
A REVIEW OF FORMAL METHODS

Robert L. vienneau

INDEX

� 1. INTRODUCE

� 2. DEFINING AND OVERVIEW OF FORMAL

METHODS

� 3.SPECIFICATION METHODS

� 4.LIFE CYCLES AND THECHNOLOGIES WITH

INTEGRATED FORMAL METHODS

� CONCLUSION

Introduction

� The 1970s witnessed the structured programming

revolution.

� After much debate, software engineers became

convinced that better programmers result from following

certain precept in program design.certain precept in program design.

� Formal Methods have the potential of leading to further

revolutionary change in practice and hav provided the

underlying basis for past change.

Definition and overview of formal

methods

� 2.1.Use of Formal Methods
� They are directly applicable during the require

ments, design, and coding phases and have im

portant consequences for testing and maintenportant consequences for testing and mainten

ance.

� They have influenced the development and sta

ndardization of many programming languages

, the programmer's most basic tool.

Definition and overview of formal

methods

� 2.1.Use of Formal Methods

� A broad view of formal methods

includes all applications of includes all applications of

(primarily) discrete mathematics to

engineering problems.

Definition and overview of formal

methods

� 2.1.Use of Formal Methods
� A more narrow definition, better conveys

the change in practice recommended by
advocates of formal methods. advocates of formal methods.

� First, formal methods involve the essenti
al use of a formal language.

� Second, formal methods in software
support formal reasoning about
formulae in the language.

Definition and overview of formal

methods

� 2.1.1.What Can Be Formally

Specified
� Formal methods support precise and rigorous

specifications of those aspects of a computer sspecifications of those aspects of a computer s

ystem capable of being expressed in the langu

age.

Definition and overview of formal

methods

� 2.1.1.What Can Be Formally

Specified
� Since defining what a system should do, and

understanding the implications of these decisunderstanding the implications of these decis

ions, are the most troublesome problems in s

oftware engineering, this use of formal meth

ods has major benefits.

Definition and overview of formal

methods

� 2.1.1.What Can Be Formally
Specified
� Formal methods can be used to specify aspects o

f a system other than functionality.f a system other than functionality.

� For example formal methods are sometimes appl
ied in practice to ensure software safety and secu
rity properties of computer programs.

� The benefits of proving that unsafe states cannot
arise, or that security is assured, can justify the c
ost of complete formal verifications of the releva
nt portions software system.

Definition and overview of formal

methods

� 2.1.2.Reasoning about a Formal

Description
� Dose a description imply a system should be i

n several states simultaneously?n several states simultaneously?

� Do all legal inputs that yield one and only one

output?

� What surprising results, perhaps unintended,

can be produced by a system?

Definition and overview of formal

methods

� 2.1.2.Reasoning about a Formal

Description
� Formal methods support formal verification, t

he construction of formal proofs that an implhe construction of formal proofs that an impl

ementation satisfies a specification.

� The possibility of constructing such formal pr

oofs was historically the principal driver in the

development of formal methods.

Definition and overview of formal

methods

� 2.1.3.Tools and Methodology
� For proponents of formal methods, the ultim

ate end product of software development is n

ot solely a working systemot solely a working system

� Specification and demonstrations that the pr

ogram meets its specification are of equal im

portance.

Definition and overview of formal

methods

� 2.1.3.Tools and Methodology
� A proof is very hard to develop after the fact.

� Consequently, proofs and programs should b

e developed in parallel, with close interconnee developed in parallel, with close interconne

ctions in their development history.

� Since programs must be proven correct, only

those constructions that can be clearly under

stood should be used.

Definition and overview of formal

methods

� 2.1.3.Tools and Methodology
� Formal methods have also inspired the devel

opment of many tools.

� Programs to help maintain and automate pro� Programs to help maintain and automate pro

ofs are an obvious example of such tools.

Definition and overview of formal

methods

� 2.1.3.Tools and Methodology
� in some sense, no programmer can avoid for

mal methods, for every programming langua

ge is by definition, a formal language.ge is by definition, a formal language.

� Ever Since Algol 1960 was introduced, standa

rds defining programming languages have us

ed a formal notation for defining language sy

ntax, namely Backus-Naur Form.

Definition and overview of formal

methods

� 2.2. Limitations of Formal

Methods
� Given the applicability of formal methods thr

oughout the life cycle, and their pervasive posoughout the life cycle, and their pervasive pos

sibilities for almost all areas of software engin

eering, why are they not more widely visible?

Definition and overview of formal

methods

� 2.2. Limitations of Formal Methods
� One issue is pedagogic.

� Revolutions are no made by conversion, but by the old g

uard passing away.

� One the other hand, it is not the case that the onl

y barrier to the widespread transition of this tech

nology is lack of knowledge on the part of practit

ioners

� Formal methods suffer from certain limita

tions.

Definition and overview of formal

methods

� 2.2.1 Requirements Problem
� In particular, a formal verification can prov

e that an implementation satisfies a forma

l specification, but it cannot prove that a fl specification, but it cannot prove that a f

ormal specification captures a user's intuiti

ve understanding of a system.

� In other words, formal methods can be

used to verify a system, but not to valid

ate it.

Definition and overview of formal

methods

� 2.2.1 Requirements Problem
� One influential study found that the three

most important problems in software dev
elopment are:elopment are:

� 1. The thin spread of application domain kn
owledge

� 2. Change in and conflicts between require
ments

� 3. Communication and coordination proble
m.

Definition and overview of formal

methods

� 2.2.1 Requirements Problem
� These findings suggest the reduction of infor

mal application knowledge to a rigorous speci

fication is a key problem area in the developfication is a key problem area in the develop

ment of large systems.

� Empirical evidence suggests, however, that fo

rmal methods can make a contribution to the

problem of adequately capturing requiremen

ts.

Definition and overview of formal

methods

� 2.2.1 Requirements Problem
� Empirical evidence suggests, however, that formal m

ethods can make a contribution to the problem of ad
equately capturing requirements.

� The discipline of producing a formal specification can
result in fewer specification errors. result in fewer specification errors.

� Furthermore, implementers without an excepti
onal designer's knowledge of the application ar
ea commit fewer errors when implementing a f
ormal specification than when relying on hazy
knowledge of the application.

� The discipline of producing a formal specification can
result in fewer specification errors.

Definition and overview of formal

methods

� 2.2.1 Requirements Problem
� A specification acts as a "contract" between a

user and a developer.

� Using specifications written in a for� Using specifications written in a for

mal language to complement natur

al language descriptions can make

this contract more precise.

Definition and overview of formal

methods

� 2.2.1 Requirements Problem
� Finally, developers of automated programmi

ng environments, which use formal methods,

have developed tools to interactively capture have developed tools to interactively capture

a user's informal understanding and thereby

develop a formal specification.

� Still, formal methods can never replace deep

application knowledge on the part of the requ

irements engineer, whether at the system or t

he software level.

Definition and overview of formal

methods

� 2.2.2 .Physical Implementation
� The second major gap between the abstracti

ons of formal methods and concrete reality li
es in the nature of any physically existing com
puter.puter.

� Formal methods can verify that an implemen
tation satisfies a specification when run on an
idealized abstract machine, but not when run
on any physical machine.

� Memory chips and integrated circuits may co
ntain bugs.

Definition and overview of formal

methods

� 2.2.3 .Implementation Issues
� The gaps between users` intentions and form

al specifications, and between physical imple
mentations and abstract proofs, create inher
ent limitations to formal methods, no matter ent limitations to formal methods, no matter
how much they may be developed in the futu
re.

� The introduction of a new technology into a l
arge-scale software organization is not a sim
ple thing, particularly a technology as potenti
ally revolutionary as formal methods.

Definition and overview of formal

methods

� 2.2.3 .Implementation Issues
� Decisions must be made about whether the t

echnology should be completely or partially a

dopted. Appropriate accompanying tools needopted. Appropriate accompanying tools nee

d to be acquired.

� Current personnel need to be retrained, and n

ew personnel may need to be hired.

� Existing practices need to be modified, perha

ps drastically.

Definition and overview of formal

methods

� 2.2.3 .Implementation Issues
� Optimal decisions depend on the organizatio

n and the techniques for implementing forma

l methods.l methods.

� One scheme for using formal methods on real

-world projects is to select a small subset of c

omponents for formal treatment, thus finessi

ng the scalability issue.

Definition and overview of formal

methods

� 2.2.3 .Implementation Issues
� No matter to what extent an organization de

cides to adopt formal methods, if at all, traini

ng and education issues arise.ng and education issues arise.

� Education in formal methods should not be c

onfined to degreed university programs for u

ndergraduates newly entering the field.

� Means need to be found, such as seminars an

d extension courses, for retraining an existing

workforce.

SPECIFICATION METHODS

� Formal methods were originality developed t

o support VERIFICATIONS, BUT MANY PROJ

ECTS USING FORMAL METHODS HAVE used

them only to establish properties of specificat

ions.ions.

� This section briefly describes some characteri

stics of different methods now available.

SPECIFICATION METHODS

� 3.1 Semantic Domain
� A formal specification language contains an a

lphabet of symbols and grammatical rules tha

t define well-formed formulae.t define well-formed formulae.

� These rules characterize a language`s "syntac

tic domain." The syntax of a language shows

how the symbols in the language ships betwe

en them are characterized by the syntax of a l

anguage.

Definition and overview of formal

methods

� 3.1 Semantic Domain
� Three major classes of semantic domains exis

t.

� 1. Abstract data type specification languages� 1. Abstract data type specification languages

� 2. Process specification languages

� 3. Programming languages

Definition and overview of formal

methods

� 3.2 Model-Oriented and

Property-Oriented Methods
� The distinction between model-oriented and

property-oriented methods provides another property-oriented methods provides another

dimension for classifying formal methods.

SPECIFICATION METHODS

� 3.2 Model-Oriented and

Property-Oriented Methods
� Model-oriented methods have also been desc

ribed as constructive or operational.ribed as constructive or operational.

� Typically, a model will use abstract mathemat

ical structures, such as relations, functions, se

ts, and sequences.

SPECIFICATION METHODS

� 3.2 Model-Oriented and Property-
Oriented Methods
� Property-oriented methods are also described as

definitional or declarative.definitional or declarative.

� A specification describes a minimun set of conditi
ons that a system must satisfy.

� Any system that satisfies these conditions is f
unctionally correct, but the specification dose
not provide a mechanical model showing how
to determine the output of the system from t
he input.

Definition and overview of formal

methods

� 3.3 Use of Specification Methods
� In general, formal methods provide for more pre

cise specifications.

� Since the earlier a fault is detected, the cheaper i
t can be removed, formal specification methods ct can be removed, formal specification methods c
an dramatically improve both productivity and q
uality.

� In particular, customers should be presented with
the English version, not a formal specification.

� Choosing between model-oriented and property-
oriented methods also depends on project-specif
ic details and experience.

4.0 LIFE CYCLES AND TECHNOLOGIES WI

TH INTEGRATED FORMAL METHODS

� Two methods of integrating formal

methods in software processes can

be distinguished:
� One with heavy use of automated tools � One with heavy use of automated tools

� and the other with non-mechanical, non-

automated proofs.

4.0 LIFE CYCLES AND TECHNOLOGIES WI

TH INTEGRATED FORMAL METHODS

� 4.1 Verification Systems and Ot

her Automated Tools
� An automated verification system provides a means for

the user to demonstrate the existence of a formal proof the user to demonstrate the existence of a formal proof

of a software system.

� Another set of tools support model checking.

� Model checking tools overcome state explosion pr

oblem in practice by the use of symbolic technique

s.

4.0 LIFE CYCLES AND TECHNOLOGIES WI

TH INTEGRATED FORMAL METHODS

� 4.2 The Cleanroom as a Life Cycle wit
h Integrated Use of Formal Methods
� The Cleanroom methodology intergrates non-mechanized

formal methods into the life cycle.

� Specification developed by the Cleanroom process � Specification developed by the Cleanroom process
include:
� Explicit identification of functionality to be included in successive

releases

� Failure definitions, including level of severity

� The target reliability as a probability of faIlure-free operation for
a specified time

� The operational profile for each increment, that is, a model of user
behavior of the system

� The reliability model that is applied in system testing to demonstrate
reliability.

Conclusions

� This report has briefly surveyed various formal methods and the con

ceptual basis of these techniques.

� Formal methods can provide:

� More precise specifications

� Better internal communication

� An ability to verify designs before executing them during test

� Higher quality and productivity

� knowledge of formal methods is needed to completely understand t

hese popular technologies and to use them most effectively. These t

echnologies include:

� Rapid prototyping

� Object Oriented Design (OOD)

� Structured programming

� Formal inspections.

Conclusions

� The full-scale use, transition, and cost-

effective use of formal methods is not fully

understood. An organization whose leaders

can figure out how to effectively integrate can figure out how to effectively integrate

formal methods into their software process

will be likely to produce higher quality

software and thereby gain a competitive

advantage

