
Roger S.Pressman , Ph.D.

Computer science and engineering

Team 1.

200711440

Song Tae soo

 Definition of software engineering:

Software Engineering is the establishment and use
of sound engineering principles in order to obtain
economically software that is reliable and work
efficiently on real machines.

 Software Engineering is a layered technology.

 A generic process framework

-Communication

-Planning

-Modeling

-Construction

-Deployment

 The details of the software process will be quite
different in each case, but the framework activities
remain the same.

 Typical activities
-Software project tracking and control
-Risk management
-Software quality assurance
-Formal technical reviews
-Measurement
-Software configuration management
-Reusability management
-Work product preparation and production

 “Where we locate the basis when we choose one of
that, Process Models?”

 3.1. Prescriptive Models

3.1.1. The waterfall model

3.1.2. Incremental process models

3.1.3. Evolutionary process models

3.1.4. Specialized process models

3.1.5. The unified process

 Prototyping Paradigm

 The Spiral Model

 Component-Based Development

 The Formal Methods Model

 Aspect-Oriented Software Development

 Individuals and interactions

over processes and tools

 Working software

over comprehensive documentation

 Customer collaboration

over contract negotiation

 Responding to change

over following a plan

 Effective software project management focuses on the 3P:
PEOPLE, PROBLEM, PROCESS.

-PEOPLE
The people management maturity model

-PROBLEM
The software developer and customer must meet to define

project objectives and scope.
→Joint Application Design(JAD)

-PROCESS
The Capability Maturity Model Integration(CMMI)

(1)"continuous" model
(2)"staged" model

 Measurement and Metrics

 Project Estimating
Three broad classes of estimation techniques for software
projects:

1. Effort estimation techniques
2. Size-Oriented Estimation
3. Empirical Models

 Risk Analysis

The goals of risk analysis:

(1) to identify those risks that have high likelihood of
occurrence.

(2) to assess the consequence of each risk should it occur.

(3) to develop a plan for mitigating the risks when
possible, monitoring factors that may indicate there
arrival, and developing a set of contingency plans should
they occur.

 Scheduling

 Tracking and Control

Control focuses on two major issues: Quality and Change.

 Software requirements are the foundation from which

quality is assessed.

 A mature software-process model defines a set of
development

criteria that guide the manner in which software is
engineered.

 There is a set of implict requirements that often goes

unmentioned(e.g. the desire for good maintainability).

 Correctness.

 Reliability.

 Efficiency.

 Integrity.

 Usability.

 Maintainability.

 Flexibility.

 Testability.

 Portability.

 Reusability.

 Interoperability.

 Software configuration management (SCM) is an
umbrella activity that is applied throughout the
software process.

 SCM activities are developed to

(1) identify changes

(2) control changes

(3) ensure that changes are being properly implemented

(4) report changes to others who may have an interest.

 A primary goal of software engineering

→ to improve the ease with which changes can be
accommodated and reduce the amount of effort
expended when changes must be made.

 8.1 Software Engineering Methods

– The Landscape.

 8.2 Problem Definition.

 8.3 Design.

 8.4 Program Construction.

 8.5 Software Testing.

 All engineering disciplines encompass four major activities.

(1) the definition of the problem to be solved

(2) the design of a solution that will meet the customer’s
needs.

(3) the construction of solution.

(4) the testing of the implemented solution.

 The methods landscape’s three different methods.

(1)Conventional software engineering methods.

(2)Object-oriented approaches.

(3)Formal methods.

 8.2.1 Analysis Principles

 8.2.2 Analysis Methods

 1. The data domain of problem must be modeled.

 2. The functional domain of the problem must be modeled.

 3.The behavior of the system must be represented.

 4.Models of data, function, and behavior must be partitioned.

 5.The overriding trend in analysis is from essence toward

implementation.

 All analysis methods provide a notation for describing data
objects and the relationships that between them.

 All analysis methods couple function and data and provide a way

to understand how function operates on data.

 All analysis methods enable an analyst to represent behavior

at a system level and, in some cases, at a more localized level

 All analysis methods support a partitioning approach that leads
to increasingly more detailed and implementation-specific
models.

 All analysis methods establish a foundation from which design
begins, and some provide representations that can be directly

mapped into design.

 1. Scenario-based elements.

 2. Class-based elements.

 3. Behavioral elements.

 4. Flow-oriented elements.

 8.3.1 Design Principles

 8.3.2 The design Pyramid

 1. Data and the algorithms that manipulate data should be
created as a set of interrelated abstractions

 2. The internal design detail of data structures and algorithms

should be hidden from other software components that
make use of the data structures and algorithms.

 3. Modules should exhibit independence.

 4. Algorithms should be designed using a constrained set of

logical constructs.

 Best programming language?

 Computer-based system < construction

 Innovative approaches to analysis and design

 Comprehensive SQA techniques

 Effective and Efficient testing

 Glen Myers’s rules.

 1.Testing is a process of executing a program with the intent

of finding an error.

 2. A good test case is one that has a high probability of
finding an as-yet-undiscovered error.

 3. A successful test is one that uncovers an as-yet-
undiscovered error.

 8.5.1 Strategy

 Testing begins at the module level and works incrementally
“outward” toward the integration of the entire computer-based
system.

 Different testing techniques are appropriate at different points in
time.

 Testing is conducted by the developer of the software and
(for large projects) an independent test group.

 Testing and debugging are different activities, but debugging
must
be accommodated in any testing strategy.

 8.5.2 Tactics
Black-box testing
White-box testing

 Software process -> collection of patterns.

 provides us with a template.

 any level of abstraction.

 Process , analysis , design , testing patterns .

 Effective mechanism for describing any software process.

 High level of abstraction -> hierarchical process description.

 Reoccur across all project within a specific application.

 Integrated into the analysis model by reference to the pattern
name.

 Provide a description that enables a designer to determine

1) whether the pattern is applicable to the current work.

2) whether the pattern can be reused.

3) whether the pattern can serve as a guide for developing a
similar but functionally or structurally different pattern.

 Design patterns are…

Pattern name, intent, also known as ,motivation ,applicability,
structure, participants ,collaborations , consequences, related
patterns

 Staff downsizing

 Growing reality of international outsourcing

 Revolution of software engineering

 Three Rs

1)Reuse – risk, cost, revenue => best hope!

2)Reengineering – long time => step by step!

3)Retooling – reuse & reengineering => Up!

 Will we continue to struggle to produce software that meets
the needs of a new breed of customers?

 Will software remain a bottleneck in the development of new
generations of computer-based products and systems?

 The degree to which industry embraces software engineering

 culture of software development

 We should look to the future with anticipation or trepidation.

