-oriented model

4. Object-oriented programming

5. Object-oriented software engineering

6. Object-oriented transition

7. The future

 The object and object attribute idea first appeared in the 1950’s A.I.
 The real of object-oriented movement began in 1966 with the

introduction of the simula language.
 Palo Alto Research Center (PARC) developed smalltalk in the early

1970’s.
 This time, the term “object-oriented” was coined.
 Smalltalk is considered the first truly object-oriented language.

 Smalltalk influenced other object-oriented languages.
 Objective-C, C++, Self, Eiffel, and Flavors.

 In 1980, Grady Booch pioneered the concept of object-oriented
design (OOD).

 In 1985, the first commercial object-oriented database system was
introduced.

 The 1990s brought an ongoing investigation of object-oriented
domain analysis, testing, metrics, and management.

 The current new frontiers in object technology are design patterns,
distributed object system and Web-based object applications.

 Need for greater productivity, reliability, maintainability
and manageability.

 Viewing the world as Object is closer to human
thinking.

 Objects are more stable than functions.

 Supports information hiding, data abstraction, and
encapsulation.

 Easily modified, extended, and maintained.

 Object orientation extends across the life cycle.
 The life cycle in that a consistent object approach is used

from analysis through coding.
 Object approach spawns prototype.
 Prototypes that support rapid application development.

 OO development supports open systems.
 There is much greater flexibility to integrate software

across applications.

 The use of object-oriented development encourages
the reuse of software, design and analysis models.

 OO development supports the concurrency, hierarchy,
and complexity.

 It is currently necessary to build systems.

 Use of the OO approach tends to reduce the risk of
developing complex systems.
 System integration is diffused throughout the life cycle.

 Object technology facilitates interoperability.
 That is the degree to which an application running on

one node of a network can make use of a resource at a
different node of the network.

 A new way of thinking about what it means to
compute and how information can be structured.

 Systems are viewed as cooperating objects that
encapsulate structure and behavior in a hierarchical
construction.

 All functionality is achieved by messages that are
passed to and from objects.

 Object-oriented model can be viewed as the
framework with the following elements.
 Abstraction.
 Encapsulation.
 Modularity.
 Hierarchy.
 Typing.
 Concurrence.
 Persistence.
 Reusability.
 Extensibility.

 Object-Orientation is the
integration of procedural and
data-driven approaches.

 Language evolution, in turn,
has been a natural response
to enhanced architecture
capabilities and the ever
increasingly sophisticated
needs of programming
systems.

 The impetus for object-
oriented software
development has followed this
general trend.

 The most significant factors are the advances in
programming methodology.

 The support for abstraction in languages has
progressed to higher levels.

 Abstraction progression
 ADDRESS - machine languages.
 NAME - assembly languages.
 EXPRESSION - first generation languages (FORTRAN).
 CONTROL - second generation languages (COBOL).
 PROCEDURE AND FUNCTION - second and early third generation

languages (PASCAL).
 MODULES AND DATA - late third generation languages (Modula2).
 OBJECTS - object-based and object-oriented languages.

 All object-oriented languages are not created equal
nor do.

 No complete consensus on how to do object-oriented
analysis and object-oriented design.

 Nevertheless, object-oriented development has proven
successful in many application areas including.
 Air traffic control .
 Banking.
 Business data processing.
 Command and control systems.
 Computer-aided design (CAD).
 Databases.
 And so on.

 Object-oriented technology has moved into industrial-
strength software development.

 Concepts
 Object Oriented languages are characterized by:
 Object creation facility.

 Message passing capability.

 Class capability.

 Inheritance.

 Polymorphism.

 Languages
 4 Branches of object-oriented languages, with Simula being the

common ancestor:
 Smalltalk-based.

 C-based.

 LISP-based.

 PASCAL-based.

 Object : entity that encapsulates
state and behavior.

 State : information needed to
be stored in order to carry out
the behavior.

 Interface or protocol : set of
messages to which it will
respond.

 Concepts

 All the DOG objects respond in
same way to the messages bark,
sit and roll. Also have the same
state(Data structures).

 Inheritance : the transfer of a
class’ capabilities and
characteristics to its subclasses.
And subclass will have behavior
particular.

 Multiple inheritance : A given
class to inherit from more than
one superclass.

 Concepts

 Polymorphism : essentially
describes the phenomenon in
which a given message sent to
an object will be interpreted
differently at execution based
upon subclass determination.

 Concepts

 Languages
 Simula being the common ancestor:

 Smalltalk-based (Smalltalk-80).

 C-based (Objective C, C++, Java).

 LISP-based (Flavors, XLISP, LOOPS).

 PASCAL-based (Object Pascal, Turbo Pascal, Eiffel, Ada
95).

 Object- based (Alphard, CLU, Euclid, Gypsy, Mesa, Ada).

 Life cycle.
 Waterfall life cycle
 Water fountain life cycle

 Object-oriented analysis(OOA) and object-
oriented Design(OOD).

 Management issues.

 Waterfall life cycle
 Waterfall consists of a

sequential process,
primarily in one
direction.

 Does not
accommodate real
iteration.

 Criticized for placing
no emphasis on
reuse and having no
unifying model to
integrate the phases.

 Water fountain
life cycle
 Water fountain life

cycle describes the
inherent iterative and
incremental qualities
of object-oriented
development.

 Prototyping and
feedback loops are
standard.

 Object-oriented analysis(OOA).
 method of analysis that examines requirements from the

perspective of the classes and objects found in the
vocabulary of the problem domain.

 Scenarios can be used to determine necessary object
behavior.

 Frameworks have become very useful in capturing an
object-oriented analysis for a given problem domain.

 Framework is a skeleton of an application implemented
by concrete and abstract classes.

 Object-oriented Design(OOD).
 Object focus shifts to the solution domain.
 OOD is a method of design encompassing the process of

object-oriented decomposition and a notation for
depicting both logical and physical as well as static and
dynamic models of the system under design.

 A design pattern is a recurring design structure or
solution that when cataloged in a systematic way can be
reused and can form the basis of design communication.

 OOA and OOD.
 There is difficulty in identifying and characterizing current

OOA and OOD techniques.
 because, the boundaries between analysis and design

activities in the object-oriented model are fuzzy.

 OOA and OOD.
 Some of OOA and OOD techniques:
 Class diagrams, class category diagrams, class templates and

object diagrams to record design. (Booch, 1991)
 Class responsibility cards (CRC) - record class functionality and

collaborators. (WirfsBrock, 1990)
 Object Model - static structure of the objects in a system.

(Object diagram)
 Dynamic Model - aspects of a system that change over time.

(State diagram)
 Functional Model - data value transformation within a system.

(Data Flow diagram)
 find classes and objects, identify structures and relationships,

determine subjects, define attributes, and define service, to
determine a multilayer object-oriented model.

 Use cases - basis for analysis model. (Objectory)

 Management issues.
 The seamless, iterative, prototyping nature of object-

oriented development eliminates traditional
milestones.

 New milestones have to be established.
 LOC(lines of code) measurements are less valuable.
 Number of classes reused.
 Inheritance depth.
 Class-to-class relations.
 Coupling between objects.
 Number of classes.
 Class size are more valuable and meaningful.

 Resource allocation needs to be reconsidered.
 Incentives should be based on reuse, not LOC.

 Management issues.
 Regarding Quality assurance, review and testing activities

still essential, but timing and definition must be changed.
 Tool Support - Object-Oriented Development environment

needed along with the other components (incremental
compiler, class debugger, browser for class libraries).

 Estimates are cost of current and future reuse must be
factored.

 The risks involved in moving to an Object-Oriented
approach.
 Performance risks (cost of message passing, explosion of

message passing, dynamic allocation).

 Start-up risks (acquisition of appropriate tools, strategic and
appropriate training).

 The transition needs to progress through Levels of
absorption before assimilation into a software
development organization occurs.

 This transition period can take considerable time.

 Training is essential.

 Growing evidence that success requires a total object-
oriented approach for at least the following reasons:
 Traceability improvement.

 Reduction in significant integration problems.

 Improvement in conceptual integrity of process and product.

 Maximization of the benefits of object orientation.

 In summary, Object-Oriented development is natural
outgrowth of previous approaches.

 Object-Oriented development has not yet reached
maturity, the full potential of objects has not been
realized.

 Object orientation may eventually be replaced or
absorbed into an approach that deals with a higher
level of abstraction.

 In the not too distant future, talk about objects will no
doubt be passe, but for now there is much to
generate genuine enthusiasm.

