
Linda M. Northrop

200710117 양다빈
200710116 박석희
200711475 허원선
200711476 홍창현

1. Historical perspective

2. Motivation

3. Object-oriented model

4. Object-oriented programming

5. Object-oriented software engineering

6. Object-oriented transition

7. The future

 The object and object attribute idea first appeared in the 1950’s A.I.
 The real of object-oriented movement began in 1966 with the

introduction of the simula language.
 Palo Alto Research Center (PARC) developed smalltalk in the early

1970’s.
 This time, the term “object-oriented” was coined.
 Smalltalk is considered the first truly object-oriented language.

 Smalltalk influenced other object-oriented languages.
 Objective-C, C++, Self, Eiffel, and Flavors.

 In 1980, Grady Booch pioneered the concept of object-oriented
design (OOD).

 In 1985, the first commercial object-oriented database system was
introduced.

 The 1990s brought an ongoing investigation of object-oriented
domain analysis, testing, metrics, and management.

 The current new frontiers in object technology are design patterns,
distributed object system and Web-based object applications.

 Need for greater productivity, reliability, maintainability
and manageability.

 Viewing the world as Object is closer to human
thinking.

 Objects are more stable than functions.

 Supports information hiding, data abstraction, and
encapsulation.

 Easily modified, extended, and maintained.

 Object orientation extends across the life cycle.
 The life cycle in that a consistent object approach is used

from analysis through coding.
 Object approach spawns prototype.
 Prototypes that support rapid application development.

 OO development supports open systems.
 There is much greater flexibility to integrate software

across applications.

 The use of object-oriented development encourages
the reuse of software, design and analysis models.

 OO development supports the concurrency, hierarchy,
and complexity.

 It is currently necessary to build systems.

 Use of the OO approach tends to reduce the risk of
developing complex systems.
 System integration is diffused throughout the life cycle.

 Object technology facilitates interoperability.
 That is the degree to which an application running on

one node of a network can make use of a resource at a
different node of the network.

 A new way of thinking about what it means to
compute and how information can be structured.

 Systems are viewed as cooperating objects that
encapsulate structure and behavior in a hierarchical
construction.

 All functionality is achieved by messages that are
passed to and from objects.

 Object-oriented model can be viewed as the
framework with the following elements.
 Abstraction.
 Encapsulation.
 Modularity.
 Hierarchy.
 Typing.
 Concurrence.
 Persistence.
 Reusability.
 Extensibility.

 Object-Orientation is the
integration of procedural and
data-driven approaches.

 Language evolution, in turn,
has been a natural response
to enhanced architecture
capabilities and the ever
increasingly sophisticated
needs of programming
systems.

 The impetus for object-
oriented software
development has followed this
general trend.

 The most significant factors are the advances in
programming methodology.

 The support for abstraction in languages has
progressed to higher levels.

 Abstraction progression
 ADDRESS - machine languages.
 NAME - assembly languages.
 EXPRESSION - first generation languages (FORTRAN).
 CONTROL - second generation languages (COBOL).
 PROCEDURE AND FUNCTION - second and early third generation

languages (PASCAL).
 MODULES AND DATA - late third generation languages (Modula2).
 OBJECTS - object-based and object-oriented languages.

 All object-oriented languages are not created equal
nor do.

 No complete consensus on how to do object-oriented
analysis and object-oriented design.

 Nevertheless, object-oriented development has proven
successful in many application areas including.
 Air traffic control .
 Banking.
 Business data processing.
 Command and control systems.
 Computer-aided design (CAD).
 Databases.
 And so on.

 Object-oriented technology has moved into industrial-
strength software development.

 Concepts
 Object Oriented languages are characterized by:
 Object creation facility.

 Message passing capability.

 Class capability.

 Inheritance.

 Polymorphism.

 Languages
 4 Branches of object-oriented languages, with Simula being the

common ancestor:
 Smalltalk-based.

 C-based.

 LISP-based.

 PASCAL-based.

 Object : entity that encapsulates
state and behavior.

 State : information needed to
be stored in order to carry out
the behavior.

 Interface or protocol : set of
messages to which it will
respond.

 Concepts

 All the DOG objects respond in
same way to the messages bark,
sit and roll. Also have the same
state(Data structures).

 Inheritance : the transfer of a
class’ capabilities and
characteristics to its subclasses.
And subclass will have behavior
particular.

 Multiple inheritance : A given
class to inherit from more than
one superclass.

 Concepts

 Polymorphism : essentially
describes the phenomenon in
which a given message sent to
an object will be interpreted
differently at execution based
upon subclass determination.

 Concepts

 Languages
 Simula being the common ancestor:

 Smalltalk-based (Smalltalk-80).

 C-based (Objective C, C++, Java).

 LISP-based (Flavors, XLISP, LOOPS).

 PASCAL-based (Object Pascal, Turbo Pascal, Eiffel, Ada
95).

 Object- based (Alphard, CLU, Euclid, Gypsy, Mesa, Ada).

 Life cycle.
 Waterfall life cycle
 Water fountain life cycle

 Object-oriented analysis(OOA) and object-
oriented Design(OOD).

 Management issues.

 Waterfall life cycle
 Waterfall consists of a

sequential process,
primarily in one
direction.

 Does not
accommodate real
iteration.

 Criticized for placing
no emphasis on
reuse and having no
unifying model to
integrate the phases.

 Water fountain
life cycle
 Water fountain life

cycle describes the
inherent iterative and
incremental qualities
of object-oriented
development.

 Prototyping and
feedback loops are
standard.

 Object-oriented analysis(OOA).
 method of analysis that examines requirements from the

perspective of the classes and objects found in the
vocabulary of the problem domain.

 Scenarios can be used to determine necessary object
behavior.

 Frameworks have become very useful in capturing an
object-oriented analysis for a given problem domain.

 Framework is a skeleton of an application implemented
by concrete and abstract classes.

 Object-oriented Design(OOD).
 Object focus shifts to the solution domain.
 OOD is a method of design encompassing the process of

object-oriented decomposition and a notation for
depicting both logical and physical as well as static and
dynamic models of the system under design.

 A design pattern is a recurring design structure or
solution that when cataloged in a systematic way can be
reused and can form the basis of design communication.

 OOA and OOD.
 There is difficulty in identifying and characterizing current

OOA and OOD techniques.
 because, the boundaries between analysis and design

activities in the object-oriented model are fuzzy.

 OOA and OOD.
 Some of OOA and OOD techniques:
 Class diagrams, class category diagrams, class templates and

object diagrams to record design. (Booch, 1991)
 Class responsibility cards (CRC) - record class functionality and

collaborators. (WirfsBrock, 1990)
 Object Model - static structure of the objects in a system.

(Object diagram)
 Dynamic Model - aspects of a system that change over time.

(State diagram)
 Functional Model - data value transformation within a system.

(Data Flow diagram)
 find classes and objects, identify structures and relationships,

determine subjects, define attributes, and define service, to
determine a multilayer object-oriented model.

 Use cases - basis for analysis model. (Objectory)

 Management issues.
 The seamless, iterative, prototyping nature of object-

oriented development eliminates traditional
milestones.

 New milestones have to be established.
 LOC(lines of code) measurements are less valuable.
 Number of classes reused.
 Inheritance depth.
 Class-to-class relations.
 Coupling between objects.
 Number of classes.
 Class size are more valuable and meaningful.

 Resource allocation needs to be reconsidered.
 Incentives should be based on reuse, not LOC.

 Management issues.
 Regarding Quality assurance, review and testing activities

still essential, but timing and definition must be changed.
 Tool Support - Object-Oriented Development environment

needed along with the other components (incremental
compiler, class debugger, browser for class libraries).

 Estimates are cost of current and future reuse must be
factored.

 The risks involved in moving to an Object-Oriented
approach.
 Performance risks (cost of message passing, explosion of

message passing, dynamic allocation).

 Start-up risks (acquisition of appropriate tools, strategic and
appropriate training).

 The transition needs to progress through Levels of
absorption before assimilation into a software
development organization occurs.

 This transition period can take considerable time.

 Training is essential.

 Growing evidence that success requires a total object-
oriented approach for at least the following reasons:
 Traceability improvement.

 Reduction in significant integration problems.

 Improvement in conceptual integrity of process and product.

 Maximization of the benefits of object orientation.

 In summary, Object-Oriented development is natural
outgrowth of previous approaches.

 Object-Oriented development has not yet reached
maturity, the full potential of objects has not been
realized.

 Object orientation may eventually be replaced or
absorbed into an approach that deals with a higher
level of abstraction.

 In the not too distant future, talk about objects will no
doubt be passe, but for now there is much to
generate genuine enthusiasm.

