A review of software testing
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Abstract: Despite advances in formal methods of specification
and improved software creation tools, there is no guarantee
that the software produced meets its functional requirements.
There is a need for some form of software testing. The paper
introduces the aims of software testing. This is followed by a
description of static and dynamic analysis, and, functional and
structural testing strategies. These ideas are used to provide a
taxonomy of testing techniques. Each technique is briefly

- described.
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B commissioner and the developer want the
software to be correct. Unfortunately, what is
meant by ‘correct’ is not clear. It is often taken to mean
that the program matches the specification. However,
the specification itself may not be correct. Correctness
is then concerned with whether the software meets user
requirements. Whatever the definition of correctness
there is always the need to test a system.

Testing is one of the many activities that comprise
the larger complex task of software development. The
need for testing arises out of an inability to guarantee
that earlier tasks in the software project have been
performed adequately, and attempts to assess how well
these tasks have been performed.

There is no agreed definition of testing. The term is
often used to describe techniques of checking software
by executing it with data. A wider meaning will be
adopted in this paper: testing includes any technique of
checking software, such as symbolic execution and
program proving as well as the execution of test cases
with data. Checking, implies that a comparison is
undertaken. The comparison is made between the
output from the test and an expected output derived by
the tester. The expected output is based on the
specification and is derived by hand.

Two terms often associated with testing are verifica-
tion and validation. Verification refers to ensuring
correctness from phase to phase of the software
development cycle. Validation involves checking the
software against the requirements. These strategies
have been termed horizontal and vertical checks.
Sometimes, verification is associated with formal
proofs of correctness, while yalidation is concerned

efore software is handed over for use, both the
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with executing the software with test data. This paper
avoids these terms and instead refers only to testing and
checking, both terms being used synonymously.

Testing may be subdivided into two categories:
functional and nonfunctional.

Functional testing addresses itself to whether the
program produces the correct output. It may be
employed when testing a new program or when testing
a program that has been modified. Regression testing is
the name given to the functional testing that follows
modification. Primarily, regression testing is under-
taken to determine whether the correction has altered
the functions of the software that were intended to
remain unchanged. There is a need for the automatic
handling of regression testing. Fischer' describes
software for determining which tests need to be rerun
following a modification.

Implementing the fundtions required by the customer
will not necessarily satisfy all the requirements placed
upon a software system. Additional requirements,
which are the subject of nonfunctional testing, involve
checking that the software:

® satisfies legal obligations,

e performs within specified response times,
® is written to a particular house style,

® meets documentation standards.

The scope of this paper is limited to addressing the
testing of the commissioner’s functional requirements.
The literature is not united about the aims of software
testing. The variety of aims seem to fall into one of two
camps:

® testing is concerned with finding faults in the
software,

® testing is concerned with demonstrating that there
are no faults in the software.

These may be viewed as an individual's attitude
towards testing which may have an impact on how
testing is conducted. Aiming to find faults is a
destructive process, whereas aiming to demonstrate
that there are no faults is constructive. Adopting the
latter strategy may cause the tester to be gentle with the
software, thus, giving rise to the risk of missing
inherent faults. The destructive stance is perhaps more
likely to uncover faults because it is more probing.
Weinberg® suggests that programmers regard the
software they produce as an extension of their ego. To
be destructive in testing is therefore difficult. NASA
long ago established teams of software validators
separate from the software creators® a practice which is



now widespread in large software development organi-
zations.

There are a large number of questions about testing.
How much testing should be undertaken? When should
we have confidence in the software? When a fault is
discovered, should we be pleased that it has been
found, or dismayed that it existed? Does the discovery
of a fault lead us to suspect that there are likely to be
more faults? At what stage can we feel confident that
all, or realistically most, of the faults have been
discovered? In short, what is it that we are doing when
we test software? To what extent is testing concerned
with quality assurance?

Perhaps testing is about both finding faults and
demonstrating their absence. The aim is to demonstrate
the absence of faults. This is achieved by setting out to
find them. These views are reconciled by establishing
the notion of the ‘thoroughness of testing’. Where
testing has been thorough, faults found and corrected,
retested with equal thoroughness, then one has
established confidence in the software. If, on the other
hand, there is no feel for the thoroughness of the test
one has no means of establishing confidence in the
results of the testing. Much work has been done to
establish test metrics to assess the thoroughness of a set
of tests and to develop techniques that facilitate
thorough testing.

Testing strategies

There are many widely differing testing techniques.
But, for all the apparent diversity they cluster or
separate according to their underlying principles. There
are two prominent strategy dimensions: function/
structural and static/dynamic. A solely functional
strategy uses only the requirements defined in the
specification as the basis for testing; whereas a
structural strategy is based on the detailed design. A
dynamic approach executes the software and assesses
the performance, while a static approach analyses the
software without recourse to its execution.

Functional versus structural testing

A testing strategy may be based upon one of two
starting points: either the specification or the software
is used as the basis for testing. Starting from the
specification the required functions are identified. The
software is then tested to assess whether they are
provided. This is known as functional testing. If the
strategy is based on deriving test data from the
structure of a system this is known as structural testing.
Functions which are included in the software, but not
required; for example, functions which relate to the
access of data in a database but which are not
specifically asked for by a user, are more likely to be
identified by adopting a structural testing strategy in
preference to a functional testing strategy.
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Functional testing

Functional testing involves two main steps. First,
identify the functions which the software is expected to
perform. Second, create test data which will check
whether these functions are performed by the software.
No consideration is given to how the program performs
these functions.

There have been significant moves towards more
systematic elicitation and expression of functional
requirements*’. These may be expected to lead to a
more systematic approach to functional testing. Rules
can be constructed for the direct identification of
function and data from systematic design documenta-
tion. These rules do not take account of likely fault
classes. Weyuker and Ostrand® have suggested that the
next step in the development of functional testing, is a
method of formal documentation which includes a
description of faults associated with each part of the
design as well as the design features themselves.

Howden® suggests this method be taken further. He
claims that it is not sufficient to identify classes of faults
for parts of the design. Isolation of particular properties
of each function should take place. Each property will
have certain fault classes associated with it. There are
many classifications of faults. One detailed classifica-
tion is given by Chan'® and is a refinement of Van
Tassel’s!! classification. Chan’s classification consists of
13 groups which are subdivided to produce a total of 47
categories.

Functional testing has been termed a black box
approach as it treats the program as a box with its
contents hidden from view. Testers submit test cases to
the program based on their understanding of the
intended function of the program. An important
component of functional testing is an oracle.

An oracle is someone who can state precisely what
the outcome of a program execution will be for a
particular test case. Such an oracle does not always
exist and, at best, only imprecise expectations are
available'?. Simulation software provides a powerful
illustration of the problem of determining an oracle. No
precise expectation can be determined, the most
precise expectation of output that can be provided is a
range of plausible values.

Structural testing

The opposite to the black box approach is the white box
aproach. Here testing is based upon the detailed design
rather than on the functions required of the program,
hence the name structural testing.

While functional testing requires the execution of the
program with test data, there are two possible scenarios
for structural testing. The first scenario, and the one
most commonly encountered, is to execute the program
with test cases. Second, and less common, is where the
functions of the program are compared with the
required functions for congruence. The second of these
approaches is characterized by symbolic execution and
program proving.



Structural testing involving the execution of a
program may require the execution of a single path
through the program, or it may involve a particular
level of coverage such as 100% of all statements have
been executed. The notion of a minimally-thorough
test has occupied researchers over the years, i.e. they
have been trying to discover what is the minimum
amount of testing that is required to ensure a degree of
reliability. Some of these are shown below:

e All statements in the programs should be executed at
least once'?.

e All branches in the program should be executed at
least once'.

e All linear code sequence and jumps (LCSAJs) in the
program should be executed at least once'. An
LCSAJ is a sequence of code ending with a transfer
of control out of the linear code sequence.

Probably the most thorough set of test metrics has been
specified by Miller'’> who listed 13 structure-based
metrics for judging test thoroughness. Obviously, the
best test is an exhaustive one where all possible paths
through the program are tested. However, there are
two obstacles to this goal which account for the
existence of the above measures.

The first obstacle is the large number of possible
paths. The number of paths is determined by the
numbers of conditions and loops in the program. All
combinations of the conditions must be considered and
this causes a rapidly increasing number of combinations
as the number of conditions increases. This is known as
the combinatorial explosion of testing. Loops add to
the combinatorial explosion and give rise to an
excessively large number of paths. This is most acute
when the number of iterations is not fixed but
determined by input variables.

The second obstacle is the number of infeasible
paths. An infeasible path is one which cannot be
executed due to the contradiction of some of the
predicates at conditional statements. Most developers,
when asked, would be surprised at the existence of
infeasible code in a system. However, such code can be
quite extensive, for example, in a recent study of a
sample of programs, which involve examining 1000
shortest paths, only 18 were found to be feasible'®.

As an example of path infeasibility consider the
following block of code.

Begin

Readin (a);

Ifa>15

then

b:=b+1
else

c:=c+1;
ifa<10

then
d:=d+1

P elie SR e NV I R UL I O

10
11 end;

There are four paths through this block as follows:

Path 1 lines 1,2,3,4,5,8,11.
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Path 2
Path 3
Path 4

1,2,3,6,7,8,9,10,11.
1,2,3,6,7,8,11.
1,2,3,4,5,8,9,10,11.

Path 1 can be executed so long as the value of a is
greater than 15 after the execution of line 2.

Path 2 can be executed so long as the value of a is less
than 10 after the execution of line 2.

Path 3 can be executed so long as the value of a lies in
the range 10 to 15 inclusive after the execution of line 2.

Path 4 cannot be executed regardless of the value of a
because a cannot be both greater than 15 and less than
10 simultaneously. Hence this path is infeasible.

Even trivial programs contain a large number of
paths. Where a program contains a loop which may be
executed a variable number of times the number of
paths increases dramatically. A path exists for each of
the following circumstances: where the loop is not
executed, where the loop is executed once, where the
loop is executed twice etc.

The number of paths is dependent on the value of the
variable controlling the loop. This poses a problem for
a structural testing strategy. How many of the
variable-controlled-loop-derived paths should be co-
vered? Miller and Paige!? sought to tackle this problem
by introducing the notion of a level-i path and have
employed testing metrics which utilize this notion.

A further difficulty in achieving 100% for any metric
of testing coverage is the presence of island code. This
is a series of lines of code, following a transfer of
control or program termination, and which is not the
destination of a transfer of control from elsewhere in
the program. An example of island code is a procedure
that is not invoked. Island code should not exist. It is
caused by an error in the invocation of a required
procedure, or the failure to delete redundant code
following maintenance.

Static versus dynamic analysis

A testing technique that does not involve the execution
of the software with data is known as static analysis.
This includes program proving, symbolic execution and
anomaly analysis. Program proving involves rigorously
specifying constraints on the input and output data sets
for a software component such as a procedure using
mathematics. The code that implements the procedure
is then proved mathematically to meet its specification.
Symbolic execution is a technique which executes a
software system, with symbolic values for variables
being used rather than the normal numerical or string
values. Anomaly analysis searches the program source
for anomalous features such as island code.

Dynamic analysis requires that the software be
executed. It relies on the use of probes inserted into a
program '®-'. These are program statements which
make calls to analysis routines that record the
frequency of execution of elements of the program. As



a result the tester is able to ascertain information such
as the frequency that certain branches or statements are
executed and also any areas of code that have not been
exercised by the test.

Dynamic analysis can act as a bridge between
functional and structural testing. Initially functional
testing may dictate the set of test cases. The execution
of these test cases may then be monitored by dynamic
analysis. The program can then be examined structural-
ly to determine test cases which will exercise the code
left idle by the previous test. This dual approach results
in the program being tested for the function required
and the whole of the program being exercised. The
latter feature ensures that the program does not
perform any function that is not required.

Taxonomy of testing techniques

It is only over the last 15 years that testing techniques
have achieved importance. Consequently, there is no
generally accepted testing technique taxonomy. The
degree to which the techniques employ a static versus
dynamic analysis or a functional versus structural
strategy provides one possible basis for a simple
classification of testing techniques. The following grid
outlines one classification. The techniques in the grid
are described later in the paper. Domain testing,
described later in this section, has been included under
both structural and functional strategies.

Table 1. Simple classification of testing techniques

Structural Functiona

Static Symbolic execution
Program proving
Anomaly analysis

Dynamic Computation testing Random testing
Domain testing Domain testing
Automatic path-based test Cause-effect graphing
data generation
Mutation analysis Adaptive perturbation

testing

Static-structural

No execution of the software is undertaken. Assess-
ment is made of the soundness of the software by
criteria other than its run-time behaviour. The features
assessed vary with the technique. For example,
anomaly analysis checks for peculiar features such as
the existence of island code. On the other hand,
program proving, aims to demonstrate congruence
between the specification and the software.

Symbolic execution

Symbolic execution, sometimes referred to as symbolic
evaluation, does not execute a program in the
traditional sense of the word. The traditional notion of

execution requires that a selection of paths through the
program is exercised by a set of test cases. In symbolic
execution actual data values are replaced by symbolic
values. A program executed using inputs consisting of
actual data values results in the output of a series of
actual values. Symbolic execution on the other hand
produces a set of expressions, one expression per
output variable. Symbolic evaluation occupies a middle
ground of testing between testing data and program
proving. There are a number of symbolic execution
systems?*23,

The most common approach to symbolic execution is
to perform an analysis of the program, resulting in the
creation of a flow-graph. This is a directed graph which
contains decision points and the assignments associated
with each branch. By traversing the flow-graph from an
entry point along a particular path a list of assignment
statements and branch predicates is produced.

The resulting path is represented by a series of input
variables, condition predicates and assignment state-
ments. The execution part of the approach takes place
by following the path from top to bottom. During this
path traverse each input variable is given a symbol in
place of an actual value. Thereafter, each assignment
statement is evaluated so that it is expressed in terms of
symbolic values of input variables and constants.

Consider paths 1-11 through the program in Figure
1. The symbolic values of the variables and the path
condition at each branch are given in the right hand
columns for the evaluation of this path.

At the end of the symbolic execution of a path the
output variable will be represented by expressions in
terms of symbolic values of input variables and
constants. The output expressions will be subject to
constraints. A list of these constraints is provided by
the set of symbolic representations of each condition
predicate along the path. Analysis of these constraints
may indicate that the path is not executable due to a
contradiction. This infeasibility problem is encountered
by all forms of path testing.

A major difficulty for symbolic execution is the
handling of loops (or iterations). Should the loops be
symbolically evaluated once, twice, a hundred times or
not at all? Some symbolic executors take a pragmatic
approach. For each loop three paths are constructed,
each path containing one of the following: no execution
of the loop, a single execution of the loop and two
executions of the loop.

Path Condition a b ¢ d
1 Begin - - v
2 Reada,b,c,d - a b ¢ d
3 a:=a+b - atbh b ¢ d
4 [IFa>c¢ atb<=c . a+b b ¢ d
5 THENd:=d+1
6 ENDIF atb<=c atb b ¢ d
7 IFb=d a+b<=cANDb<>d a+b b ¢ d
8  THEN WRITE (‘Success’, a, d)
9 ELSE WRITE (‘Fail’, a, d) a+b<=cANDb<>d a+db b ¢ d
10 ENDIF a+tb<=cANDbL<>d a+b b ¢ d
i1 END a+b<=cANDb<>d a+b b ¢ d

Figure 1. Program fragment and symbolic values for a
path



Partition analysis

Partition analysis uses symbolic execution to identify
subdomains of the input data domain. Symbolic
execution is performed on both the software and the
specification. The path conditions are used to produce
the subdomains, such that each subdomain is treated
identically by both the program and the specification.
Where a part of the input domain cannot be allocated
to such a subdomain then either a structural or
functional (program or specification) fault has been
discovered. In the system described by Richardson®
the specification is expressed in a manner close to
program code. This is impractical. Specifications need
to be written at a higher level of abstraction if this
technique is to prove useful.

Program proving

The most widely reported approach to program proving
is the ‘inductive assertion verification’ method de-
veloped by Floyd?”®. In this method assertions are
placed at the beginning and end of selected procedures.
Each assertion describes the function of the procedure
mathematically. A procedure is said to be correct (with
respect to its input and output assertions) if the truth of
its input assertion upon procedure entry ensures the
truth of its output assertion upon procedure exit®®.

There are many similarities between program pro-
ving and symbolic execution. Neither technique ex-
ecutes with actual data and both examine the source
code. Program proving aims to be more rigorous in its
approach. The main distinction between program
proving and symbolic execution is in the area of loop
handling. Program proving adopts a theoretical
approach in contrast to symbolic execution. An attempt
is made to produce a proof that accounts for all possible
iterations of the loop. Some symbolic execution
systems make the assumption that if the loop is correct
when not executed, when executed just once and when
executed twice, then it will be correct for any number
of iterations.

Program proving is carried out as the following steps:

e Construct a program.

e Examine the program and insert mathematical
assertions at the beginning and end of all procedures
blocks.

e Determine whether the code between each pair of
start and end assertions will achieve the end
assertion given the start assertion.

e If the code achieves the end assertions then the block
has been proved correct.

If the code fails to achieve the end assertion then
mistakes have been made in either the program or the
proof. The proof and the program should be checked to
determine which of these possibilities has occurred and
appropriate corrections made.

DeMillo et al”’ describe how theorems and proofs
can never be conceived as ‘correct’ but rather, only
‘acceptable’ to a given community. This acceptability is
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achieved by their being examined by a wide audience
who can find no fault in the proof. Confidence in the
proof increases as the number of readers, finding no
faults, increases. This approach has clear parallels with
the confidence placed in software. The wider the
audience that has used the software and found no fault
the more confidence is invested in the software.

When a program has been proved correct, in the
sense that it has been demonstrated that the end
assertions will be achieved given the initial assertions,
then the program has achieved partial correctness. To
achieve total correctness it must also be shown that the
block will terminate, in other words the loops will
terminate?®.

Anomaly analysis

The first level of anomaly analysis is performed by the
compiler to determine whether the program adheres to
the language syntax. This first level of analysis is not
usually considered testing. Testing is usually deemed to
commence when a syntactically correct program is
produced.

The second level of anomaly analysis searches for
anomalies that are not outlawed by the programming
language. Examples of such systems which carry out
such an analysis are Dave”®, Faces® and Toolpack®'.
Anomalies which can be discovered by these systems
include:

The existence of (island code) unexecutable code,
Problems concerning array bounds,

Failure to initialize variables,

Labels and variables which are unused,

Jumps into and out of loops.

Some systems will even detect high complexity and
departure from programming standards.

Discovery of these classes of problem is dependent
on the analysis of the code. The first phase of anomaly
analysis is to produce a flow-graph. This representation
of the software can now be easily scanned to identify
anomalies. Determining infeasible paths is not within
the bounds of anomaly analysis.

Some features of anomaly analysis have been
grouped under the title of data flow analysis. Here,
empbhasis is placed on a careful analysis of the flow of
data. Software may be viewed as flow of data from
input to output. Input values contribute to intermediate
values which, in turn, determine the output values. ‘It
is the ordered use of data implicit in this process that is
the central objective of study in data flow analysis™?
The anomalies detected by data flow analysis are:

e Assigning values to a variable which is not used later
in the program,

e Using a variable (in an expression or condition)
which has not previously been assigned a value,

e (Re)assigning a variable without making use of a
previously assigned value.

Data flow anomalies may arise from mistakes such as
misspelling, confusion of variable names and incorrect



parameter passing. The existence of a data flow
anomaly is not evidence of a fault, it merely indicates
the possibility of a fault. Software that contains data
flow anomalies may be less likely to satisfy the
functional requirements than software which does not
contain them.

The role of data flow analysis is one of a program
critic drawing attention to peculiar uses of variables.
These peculiarities must be checked against the
programmer’s intentions and, if in disagreement, the
program should be corrected.

Dynamic-functional

This class of technique executes test cases. No
consideration is given to the detailed design of the
software. Cause-effect graphing creates test cases from
the rules contained in the specification. Alternatively,
test cases may be generated randomly. Domain testing
creates test cases based on a decomposition of the
required functions. Adaptive testing attempts to create
further, more effective, test cases by modifying
previous test cases. In all the approaches there is the
need for an oracle to pronounce on the correctness of
the output.

Domain testing

This is the least well defined of the dynamic-functional
approaches. Test cases are created based on an
informal classification of the requirements into do-
mains. Either data or function may provide the basis
for the domain partitioning. The test cases are executed
and compared against the expectation to determine
whether faults have been detected.

Random testing

Random testing produces data without reference to the
code or the specification. The main software tool
required is a random number generator. Duran and
Ntafos?33* describe how estimates of the operational
reliability of the software can be derived from the
results of random testing.

Potentially, there are some problems for random
testing. The most significant is that it may seem that
there is no guarantee to complete coverage of the
program. For example, when a constraint on a path is
an equality e.g. A=B+25 the likelihood of satisfying this
constraint by random generation seems low. Alterna-
tively, if complete coverage is achieved then it is likely
to have generated a large number of test cases. The
checking of the output from the execution would
require an impractical level of human effort.

Intuitively, random testing would appear to be of
little practical value. Some recent studies have attemp-
ted to counter this view by randomly testing instru-
mented programs®>3>, Ince and Hekmatpour record
that an average branch coverage of 93% was achieved
for a small set of randomly generated test cases. The
key to this approach is to examine only a small subset of
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the test results. The subset is chosen to give a high
branch coverage.

Adaptive perturbation testing

This technique is based on assessing the effectiveness of
a set of test cases. The effectiveness measure is used to
generate further test cases with the aim of increasing
the effectiveness. Both Cooper’® and Andrews’’
describe systems which undertake this automatically.

The cornerstone of the technique is the use of
executable assertions which the software developer
inserts into the software. An assertion is a statement
about the reasonableness of values of variables. The
aim is to maximize the number of assertion violations.
An initial set of test cases are provided by the tester.
These are executed and the assertion violations
recorded. Each test case is now considered in turn. The
single input parameter of the test case that contributes
least to the assertion violation count is identified.
Optimization routines are then used to find the best
value to replace the discarded value such that the
number of assertion violations is maximized. The test
case is said to have undergone perturbation. This is
repeated for each test case. The perturbed set of test
cases are executed and the cycle is repeated until the
number of violated assertions can be increased no
further.

Cause-effect graphing

The strength of cause-effect graphing lies in its power
to explore input combinations. The graph is a
combinatorial logic network, rather like a circuit,
making use of only the Boolean logical operators
AND, OR and NOT. Myers® describes a series of
steps for determining cases using cause-effect graphs as
follows:

® Divide the specification into workable pieces. A
workable piece might be the specification for an
individual transaction. This step is necessary because
a cause-effect graph for a whole system would be too
unwieldy for practical use.

Identify causes and effects. A cause is an input
stimulus, e.g. a command typed in at a terminal, an
effect is an output response.

Construct a graph to link the causes and effects in a
way that represents the semantics of the specifica-
tion. This is the cause-effect graph.

Annotate the graph to show impossible effects and
impossible combinations of causes.

Convert the graph into a limited-entry decision
table. Conditions represent the causes, actions
represent the effects and rules (columns) represent
the test cases.

In a simple case, say with three conditions, one may be
tempted to feel that the cause-effect graph is an
unnecessary intermediate representation. However,
Myers illustrates the creation of test cases for a
specification containing 18 causes. To progress immedi-



ately to the decision table would have given 262
potential test cases. The purpose of the cause-effect
graph is to identify a small number of useful test cases.

Dynamic-structural

Here the software is executed with test cases. Creation
of the test cases is generally based upon an analysis of
the software.

Domain and computation testing

Domain and computation testing are strategies for
selecting test cases. They use the structure of the
program and select paths which are used to identify
domains. The assignment statements on the paths are
used to consider the computations on the path. These
approaches also make use of the ideas of symbolic
execution.

A path computation is the set of algebraic express-
ions, one for each output variable, in terms of input
variables and constants for a particular path. A path
condition is the conjunction of constraint on the path.
A path domain is the set of input values that satisfy the
path condition. An empty path domain means that the
path is infeasible and cannot be executed.

The class of error that results when a case follows the
wrong path due to a fault in a conditional statement is
termed a domain error. The class of error that results
when a case correctly follows a path which contains
faults in an assignment statement is termed a computa-
tion error.

Domain testing is based on the observation that
points close to, yet satisfying boundary conditions are
most sensitive to domain errors*. The domain testing
strategy selects test data on and near the boundaries of
each path domain® .

Computation testing strategies focus on the detection
of computation errors. Test data for which the path is
sensitive to computation errors are selected by
analysing the symbolic representation of the path
computation®. Clarke and Richardson®* list a set of
guidelines for selecting test data for arithmetic and data
manipulation computations.

Automatic test data generation

Use is made of automatic generation of test data when
the program is to be executed and the aim is to achieve
a particular level of courage indicated by a coverage
metric.

It has been suggested that test data can be generated
from a syntactic description of the test data expressed
in, say, BNF*.. This may seem novel as it is not usual to
prepare such a syntactic description of the data, butit is
a technique familiar to compiler writers*? 2. In the case
of compilers a carefully prepared data description: that
of the programming language, is available. The
principle may be transferable to test data generation in
general.

Many automatic test data generators have used the
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approach of path identification and symbolic execution
to aid the data generation process, for example,
CASEGEN? and the FORTRAN testbed**. The system
of predicates produced for a path is part-way to
generating test data. If the path predicates cannot be
solved due to a contradiction, then the path is
infeasible. Any solution of these predicates will provide
a series of data values for the input variables so
providing a test case.

Repeated use of the path generation and predicate
solving parts of such a system may produce a set of test
cases in which one has confidence of high coverage of
the program. The initial path generation will provide
the highest coverage. Subsequent attempts to find
feasible paths which incorporate remaining uncovered
statements, branches and LCSAIJs will prove increas-
ingly difficult, some impossibly difficult.

A path-based approach which does not use symbolic
execution is incorporated in the SMOTL system*. The
system has a novel approach to minimizing the number
of paths required to achieve full branch coverage.

A program that has been tested with a high coverage
may still not meet its specification. This may be due to
the omission in the program of one of the functions
defined in the specification. Data that is generated
from the specification would prove useful in determin-
ing such omissions. To achieve this automatically
requires a rigorous means of specification. The
increasing use of formal specification methods may
provide the necessary foundations on which to build
automated functional test data generators.

Mutation analysis

Mutation analysis is not concerned with creating test
data, nor of demonstrating that the program is correct.
It is concerned with the quality of a set of test data® 47,
Other forms of testing use the test data to test the
program. Mutation analysis uses the program to test
the test data.

High quality test data will harshly exercise a program
thoroughly. To provide a measure of how well the
program has been exercised mutation analysis creates
many, almost identical, programs. One change is made
per mutant program. Each mutant program and the
original program are then executed with the same set of
test data. The output from the original program is then
compared with the output from each mutant program
in turn. If the outputs are different then that particular
mutant is of little interest as the test data has discovered
that there is a difference between the programs. This
mutant is now dead and disregarded. A mutant which
produced output that matches with the original is
interesting. The change has not been detected by the
test data, and the mutant is said to be live.

Once the output from all the mutants has been
examined, a ratio of dead to live mutants will be
available. A high proportion of live mutants indicates a
poor set of test data. A further set of test data must be
devised and the process repeated until the number of



live mutants is small, indicating that the program has
been well tested.

A difficulty for mutation analysis occurs when a
mutant program is an equivalent program to the
original program. Although the mutant is textually
different from the original it will always produce the
same results as the original program. Mutation analysis
will record this as a live mutant even though no test
data can be devised to kill it. The difficulty lies in the
fact that determining the state of equivalence is, in
general, unsolvable and hence cannot be taken into
account when assessing the ratio of live to killed
mutants.

Mutation analysis relies on the notion that if the test
data discovers the single change that has been made to
produce the mutant program then the test data will
discover more major faults in the program. Thus, if the
test data has not discovered any major faults, and a
high proportion of the mutants have been killed, then
the program is likely to be sound.

Summary

The principal objective of software testing is to gain
confidence in the software. This necessitates the
discovery of both errors of omission and commission.
Confidence arises from thorough testing. There are
many testing techniques which aim to help achieve
thorough testing.

Testing techniques can be assessed according to
where along the two main testing strategy dimensions
they fall. The first dimension, the functional-structural
dimension, assesses the extent to which the function
description in the specification, as opposed to the
detailed design of the software, is used as a basis for
testing. The second dimension, the static-dynamic
dimension, considers the degree to which the technique
executes the software and assesses its run-time
behaviour, as opposed to inferring its run-time
behaviour from an examination of the software. These
two dimensions can be used to produce four categories
of testing technique:

® static-functional
® static-structural
e dynamic-functional
e dynamic-structural

As with all classifications this one is problematic at the
boundaries. Some techniques appear to belong equally
well in two categories.

The aims of testing techniques range from: demon-
strating correctness for all input classes (e.g. program
proving), to, showing that for a particular set of test
cases no faults were discovered (e.g. random testing).
Debate continues as to whether correctness can be
proved for life-size software and about what can be
inferred when a set of test cases finds no errors. A
major question facing dynamic testing techniques is
whether the execution of a single case demonstrates
anything more than that the software works for that
particular case. This has led to work on the identifica-
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tion of domains leading to the assertion that a text case
represents a particular domain of possible test cases.

Many of the structural techniques rely on the
generation of paths through the software. These
techniques are hampered by the lack of a sensible path
generation strategy. There is no clear notion of what
constitutes a revealing path worthy of investigation, as
opposed to a concealing path which tells the tester very
little.

Testers often utilize their experience of classes of
faults associated with particular functions and data
types to create additional test cases. To date there is no
formal way of taking account of these heuristics.

Symbolic execution looks to be a promising techni-
que. Yet, few full symbolic execution systems currently
exist®®. Of the experimental systems that have been
developed none address commercial data processing
software written in languages such as CoBOL.

Whenever a program is executed with data values, or
symbolically evaluated, the success of the testing lies in
the ability to recognize that errors have occurred. Who
is responsible for deeming an output correct? The
notion of an oracle is used to overcome this difficulty.
Whoever commissions the software is deemed capable
of assessing whether the results are correct. This may
be satisfactory in many situations such as commercial
data processing software. However, there are instances
when this is not a solution. For example, software to
undertake calculations in theoretical physics may be
developed precisely because the calculations could not
be undertaken by hand.

One of the few pieces of empirical data on testing
techniques is provided in a study by Howden*. The
study tested six programs of various types using several
different testing techniques. The results are encourag-
ing for the use of symbolically evaluated expressions for
output variables. Out of a total of 28 errors five were
discovered where it would be ‘possible for the incorrect
variable to take on the values of the correct variable
during testing on actual data, thus hiding the presence
of the error.’ The paper concluded that the testing
strategy most likely to produce reliable software was
one that made use of a variety of techniques. Over the
last few years effort has been directed at construction of
integrated, multitechnique software development en-
vironments.

Formal proofs, dynamic testing techniques and
symbolic execution used together look likely to provide
a powerful testing environment. What is necessary now
is an attempt to overcome the division that has arisen
between the formalists and the structuralists. The level
of mathematics required by many approaches to
program proving is elementary in comparison with the
abilities necessary to produce the software itself. On
the other hand, the formalists must resist the tempta-
tion to proclaim that their approach is not just
necessary but that it is also sufficient. For the
production of correct software the wider the range of
testing techniques used the better the software is likely
to be.
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