
Software's Chronic Crisis

□ Denver’s airport case

- Twice the size of Manhattan
- 21 miles of steel track
- 4000 independent telecar
- 5000 electric eyes
- 400 radio receiver

□ Error in the software

- 193-million$ BAE automated System
- red ink 1.1-million$ a day
- not predict when airport to open

□ rate of success

- about 33% of projects are canceled
- overshooted shcedule by half
- 75% systems have operating failure

- Many code is handcrafted
- Very little interchangeability
- Maximum of craftsmanship

Need something…

□ Software Engineering

- 1968 NATO Science Committee

- systematic, disciplined, quantifiable
approach to the development,
operation, maintenance of software

- most industry concern
“interchangeable, reusable”

□ Break traditional programming

-doubled code
-difficult to find error in real-time system
-must change assumptions

□ Distributed system

-run cooperatively on networked com

□ System integration

-share data, user interface
-difficult to modify and repair

□ Dept of Motor Vehicle in California

- merging driver & motor registration
- 6.5 times expected cost
- they pulled plug remain investment
- can‟t build skyscrapers using

carpenter

□ Complex System

- if manager can‟t manage entire
system, traditional process will break

down

□ Be Engineering

- how to measure consistently,
quantitatively

- understanding densiry of errors
and stagnation of productivity

□ Focus to Process

- Emphasizing concentrate on process

- Grading ability of programming team

Not early bugs, but final can be devastrated

□ Mass Market Sortware

- Release the faulty s/w as “beta”
- Tested by „volunteers‟

□ Prototype

- clear up misunderstanding between
programmer and customer

- only can catch outer seeing bugs

□ Formal Method

- rely on mathematical analysis to predict
- difficult to translate computer to

mathmatical universe
- but „Formal Method‟ can do

□ Clean room process

- "Safety” concerned
- Only quality proved function

attach to system
- testing entire events in real world

□ To improve productivity

- Object-Orient, CASE, 3th, 4th, 5th
generation langauge

□ None knows productivity of S/W developer

- Few programmer count their bugs
- No standards for measure
- Personal difference

□ Library

- Reuse, no more rewrite.
- No standards.

□ Components

- Assemble components to make software
- match any environment
- Give recipe for each components

□ Engineer do not spontaneously generate

- educated in university
- trained out of habits developed

by craftsmen

Q & A

