
MODERN SOFTWARE DESIGN
METHODS FOR CONCURRENT
AND REAL-TIME SYSTEMS
Hassan Gomaa

발표자 : 200811306 이해성

200511355 정용구
200511325 박찬석박찬석

200412349 임현웅

1. INRTODUCTION

 The massive reduction in the cost of micro-
processor and semiconductor chips and the large
increase in microprocessor performanceincrease in microprocessor performance

 So real-time and distributed real-time micro-
computer-based systems are very cost-effective computer based systems are very cost effective
solution to many problems

 Commercial, industrial, military, medical, Commercial, industrial, military, medical,
consumer products are microcomputer based

 Real-time systems is concurrent processing; y p g;
activities occurring simultaneously

 Consequently, real-tome systems deal with con-
current activities

1. INRTODUCTION

2. Concurrent Processing concepts
3. Run-time Support for Concurrent Tasks
4. Survey of Design Methods for Concurrent and

Real-time Systems
5 A M d S f D i M h d f 5. A Modern Software Design Method for

Concurrent and Real-time Systems
6 P f A l i f R l ti D i6. Performance Analysis of Real-time Designs
7. Conclusions

2. CONCURRENT PROCESSING CONCEPTS

2.1. Concurrent Tasks
 A concurrent task represents the execution of

sequential programsequential program
 A concurrent system consists of several tasks

executing in parallel
 Concurrency in software system is obtained by

having multiple asynchronous tasks
Th t t i l t d l ith t k hi h There are two typical way to deal with tasks which
named ‘robot arms’ : mutual exclusion and task
synchronization

2. CONCURRENT PROCESSING CONCEPTS

2.2. Mutual Exclusion
 Mutual exclusion is required when only one task at a

time may have exclusive access to a resourcetime may have exclusive access to a resource
 To prevent the collision that could occur if more than

one robot is allowed to move into the colli-sion zone at
the same time, robot entry is made mutually
exclusive

2. CONCURRENT PROCESSING CONCEPTS

2.2. Mutual Exclusion
EX)

Perform operations outside collision zone

P (Collision_Zone_Semaphore)
Perform mutually exclusive operation in collision
zone
V(Collision_Zone_Semaphore)

Perform more operations outside collision zone

2. CONCURRENT PROCESSING CONCEPTS

2.3. Synchronization of Tasks
 Task synchronization is required when one task

wishes to signal another to notify it that some event wishes to signal another to notify it that some event
has occurred

 For example, the producer robot moves a part into
position and then signals the event Part_Ready and
the consumer robot, which is suspended waiting for
the signal is reactivated so that it can move to the the signal, is reactivated so that it can move to the
part and pick it up

2. CONCURRENT PROCESSING CONCEPTS

2.3. Synchronization of Tasks
EX)
Robot A

WHILE Work_Available DO

Robot B

WHILE Work_Available DO

Pick up part
Move Part to Workplace

Wait (Part_Ready)
Move to workplace

Release part
Move to safe position
Signal (Part_Ready)

Drill Four holes
Move to safe position
Signal (Part_Completed)

Wait (Part_Completed)
Pick up part
Remove from Workplace

END

END

2. CONCURRENT PROCESSING CONCEPTS

2.4. Message Communication
 Message communication is used when data needs to

be passed between two tasksbe passed between two tasks
 For example, the producer sends a message to the

consumer and consumer receive a message
 If a message is available, the consumer will receive it

and continue processing; otherwise, the consumer is
suspended until the message arrivessuspended until the message arrives

 Two types of message communication
 Loosely couple message communicationy p g
 Tightly couple message communication

2. CONCURRENT PROCESSING CONCEPTS

2.4. Message Communication
EX)
Vision System:

W i (C i d)

Robot task:

W i f f Wait (Car_arrived)
Take picture of car body
Identify car body

Wait for message from
vision system

Read message (car model Identify car body
Determine location and

orientation of car body

Read message (car model
i.d., car body offset)

Select welding program
i g ff t f Send message (car model

i.d., car body offset) to
robot

using offset for car
position

Signal (Move_car)robot g ()

3. RUN-TIME SUPPORT FOR CONCURRENT TASKS

Run-time support for concurrent processing may
be provide by:

 Kernel of an operating system Kernel of an operating system
 This has the functionality to provide services for

concurrent processing
R i Run-time support system
 For a concurrent language

 Thread packagep g
 Provides services for managing threads within

heavyweight process

3. RUN-TIME SUPPORT FOR CONCURRENT TASKS

3.1. Language Support for Concurrent Tasks
 With sequential programming languages(C, C++,

Pascal and Fortran) there is no support for Pascal, and Fortran), there is no support for
concurrent tasks

 So it is necessary to use a kernel or threads package
 With concurrent programming language(Ada and

Java), the language supports constructs for task
communication and synchronizationcommunication and synchronization

 So the language’s runtime system provides the
services and underlying mechanisms

3. RUN-TIME SUPPORT FOR CONCURRENT TASKS

3.2. Real-Time Operating Systems
A real-time operating system must:
 Support multitasking
 Support priority preemption scheduling
 Provide task synchronization and communication Provide task synchronization and communication

mechanisms
 Provide a memory-locking capability for tasksy g p y
 Provide a mechanism for priority inheritance
 Have a predictable behavior

4. SURVEY OF DESIGN METHOD FOR
CONCURRENT AND REAL-TIME SYSTEMS

MASCOT t ti [Si 1979] MASCOT notation [Simpson 1979]
 MASCOT design method [Simpson 1986]
 Software Cost Reduction Method [Parnas, Clements, and

W i 1984]Weiss 1984]
 Real-Time Structured Analysis and Design (RTSAD) [Ward

and Mellor 1985, Hatley and Pribhai 1988]
D i A h f R l Ti S (DARTS) [G Design Approach for Real-Time Systems (DARTS) [Gomma
1984]

 Jackson System Development (JSD) [Jackson 1983]
 Object Modeling Technique (OMT) [Rumbaugh 1991]
 Concurrent Design Approach for Real-Time Systems

(CODARTS) [Gomma 1993]
 Octopus [Awad, Kuusela, and Ziegler 1996]
 Real-Time Object-Oriented Modeling (ROOM) [Selic,

Guulekson and Ward 1994]
 Douglass [1999, 2004]

5. A MODERN SOFTWARE DESIGN METHOD
FOR CONCURRENT AND REAL-TIME SYSTEMS

5.1. Introduction
 Most books on object-oriented analysis and design

omit the important design issues that need to be omit the important design issues that need to be
addressed when designing real-time and distributed
applications

 COMET method is for the designing real-time and
distributed applications

 How to use the UML notation to address the design How to use the UML notation to address the design
of large-scale concurrent, distributed, and real-time
applications

 Example) Pump monitoring and control system

5. A MODERN SOFTWARE DESIGN METHOD
FOR CONCURRENT AND REAL-TIME SYSTEMS

5.2. The COMET Method
 COMET is a concurrent object modeling and

architectural design method for the development of architectural design method for the development of
concurrent applications

 Requirements modeling phase
 Define the functional requirements of the system

 Analysis modeling phase
St ti d d i d l f th t d l d Static and dynamic models of the system are developed

 Design modeling phase
 An architectural design model is developedg p

5. A MODERN SOFTWARE DESIGN METHOD
FOR CONCURRENT AND REAL-TIME SYSTEMS

5 2 Th COMET M th d5.2. The COMET Method
Distinguishing features of the Comet method are the

emphasis on:p
• Structuring criteria to assist the designer at different

stages of the analysis and design process: subsystems,
objects, and concurrent tasksj ,

• Dynamic modeling, both object collaboration and state
charts, describing in detail how object collaborations and
statecharts relate to each other

• Distributed application design, addressing the design of
configurable distributed components and intercomponent
message communication interfaces

• Concurrent design, addressing in detail task structuring
and the design of task interfaces

• Performance analysis of real-time designs using real-time y g g
scheduling

5. A MODERN SOFTWARE DESIGN METHOD
FOR CONCURRENT AND REAL-TIME SYSTEMS

5.3. Requirements Modeling with UML
• The use of actors in real-time application

Th l i ti h t • There are several variations on how actors are
modeled

• An actor is very often a human user ac o s ve y o e a a se
• An actor can also be an external I/O device
• An actor can also be a timer
• An example of a use case model from the pump

monitoring and control system is given in Figure 1

5. A MODERN SOFTWARE DESIGN METHOD
FOR CONCURRENT AND REAL-TIME SYSTEMS

5.3. Requirements Modeling with UML

5. A MODERN SOFTWARE DESIGN METHOD
FOR CONCURRENT AND REAL-TIME SYSTEMS

5.4. Analysis Modeling with UML
5.4.1. Static Modeling

Th UML i d li i l • The UML notation does not explicitly support a system
context diagram

• A system context class diagram provide a more detailed
view of the system boundary than a use case diagram

• Using the UML notation for the static model, the system
context is depicted showing the system as an aggregate
class with the stereotype <system>

• An external class can be an <external input device>,
an<external output device>, an <external I/O device>, an
<external user>, or an <external system>

• An example of a system context class diagram from the
pump monitoring and control system is given in Figure 2p p g y g g

5. A MODERN SOFTWARE DESIGN METHOD
FOR CONCURRENT AND REAL-TIME SYSTEMS

5.4. Analysis Modeling with UML
5.4.1. Static Modeling

5. A MODERN SOFTWARE DESIGN METHOD
FOR CONCURRENT AND REAL-TIME SYSTEMS

5.4. Analysis Modeling with UML
5.4.2. Object Structuring

S l bj b d d bj i d l i h d • Several object-based and object-oriented analysis methods
provide criteria for determining objects in the problem
domain

• Object structuring is to categorize objects in order to group
together with similar characteristics

• An application class can be categorized as an <entity> class,
a <controll> class, an <interface> class, a <controll> class,
or an <application logic> class

• Real-time systems will have many device interface classes
to interface to the various sensors and actuators

5. A MODERN SOFTWARE DESIGN METHOD
FOR CONCURRENT AND REAL-TIME SYSTEMS

5.4. Analysis Modeling with UML
5.4.3. Dynamic Modeling

I i i d d h h fi i hi • It is important to understand how the finite-state machine
model, depicted using a state chart that is executed by a
state-dependent control object, and relates to the
i t ti d l hi h d i t th i t ti f thi interaction model, which depicts the interaction of this
object with other objects

• State-dependent dynamic analysis addresses the
i i bj h i i i interaction among objects that participate in state-
dependent use cases

• The state chart needs to be considered in conjunction with
 the collaboration diagram

• An example of the collaboration diagram for the control
pump use case is given in Figure 3, and the state chart for
the Pump Control object is shown in Figure 4

5. A MODERN SOFTWARE DESIGN METHOD
FOR CONCURRENT AND REAL-TIME SYSTEMS

5.4. Analysis Modeling with UML
5.4.3. Dynamic Modeling

5. A MODERN SOFTWARE DESIGN METHOD
FOR CONCURRENT AND REAL-TIME SYSTEMS

5.4. Analysis Modeling with UML
5.4.3. Dynamic Modeling

5. A MODERN SOFTWARE DESIGN METHOD
FOR CONCURRENT AND REAL-TIME SYSTEMS

5.5. Design Modeling
5.5.1. The Transition from Analysis to Design

Th lid d ll b i di i h i f ll • The consolidated collaboration diagram is a synthesis of all
the collaboration diagrams developed to support the use
cases

• The consolidated collaboration diagram, which depicts the
objects and messages from all the use-case-based
collaboration diagrams, can get very large for a large

 d h i b i l h ll h system and thus it may not be practical to show all the
objects on one diagram

• So develop a higher-level subsystem collaboration diagram
 to show the dynamic interaction between subsystems on a

subsystem collaboration diagram
• As shown in Figure 5

5. A MODERN SOFTWARE DESIGN METHOD
FOR CONCURRENT AND REAL-TIME SYSTEMS

5.5. Design Modeling
5.5.1. The Transition from Analysis to Design

5. A MODERN SOFTWARE DESIGN METHOD
FOR CONCURRENT AND REAL-TIME SYSTEMS

5 5 D i M d li5.5. Design Modeling
5.5.2. Software Architecture Design

D i ft hit t d i th t i b k • During software architecture design, the system is broken
down into subsystems and the interfaces between the
subsystems are defined
S f hi d i i h bj i h hi h • Software architecture design is to have objects with high
coupling among each other in the same subsystem

5 5 3 Concurrent Collaboration Diagrams5.5.3. Concurrent Collaboration Diagrams
• An active object has its own thread of control and executes

concurrently with other objects
A i bj l h h bj i k • A passive object only executes when another object invokes
one of its operations

• On a concurrent collaboration diagram, an active object
(task) is depicted as a box with thick black lines and a
passive object is depicted as a box with thin black lines

5. A MODERN SOFTWARE DESIGN METHOD
FOR CONCURRENT AND REAL-TIME SYSTEMS

5.5. Design Modeling
5.5.4. Architectural Design of Distributed Real-
Ti S tTime Systems

• Distributed real-time system is structured into distributed
subsystems, where a subsystem is designed as a config-
urable component and corresponds to one logical node

• Task in different subsystems may communicate with each
other using several different types of message g yp g
communication including asynchronous communication,
synchronous communication, client/server communication,
group communication, brokerd communication, and
negotiatated communication

• An example is shown in Figure 6

5. A MODERN SOFTWARE DESIGN METHOD
FOR CONCURRENT AND REAL-TIME SYSTEMS

5.5. Design Modeling
5.5.4. Architectural Design of Distributed Real-
Ti S tTime Systems

5. A MODERN SOFTWARE DESIGN METHOD
FOR CONCURRENT AND REAL-TIME SYSTEMS

5.5. Design Modeling
5.5.5. Task Structuring

T k i i i id d i i i • Task structuring criteria are provided to assist in mapping
an object-oriented analysis model of system to a concurrent
tasking architecture

• During task structuring, if an object in the analysis model
is determined to be active, then it is categorized further to
show its task characteristics

• An example of a task architecture for the pump monitoring
and control system is given in Figure 7

5. A MODERN SOFTWARE DESIGN METHOD
FOR CONCURRENT AND REAL-TIME SYSTEMS

5.5. Design Modeling
5.5.5. Task Structuring

5. A MODERN SOFTWARE DESIGN METHOD
FOR CONCURRENT AND REAL-TIME SYSTEMS

5.5. Design Modeling
5.5.6. Detailed Software Design

I hi h i l f i k h i • In this step, the internals of composite tasks that contain
nested objects are designed, detailed task synchronization
issues are addressed, connector classes are designed that

l t th d t il f i t t k i ti d encapsulate the details of intertask communication, and
each task’s internal event sequencing logic is defined

• An example of the detailed design of a composite task is
i i Fi 8given in Figure 8

5. A MODERN SOFTWARE DESIGN METHOD
FOR CONCURRENT AND REAL-TIME SYSTEMS

5.5. Design Modeling
5.5.6. Detailed Software Design

6. PERFORMANCE ANALYSIS OF REAL-TIME
DESIGNS

f l i f f d i i Performance analysis of software designs is
particularly important for real-time systems

 Real-time scheduling is an approach that is Real time scheduling is an approach that is
particularly appropriate for hard real-time systems
that have deadlines that must be met

 Event sequence analysis considers scenarios of task
collaborations and annotates them with the timing
parameters for each of the tasks participating in each p p p g
collaboration

7. CONCLUSIONS

h d i i d l i i When designing concurrent and real-time systems, it
is essential to blend object-oriented concepts with the
concepts of concurrent processingp p g

 With the proliferation of low-cost workstations and
personal computers operating, the concurrent

t i lik l t idl i th t f systems is likely to grow rapidly in the next few years
 With the growing need for reusable design, design

method for software product lines are likely to be of p y
increasing importance for future real-time systems

