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1. INTRODUCTION

According to the IEEE definition, design is both “the process of defining the architecture, components, interfaces, and other
characteristics of a system or component” and “the result of [that] process” [IEE90]. Viewed as a process, software design is
the software development life-cycle activity in which software requirements are analyzed in order to produce a description of
the software’s internal structure that will serve as the basis for its construction. More precisely, a software design (the result)
must describe the software architecture—how the system is broken down and organized into components—and the interfaces
between those components. It must also describe the components at a level of detail that enables their construction.

Software design plays an important role in developing a software system. During design, developers produce various mod-
els that form a kind of blueprint of the solution to be implemented. Developers can then analyze and evaluate these models to
determine if they will fulfill the various requirements and to evaluate various alternative solutions and trade-offs. Finally, de-
velopers can use the resulting models to plan the subsequent development activities, in addition to using these models as input
and starting point for construction and testing.

Before proceeding further, let us stress that not every aspect related to the “design” of software will be addressed in this
overview. In DeMarco’s terminology [DeM99], we will discuss mainly D-design—decomposition design, “a mapping of a
system into its components pieces” [DeM99]. Because of its growing importance in the field of software architecture, we will
also discuss, briefly, FP-design—family pattern design, whose goal is to establish exploitable commonalities over a family of
systems. On the other hand, we will discuss neither I-design—invention design, “a conceptualization of a system to satisfy dis-
covered needs and constraints” [DeM99], done by system analysts during requirements analysis and specification—nor user
inter—face design, which is better done by specialists. The scope of the present overview thus reflects the scope of the Software
Design Knowledge Area as presented in the Guide to the Sofiware Engineering Body of Knowledge [AMBD04].

2. SOFTWARE DESIGN CONCEPTS

The concepts, notions, and terminology introduced in the first section form a basis for understanding the role and scope of
software design. They are generally applicable to all software design methods and approaches.

2.1. General Design Concepts

Software is not the only field involving some form of design. In a general sense, design is a problem-solving activity; the in-
verse, however, is not necessarily true. For example, a person solving a crossword puzzle is not doing design, as opposed to the
person who designed that crossword puzzle.

Design problems are generally characterized by a number of properties; for instance, there are usually many different feasi-
ble solutions and a specific solution can be considered good or bad, not true or false. Problems having these properties—to-
gether with additional ones, for example, formulating the problem often is the problem, the absence of specific rules to deter-
mine when the problem is indeed solved, the lack of test for evaluating a possible solution—have been called wicked problems,
a notion initially introduced for planning problems [RW84], and subsequently applied to software design {PT76].

Design, in its general sense, can be understood in terms of five key concepts: goals, constraints, alternatives, representa-
tions, and solutions [SB93]. The design of a modern car can help illustrate these concepts. When designing a car, the general
goal is to develop a means of transportation; of course, especially nowadays, marketing goals must also be taken into account.
A large number of constraints clearly limit the possible solutions: type of engine and fuel, existing roads, environmental and
safety regulations, target price, and so on. Based on these goals and constraints, the engineers, using their creativity and expe-
rience, then consider a number of alternatives, which are precursors to the final solution, not complete solutions yet. Starting
from these various alternatives, appropriate representations are then developed in order to better understand the artifact and its
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components, for example, blueprints of the car’s engine and frame, sketches of the carossery, and so on. The descriptions of
the acceptable alternatives that, together, make it possible to attain the target goals while satisfying the constraints then consti-
tute a design solution, descriptions that will subsequently enable the car’s construction.

2.2. Software Design Context

To understand the role of software design, its context must be understood, namely, the software development life cycle. The
software development activities that are more directly coupled with software design are the following [ISO95]:

® Software requirements analysis, in which the intended use of the system to be developed is analyzed and the require-
ments (functional as well as nonfunctional ones) are specified. Software design then uses these requirements specifica-
tion as input.

¢ Software coding and testing (also known as software construction), in which the software units identified by the soft-
ware design activity are developed and (unit) tested.

o Software integration and qualification testing, in which the various software units and components identified during de-
sign and built during construction are combined together and tested to ensure that the initial requirements are satisfied.

In a software life cycle process, these activities, and others, are coupled with one another based on a life cycle model, of
which there are two main types [Bud03]:

e Linear models, in which the process runs linearly through the activities; for example, the waterfall model.

® Incremental models, in which the process runs iteratively through the activities; for example, the spiral model or the it-
erative development approach.

Software development methods can also guide the software development process by offering procedures and guidelines to
go through these various activities; see Section 6.

2.3. Software Design Process

In a standard listing of software life cycle processes such as ISO/IEC 12207, Sofiware Life Cycle Processes [ISO95], software
design consists of two activities that fit between software requirements analysis and software construction:

® Software architectural design (sometimes called top-level design) describes how the system is broken down and organ-
ized into components the software architecture [[EE00].

e Software detailed design describes the specific behavior of the various components identified by the software architecture.

The output of the design process is a set of models that records the major decisions that have been taken, and describes
each of the software components and units sufficiently to enable their construction [IEE98, Pre01, Bud03].

3. SOFTWARE STRUCTURE AND ARCHITECTURE

In its usual sense, a software architecture defines the internal structure. According to the Oxford English Dictionary, the struc-
ture is “the way in which something is constructed or organized.” For a software system that is its internal design. Since the
mid-1990s, however, software architecture has taken on a broader meaning. For instance, IEEE Standard 1471 (Recommended
Practice for Architectural Descriptions of Software-Intensive systems) [IEE00] defines software architecture as follows:

The fundamental organization of a system embodied in its components, their relationships to each other, and to
the environment, and the principles guiding its design and evolution.

Software architecture, in fact, has been emerging as a discipline on its own, involved with the study, in a generic way, of
software structures and architectures [SG96]. This broader meaning of software architecture gave rise to a number of interest-
ing ideas and concepts about software design at different levels of abstraction. Some of these concepts can be useful during ar-
chitectural design (for example, architectural styles) whereas some pertain more specifically to detailed design (for example,
design patterns). Other notions can also be useful for designing families of systems (also known as product lines). Interesting-
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ly, most of these concepts can be seen as attempts to describe, and thus reuse, generic design knowledge. A key concept,
though, is the notion of view (or viewpoint).

3.1. Architectural Structures and Views

A software architecture description is a complex entity as it serves many purposes, a key one being its use for communication
among the various stakeholders involved in the development of the software system. Those various stakeholders—analysts,
implementers, managers, testers, quality assurance team, and so on—have different roles and needs. Thus, different high-level
facets, or perspectives, of a software design can and should be described and documented. These facets are called views. A
view “represents a partial aspect of a software architecture that shows specific properties of a software system” [BMR+96]. It
is “a collection of models that represent one aspect of an entire system” [MEHO01].

The key role of views in design documentation was recognized as early as the mid-1980s in IEEE Standard 1016, Recom-
mended Practice for Software Design Description (SDD) [IEE98],' whose purpose was to specify “the necessary information
content, and recommended organization” for an SDD. IEEE Standard 1016 recommended that the overall organization of an
SDD be obtained as the composition of a number of “design views,” each containing a subset of the various attributes describ-
ing design entities: decomposition (how the system is partitioned into design entities); dependency (the relationships among
entities and system resources); interface (what a designer, programmer, or tester needs to know to use the design entities); and
detail description (internal design details). ’

Since then, various authors have proposed different sets of views for describing software architectures. A well-known ap-
proach, used within the Rational Unified Process (RUP) [Kru00], is Kruchten’s “4+1 view model” [Kru95], consisting of the

following views:

1. The logical view describes how the functional requirements are satisfied. It identifies the major design packageé, sub-
systems, and classes.

2. The implementation view describes how the design is broken down into implementation units. It identifies the major
software modules such as source code, data files, executables, and so on.

3. The process view addresses issues related to concurrency and distribution; for example, how the various threads of con-
trol are organized and distributed over the various programs, and how they interact.

4. The deployment view shows how the runtime units and components are distributed onto the various processing nodes.

5. The use-case view, which consists of a small number of use cases (see Section 6.3), ties together the other views, illus-
trating how they all work together.

Other sets of views have been proposed, for example, conceptual versus module interconnection versus execution versus
code views [SNH95], and constructional (structural) versus behavioral versus functional versus data modeling views [Bud03].
More generally, according to Clements et al. [CBB+03], views can be classified into three categories, called viewtypes:

1. Module viewtype. These views describe the units of implementation, for example, classes, collections of classes, and
layers.

2. Component-and-connector viewtype. These views describe the units of execution, that is, elements having a run-time
presence; for example, processes, objects, clients, servers, and data stores.

3. Allocation viewtype. These views describe the relationships between a system and its development and execution envi-
ronment, that is, the mapping of software units to elements of the environment; for example, hardware, file system, and
development team.

The set of views selected to document a software architecture depends on various factors, a question discussed in slightly

more detail in Section 5.2. Whatever the exact choice of views, the key idea is that a software architecture is a multifaceted ar-
tifact produced by the design process and composed of a set of relatively independent and orthogonal views.

3.2. Macro/Microarchitectural Patterns: Architectural Styles Versus Design Patterns

Over the last decade, starting with the seminal work of Gamma et al. [GHIV95], the notion of pattern has drawn a lot of at-
tention. Described succinctly, a pattern is “a common solution to a common problem in a given context” [JBR99].

"The 1998 standard is, in fact, an updated version of the previous 1987 standard.
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More precisely, the key idea behind patterns is that, over the years, software development practitioners have observed and
identified a number of recurring problems and solutions. The key goal of patterns is then to describe—thus, to codify and doc-
ument—those commonly recurring solutions to typical problems.

Patterns can be described and documented in various ways, ranging from informal textual descriptions [GHIV95, BMR+96]
to more formal specifications [JTMO00]. Because the goal is to make explicit thus codify—the associated design knowledge in
order to make it transferable, pattern descriptions generally consist of a number of elements. For example, Buschmann et al. in-
troduce a system of patterns in which each pattern is described by, among others, the following attributes [BMR+96]:

¢ The name of the pattern

® The context, that is, the key situations in which the pattern may apply
® An example illustrating the need for the pattern

¢ The general problem—its essence—that the pattern tries to solve

¢ The solution underlying the pattern, both the (static) structure of the pattern’s elements and their run-time (dynamic) be-
havior

® Guidelines for the pattern’s implementation

Additional descriptive elements may also be presented; for example, aliases, possible variants or related patterns, known
uses, and consequences (advantages/disadvantages).
Patterns can be classified into three key major categories, depending on their scope and level of abstraction [BMR+96]:

1. Architectural styles
2. Design patterns
3. Coding idioms

In the following, we elaborate on the first two categories, the latter category being the domain of software construction.

Architectural Styles (Macroachitectural Patterns)

An architectural style has been defined as “a set of constraints on an architecture [that} define a set or family of architectures
that satisfy them” [BCKO03]. More precisely, an architectural style can be seen as a meta-model that provides a software sys-
tem’s high-level organization—its macroarchitecture:

An architectural [style] expresses a fundamental structural organization schema for software systems. It provides
a rich set of predefined subsystems, specifies their responsibilities, and includes rules and guidelines for organiz-
ing the relationships between them. [BMR+96]

Various authors have identified a number of major architectural styles [BMR+96, BCK03, BRJ99, Bos00}:

General structure (for example, layers, pipes and filters, blackboard)
Distributed systems (for example, client—server, three-tiers, broker)

Interactive systems (for example, model-view-controller, presentation-abstraction-control)

Adaptable systems (for example, microkernel, reection)

Other styles (for example, batch, interpreters, process control, rule-based)

The choice of a particular architectural style depends on the quality attributes that must be satisfied: whereas a given style
may help attain certain quality attributes, it may also hinder others. Of course, heterogeneous styles are also possible.
Design Patterns (Microachitectural Patterns)
Although architectural styles can be viewed as patterns describing the high-level organization of software systems—the

macroarchitecture—design patterns are used to describe details at a lower and more local level—the microarchitecture:

{Architectural styles and design patterns] are different in that a style tends to refer to a coarser grain of design so-
lution than a pattern, which tends to refer to a design solution localized within a few (or one) of a system’s many
architectural components. [CBB+03]
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Thus, whereas the application of an architectural style will generally have a significant impact on the general organization of
the various components, applying a design pattern will usually have a much more limited and localized impact.

Although the notion of design pattern needs not be restricted to the object-oriented paradigm, most of the literature in fact
describes object-oriented design patterns. Such patterns can be categorized in various ways. For instance, Gamma et al. use
the following categories [GHIV95]:

® Creational patterns deal with the creation of objects (for example, builder, factory, prototype, singleton).

® Structural patterns deal with the composition of objects (for example, adapter, bridge, composite, decorator, fagcade,
flyweight, proxy).

® Behavioral patterns describe how objects interact (for example, command, interpreter, iterator, mediator, memento, ob-
server, state, strategy, template, visitor).

On the other hand, Buschmann et al. classify patterns into the following categories [BMR+96]:

* Structural decomposition patterns address the “decomposition of subsystems and complex components into cooperating
parts” (for example, whole—part).

® Organization of work patterns define “how components collaborate together to solve a complex problem” (for example,
master—slave).

® Access control patterns define “guards and control access to services and components” (for example, Proxy).

® Management patterns handle “homogeneous collections of objects, services and components in their entirety” (for ex-
ample, command processor, view handler).

® Communication patterns “help organize communication between components” (for example, forward-receiver, dis-
patcher—server, publisher—subscriber).

Given the large number of design patterns and styles described in the literature [GHIV9S, BMR+96, Fow03], it is beyond
the scope of this overview to give a detailed presentation of those various design patterns. Let us conclude, though, that a
modern software designer should understand the key styles and patterns, as this will help avoid “reinventing the wheel” each
time a new design problem is tackled, while establishing a common communication vocabulary among software developers.

3.3. Design of Families of Systems and Frameworks

An important goal of software design has always been to allow for the reuse of software elements. Recent approaches toward
that goal are based on software product lines and software components. A software product line is “a collection of systems
sharing a managed set of features constructed from a common set of core software assets” [BCK03]. A product line thus de-
fines a family of systems and is based on and populated with software components, which are “unit[s] of composition with ex-
plicitly specified provided, required and configuration interfaces and quality attributes” [Bos00].

The detailed presentation of the principles and techniques underlying the design of software product lines is beyond the
scope of the present paper. Let us simply indicate that building a common set of software assets involves identifying the key
commonalities encountered among the various members of the possible family of products—done through domair analysis
[McC97, WL99, Bos00]—as well as accounting for their possible variabilities—done by identifying and defining reusable
and customizable components [McC97, Bos00].

Customization of components can be supported through a number of mechanisms, for example, inheritance, extension,
configuration, template instantiation, and generation [Bos00]. In an object-oriented context, a related notion is that of frame-
work, a partially complete software subsystem that can be extended by instantiating specific plug-ins (also known as hot spots)
[Pre95, BMR+96, Bos00].

4. SOFTWARE DESIGN QUALITY ANALYSIS AND EVALUATION

According to ISO/IEC Standard 9126-1 [ISO01], software quality—defined as “the totality of features and characteristics of a
software product or service that bear on its ability to satisfy stated or implied needs”—can be characterized by the following
six properties: functionality, reliability, usability, efficiency, maintainability, and portability. Each of these may in turn be de-
fined through an appropriate set of attributes [ISO01]. In the following, we briefly introduce some of the quality attributes ap-
plicable to design as well as some techniques to help attain those quality attributes.
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4.1. Design Quality Attributes

A key distinction between the various quality attributes concerns whether their influence is observable or not at run time
[BCKO3]:

® Run-time qualities are observable only while the system is functioning; for example, functionality, usability, perform-
ance, reliability and availability, and security.

® Development-time qualities have an impact on the work of the development and maintenance teams, but are not directly
observable at run time; for example, integrability, modifiability, portability, reusability, and testability.

Although some qualities can be achieved through appropriate architectural choices—for example, modifiability and
reusability, performance—some others cannot—for example, functionality and usability [KB00]. An informal test, suggested
by Kazman and Bass [KB00], to see if a particular quality attribute can be achieved through architectural choices is to ask the
following question: “[Clan I improve [the] rating for that attribute by making structural changes?”

Parnas and Weiss, in their active design review approach [PW85], identify the key desirable properties of a design as being
the following: it should be well structured, simple, efficient, adequate (satisfying the requirements), flexible (easy to change),
practical (module interfaces sufficient for the job), implementable, and standardized (documentation organized in a standard
way). .

Another important quality attribute related with design concerns the architecture’s intrinsic quality known as conceptual in-
tegrity [Bro95], which characterizes an architecture that “reflects one single set of design ideas,” leading to simplicity, consis-
tency, and elegance.

4.2. Measures

A number of measures can be defined to obtain quantitative estimates of a design’s size, structure, or quality. Such measures
generally depend on the selected design approach:

® Function-oriented (structured) measures: the design’s structure, obtained through functional decomposition, is repre-
sented as a structure chart on which measures can be computed; for example, fan-in/fanout, cyclomatic complexity, in-
tegration complexity [MB89, Pre01].

® QObject-oriented measures: the design structure is represented as class diagrams, on which measures can be computed;

for example, weighted methods per class, depth of inheritance tree, number of children, coupling between object class-
es, responses for a class [CK94, Pre01].

4.3. Quality Analysis and Evaluation Tools

Although measures can be used to estimate certain quality attributes—for instance, complexity metrics can be used to evaluate
the testability of a software unit and to determine how much testing needs to be performed—many quality attributes are hard
to quantify. Thus, other techniques must be used to evaluate the quality of a design:

o Software design reviews are informal or semiformal, often group-based, techniques used to verify the quality of design
artifacts; for example, architecture reviews [BCK03], design reviews and inspections [PW85, Bud03], scenario-based
architecture evaluation [BCK03, Bos00], and requirements tracing [TD02].

o Simulation and prototyping are dynamic techniques used to evaluate a design; for example, simulation-based perform-
ance or reliability analysis [BCK03, KB00, Bos00], and feasibility prototyping [BCK03, Bos00].

5. SOFTWARE DESIGN NOTATIONS AND DOCUMENTATION

Many different notations exist to represent software design artifacts, for instance, 18 different kinds of notations are men-
tioned in the Software Design Knowledge Area of the Guide to the SWEBOK [AMBD04]. Some notations are used mostly
during architectural design, whereas others mainly during detailed design, although some can be used in both phases. Some
notations are also used mostly within specific design methods, whereas others are more widely used.

Budgen [Bud03] categorizes the various design notations in terms of black box versus white box: as a black-box notation
“is concerned with the external properties of the elements of a design model,” whereas a white-box notation “is largely con-
cerned with describing some aspect of the detailed realization of a design element” [Bud03}.
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An alternative characterization, which we use below to present briefly a small number of notations, is to distinguish be-
tween notations for describing structural (static) properties—a design’s structural organization—and those for describing be-
havioral (dynamic) properties—the behavior of the software components.

5.1. A Selection of Design Notations

Over the last few years, UML (Unified Modeling Language) [BRJ99] has become an almost de facto standard for software de-
velopment notations. In what follows, we briefly present a (small) selection of software design notations; notations whose
name appear in italics are part of UML. Structural descriptions (static view) These notations, mostly (but not always) graphi-
cal, describe and represent the structural aspects of a software design that is, they describe the major components and how
they are interconnected (static view):

® (Class and object diagrams. These are used to represent a set of classes (and objects) and their relationships [BRJ99].
These diagrams are used in object-oriented design. A related, although somewhat older, notation is entity-relationship
diagrams (ERDs), used to represent conceptual models of data stored in information systems [Mar94, TD02].

¢ Component diagrams. These are used to model the static implementation view of a system, that is, physical things (and
their relationships) such as executables, libraries, tables, files, and documents [BRJ99]. Although their main use is dur-
ing construction, such diagrams can also be used during design; for example, to document the module (work assign-
ment) structure [BCK03].

® Deployment diagrams. These are used to model the static deployment view of a system, that is, “the configuration of run
time processing nodes and the components that live on them” [BRJ99]. Typically, such diagrams can be used to repre-
sent distribution aspects, for example, to model embedded, client/server or distributed systems.

® Structure charts. These are used to describe the calling structure of programs (which procedure or module calls/is called
by which other) [PJ88, Pre01, Bud03]. Such diagrams are at the heart of the structured (functionoriented) design ap-
proach.

® Structure (Jackson) diagrams. These are used to describe the data structures manipulated by a program in terms of se-
quence, selection and iteration [Mar94, Bud03]. These diagrams were initially introduced in JSP (Jackson Structured
Programming) [Jac75].

Behavioral Descriptions (Dynamic View)

The following notations and languages, some graphical and some textual, are used to describe the dynamic behavior of sys-
tems and components. Many of these notations are useful mostly, but not exclusively, during detailed design:

® Activity diagrams. These are used to show the control flow from activity (“ongoing nonatomic execution within a state
machine™) to activity [BRJ99]. These diagrams are related to the older owcharts {Pre01].

® [nteraction diagrams. These are used to show the interactions among a group of objects [BRJ99]. These diagrams come
in two flavors: sequence diagrams put the emphasis on the time-ordering of messages, whereas collaboration diagrams
put the emphasis on the objects, their links, and the messages they exchange on these links.

¢ Data flow diagrams (DFDs). These are used to show the data flow among a set of processes [PJ88, Pre01, Bud03]. These
diagrams were introduced and used by the structured analysis and design approach [YC79].

® State transition diagrams and statechart diagrams. These are used to show the control flow from state to state in a state
machine [BRJ99, Bud03].

e Pseudocode and program design languages (PDLs). These ‘are structured, programming-like languages used to describe,
generally at the detailed design stage, the behavior of a procedure or method [Pre01, Bud03].

5.2. Design Documentation

Given the variety of notations available for design, a key question is how these various notations can be combined to obtain a
coherent design document. There is no clearcut answer to this question, as it depends on many aspects, for instance, the type of
software, the software development method being used, the organization in which/for which the software is developed, the
stakeholders involved, and so on. A key practice, though, is the use of views, introduced in Section 3.

The selection of an appropriate set of views strongly depends on the stakeholders involved: project managers, developers,
testers and integrators, customers, end users, and so on, all have different needs. Satisfying these different needs can best be
described in terms of the relative importance of the various views from each viewtype (module, component-and-connector,
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and allocation; see Section 3.1) [CBB+03]. For instance, a project manager would need detailed allocation views, whereas a
developer would need mostly detailed module and component-and-connector views.

Documenting a view involves, among other things, describing the interfaces of the elements from that view. How such an
interface is defined will depend on the type of element. A key characteristic of any interface specification, though, is that it
should be a two-way description: what the element provides and what it requires—the resources used by the element, and the
assumptions it makes from the environment. Clements et al. [CBB+03] offer a good presentation of these ideas.

Another key idea, formulated initially by Parnas and Clements, is that a design should be presented and documented in a
rational way [CP86, Cle00], even though the process that lead to this design may not have been perfectly rational. As an anal-
ogy, consider the presentation of a major discovery that need not follow the process that led to that discovery (often by trial
and error). In addition, even though this part is not strictly rational, the rationale behind the key decisions should also be
recorded; for instance, the design alternatives that were considered and rejected should be described.

6. SOFTWARE DESIGN STRATEGIES AND METHODS

Various general principles and strategies have been proposed to guide the design process and help improve the quality of the
resulting software [Mar94, BMR+96, Bud03]. In contrast with strategies, methods are more specific in that they generally
suggest a particular set of notations together with a description of a process to be followed when designing software, as well as
heuristics that provide guidance in adapting the method to a particular context [Bud03]. Such methods, which generally inco-
porate, in various ways, the general design principles and strategies, can help improve the quality of the resulting software
when applied in a proper context. They are also useful as a means for transferring knowledge and as a common framework for
teams of developers. ’

6.1. General Strategies and Enabling Techniques

General software design strategies can be described in terms of enabling techniques, a notion introduced by Buschmann et al.
to denote fundamental principles and techniques of software design which are “independent of [any] specific software devel-
opment method, and [. . .] have been known for years” [BMR+96]:

® Abstraction. Abstraction is “the process of forgetting information so that things that are different can be treated as if they
were the same” [LGO1]. Two key mechanisms are abstraction by parameterization—abstract from specific data by in-
troducing parameters—and abstraction by specification—abstract how a module is implemented by referring to an ap-
propriate specification. These mechanisms lead to three major kinds of abstraction: procedural abstraction (to introduce
new operations), data abstraction (to introduce new data types), and control (iteration) abstraction (to iterate over collec-
tions of elements).

® Coupling and cohesion. Coupling is defined as the strength of the relationships between software components, whereas
cohesion is defined by how the elements making up a component are related [BCKO3, Pre01]. As a general rule, cou-
pling between components should be weak, whereas the (internal) cohesion of a component should be high. Although
these concepts were initially introduced for structured design [YC79], they also apply to object-oriented design [PJ0O].

® Divide and conquer. In an algorithmic sense, divide and conquer is a technique that solves a complex problem by divid-
ing it into two or more simpler problems, which are then solved recursively and whose solutions are subsequently com-
bined to obtain the solution to the initial problem. In a function-oriented sense, divide and conquer involves breaking
down a complex problem or task into simpler subproblems or subtasks that can be solved independently, a strategy at the
root of stepwise refinement [Wir71, Bud03]. A related strategy is the separation of concerns, which suggests that “dif-
ferent or unrelated responsibilities should be separated from each other” [BMR+96].

® Information hiding and encapsulation. Information hiding is a general design strategy introduced by Parnas in which
“every module [. . .] is characterized by its knowledge of a design decision which it hides from all others™ [Par72]. A key
principle associated with information hiding is the separation of interface and implementation, wherein the “interface or
definition [of a module is] chosen to reveal as little as possible about its inner workings™ [Par72]. In other words, a pub-
lic interface (known to the clients) is specified, separate from the details of how the component is realized. Another re-
lated notion is encapsulation, defined as “the grouping of related ideas into one unit, which can thereafter be referred to
by a single name” [PJ0O]. Thus, encapsulation combines elements to create a new entity, whose internal details are hid-
den; in other words, encapsulation creates a new abstraction.

® Sufficiency, completeness, and primitiveness. These notions pertain to the idea that a software component should capture
all the important characteristics of an abstraction needed to interact with it, and nothing more [BMR+96, LGO1].
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6.2. Function-oriented (Structured) Design

Structured (function-oriented) design [YC79, PJ88, Pre01, Bud03] is one of the early software design paradigms, in which de-
composition centers on identifying the major systems functions, which are then elaborated and refined in a top-down manner,
that is, using a divide-and-conquer approach based on functional decomposition.

Structured design is generally performed after structured analysis. A typical structured analysis {You89] produces, among
other things, data flow diagrams (DFD) of the various system functions together with associated process descriptions, that is,
descriptions of the processing performed by each subtask, usually using informal pseudocode. Entity-relationship diagrams
describing the data stores can also be used.

Two key strategies have been proposed to help derive a software architecture, represented as a structure chart, from a
DFD:

1. Transaction analysis. A transaction is characterized by some event in the environment that generates a stimulus to the
system, which in turn triggers some system s activity that produces a response having an effect upon the environment.
Transaction analysis consists in identifying the key transaction types of a system and using them as the units of design,
that is, designing separately the processing of each transaction type.

2. Transformation analysis. The key step in deriving a structure chart from a DFD (for a given transaction) is to identi-
fy the central transform, that is, “the portion of the DFD that contains the essential functions of the system and is in-
dependent of the particular implementation of the input and output” [PJ88]. A first-cut (draft) structure chart can then
be obtained by lifting the bubbles associated with the central transform, promoting them at the top level of the struc-
ture chart, as illustrated in Figure 1. Remember that a structure chart is a hierarchical diagram that shows the calls or
is called the relationships. Of course, this initial structure chart will have to be revised and completed, in line with the
quality criteria of cohesion and coupling as well as with various heuristics. Other details may also need to be revised
or added; for example, error handling modules, initialization and termination details, required control flags, and so
on.

Key concepts of structured design are those of coupling and cohesion, which characterize a design of good quality. For in-
stance, a good design should restrict the coupling between modules to normal types of coupling—data, stamp, and control
coupling, data coupling being the preferred form, where communication between modules is through parameters, where each
parameter is an elementary piece of data—and should avoid other pathological forms of coupling—namely, common and con-
tent coupling

Similarly, a good design should give preference to modules having high cohesion; more precisely, modules exhibiting func-
tional cohesion when the module “contains elements that all contribute to the execution of one and only one problem-related
task” [PJ88]. Other, weaker, types of cohesion have been identified, from more cohesive to less cohesive: sequential and com-

Central transform
el ‘ a3 *

P2 P5

), 2y

P1 P6

Data Flow Diagram (DFD) First-cut structure chart

Figure 1. Using transform analysis to derive a structure chart from a DFD.
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municational, procedural and temporal, logical and coincidental. Those weaker forms of cohesion can sometimes be accept-
able, although the less cohesive ones should preferably be avoided.
Additional heuristics have also been suggested to help improve the quality of the resulting design:

® Fan-in/fan-out. A high fan-in—the number of modules that call a given module M—is considered good, as it indicates
reuse of M. On the other hand, a low to moderate fan-out (maximum 5—7)—the number of modules that M calls—is gen-
erally preferable.

e Decision splitting. Decision splits, which occur when the recognition of a condition and the execution of the associated
action are not kept within the same module, should be avoided.

e Balanced systems. A balanced system, when the top-level modules deal with logical and abstract data (clean and valid
data, independent of implementation format), is preferable.

Structured design, being one of the first well-described and well-known design methods, made important contributions to
the field of software design. Its integration with an appropriate analysis method—structured analysis [You89]—was also one
of its key strengths. With the emergence of object-oriented languages and programming, though, structured design, with its
emphasis on functional decomposition, started to reach its limits.

6.3. Object-oriented Design

The notion of object is intimately tied to the notions of data abstraction, encapsulation, and abstract data type (ADT). More
precisely, an object is described by the following characteristics [Mac82, Boo86]: an object can be created/destroyed, has a
unique (immutable) identity, possesses a (mutable) state (i.e., evolves in time), and exhibits some well-defined behavior
through services it offers. Objects are generally organized into classes, which describe collections of objects sharing the same
structure and behavior, thus the link with data types.?

Over the years, numerous software design methods based on objects, collectively known as object-oriented design (OOD)
methods, have been proposed [Boo86, Boo94, WBWW90, CY91, JBP+91]. Early approaches, in which objects were mostly
similar to entities in entity-relationship modeling and inheritance was not used [Abb83, Boo86], were said to be object-based.
Later approaches, in which inheritance and polymorphism play a key role, are said to be object-oriented (00).

0O design methods aim at developing software systems composed of interacting objects that are highly modular and, thus,
easy to modify, extend, and maintain. OO design models address structural (static) aspects—classes and objects, their rela-
tionships and their grouping as well as behavioral (dynamic) ones—objects’ behavior and interactions. The notations used for
documenting these models take various forms; for example, diagrammatic, textual, and even mathematical. Much like struc-
tured design was intimately tied with structured analysis, existing OO design methods are generally associated with OO0 analy-
sis methods. Contrary to structured analysis and design, though, many of the notations used for OO design can also be used
during requirements analysis, leading to some degree of seamlessness between the two. This seamlessness, however, must not
make one forget that requirements analysis and design do deal with different concerns; put succinctly, problem domain versus
solution domain.

The Unified Modeling Language (UML), because it evolved from the integration of a number of OO methods, provides a
wide variety of notations for OO analysis and design. UML includes various notations in addition to those mentioned in Sec-
tion 5.1, for example, real-time modeling, formal specification using the Object Constraint Language (OCL) [WK99], and so
on. UML is not an OO design method, though; UML is simply a set of notations, neutral with respect to any specific design
method. On the other hand, the Unified Process (UP), elaborated by the same people who developed UML [JBR99], does de-
fine a software development process that incorporates OO analysis and design.

The Unified Process consists of four phases: inception, elaboration, construction, and transition. Each phase, delimited by
an appropriate milestone, consists of one or more iterations, where each iteration generally results in an executable release and
involves a number of core workows, namely, requirements, analysis, design, implementation, and test. From a software design
perspective, the important phases are the elaboration and construction phases, since the architectural baseline (i.c., the soft-
ware architecture description; see the “4+1 view model” described in Section 3.1) is developed during the elaboration phase
whereas most of the detailed design is developed during the construction phase.

The key input to the design workow is a collection of use cases that describe the functional requirements a use case is “a de-
scription of a set of sequences of actions [. . .] that a system performs to yield an observable result [. . J’ [BRI99]—together
with the applicable non-functional requirements. The output of the design workflow is a design model consisting of classes
and their collaborations, possibly organized into packages and subsystems, that provide the intended behavior while satisfying
the non-functional requirements.

2However, note that an ADT does not necessarily define a class of objects. See {Mac82] for a clear exposition of the notions of values versus objects.
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A class diagram models a set of classes and their relationships, for example, association, aggregation, inheritance, depend-
ency, and so on. During design, class diagrams play a central role as they identify the major kinds of objects that will cooper-
ate to produce the system behavior. The analysis model also contains class diagrams. Although these latter classes can provide
a starting point for identifying some of the design model classes, there is not necessarily a direct correspondence between the
two sets of classes; while the analysis classes describe the system intended behavior—the what?, the black-box view—the de-
sign classes instead describe how this behavior is obtained—the how?, the white-box view.

Figure 2 shows a simple UML class diagram for bank accounts. Two different kinds of account are available: Savingac-
count and CheckingAccount. Both are specializations, indicated by an inheritance relationship, of a general Bankac-
count. A Customer owns a bank account, in fact, can own multiple bank accounts (the “*” annotation). Since this is a class
diagram for the design model, some methods have been indicated.

How objects from the various classes collaborate to provide the desired system behavior is described using interaction dia-
grams. As mentioned in Section 5.1, interaction diagrams come in two flavors: sequence diagrams and collaboration dia-
grams. Figure 3 shows a simple collaboration diagram, which involves objects (underlined names), not classes. The example
illustrates how the indicated objects collaborate to perform a transferTo operation, associated with the
BankAccount.class. Each arrow indicates a message being sent (a method being called), conditionally, in the cases of mes-
sages 2 and 3. The numbering of the messages indicates their time ordering.

Although interaction diagrams describe how a number of objects collaborate to realize a given operation, in reaction to a
specific event, they do not describe the behavior of a specific class of objects in reaction to all possible events. Such class spe-
cific behavior can be described using a statechart diagram, a generalized form of state transition diagram. A statechart dia-
gram thus describes an object behavior from an internal viewpoint—how the internal state of an object changes in reaction to
the various events.

The early OO methods focused mostly on data abstraction and ADTs, viewing primarily objects through their compo-
nents and static structural relationships, an approach called “data-driven design” [WBW89]. The Unified Process design ap-
proach, as do many modern OOD methods, instead focuses on properly identifying and assigning responsibilities to class-
es and objects, an approach named “responsibility-driven,” initially introduced by Wirfs-Brock et al. [WBW89, WBWW90].
More precisely, a responsibility is defined as “a contract or an obligation of a class” [BRJ99], or “an obligation to perform
a task or know information” [WBMO03]. Although such contracts can be defined formally, for example, using formal
pre/postconditions as is done in Meyer’s Design by Contract (DBC) approach [Mey92], even informal descriptions can be
useful [LGO1]. Responsibility-driven design generally improves encapsulation, produces a less complex design with im-
proved coupling and cohesion [SC93], and tends to produce systems in which the overall control is better organized and bal-
anced, thus more modular.

The growth of the OO approach over the last two decades has been phenomenal: the rise from OO programming, to design,
then to analysis; the development of a lingua franca (UML), the design patterns movement; and so on. For lack of space, how-
ever, several aspects related with OO design have not been addressed; for example, persistence, error handling, component-
based design, and so on. Once the key ideas of OOD are understood, a next important step, as mentioned in Section 3.2, is to
address the vast literature on OO design patterns.

BankAccount 1 Customer
*  owns

balance

balance ()
transferTo ()
deposit ()
withdraw()

A

SavingAccount CheckingAccount

Figure 2. A UML class diagram for bank accounts.
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2: [b <= amount] withdraw(amount)

:= balance ()

transferTo (b2, amount)

— -

bl :BankAccount

3: [b <= amount] deposit (amount)

b2 :BankAccount

Figure 3. A UML collaboration diagram for a transferTo operation.

6.4. Data-structure-oriented Design

Data-structure-oriented design—also known as Jackson Structured Programming (JSP) [Jac75] is an approach in which the
emphasis is on the data that a program manipulates rather than the functions it performs [Cam89, Pre01, Bud03]. This empha-
sis on data is motivated by the fact that such data is generally more stable (less subject to change) than the functions that need
to be performed.

In JSP, the designer first describes the input and output data—for instance, using Jackson structure diagrams—and then de-
velops the program’s control structure by establishing an appropriate correspondence between the input and output data struc-
ture diagrams. Once the program control structure is properly defined, appropriate program actions and conditions are then
added to obtain the final program. A number of heuristics have also been proposed to deal with special cases; for example,
how to deal with various kinds of mismatches (also known as structure clashes) between the input and output structures by us-
ing program inversion.

JSP’s scope was mostly restricted to the design of data-processing programs using sequential (batch-style) files and
processes. Jackson later introduced the JSD method (Jackson System Development) [Jac83] that deals with the analysis and
design of systems composed of more complex interacting processes involving various entities performing actions, an ap-
proach similar, in certain ways, to object-oriented design.

7. CONCLUSION

Software design is a rich and still evolving field, so this overview could only scratch the surface. In fact, following the spirit of
the Guide to the Software Engineering Body of Knowledge, which aims at presenting generally accepted knowledge—"knowl-
edge and practices [that] are applicable to most projects most of the time, and [such] that there is a widespread consensus
about their value and usefulness” [AMBD04]—this overview should be considered as a guide to the field of software design.
Further detail on the topics discussed in this overview or on more specialized topics related with design (for example, design
of real-time or distributed systems) can be obtained by consulting the various references mentioned in the next section or in
the accompanying papers.
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components, for example, blueprints of the car’s engine and frame, sketches of the carossery, and so on. The descriptions of
the acceptable alternatives that, together, make it possible to attain the target goals while satisfying the constraints then consti-
tute a design solution, descriptions that will subsequently enable the car’s construction.

2.2. Software Design Context

To understand the role of software design, its context must be understood, namely, the software development life cycle. The
software development activities that are more directly coupled with software design are the following [ISO95]:

® Software requirements analysis, in which the intended use of the system to be developed is analyzed and the require-
ments (functional as well as nonfunctional ones) are specified. Software design then uses these requirements specifica-
tion as input.

¢ Software coding and testing (also known as software construction), in which the software units identified by the soft-
ware design activity are developed and (unit) tested.

o Software integration and qualification testing, in which the various software units and components identified during de-
sign and built during construction are combined together and tested to ensure that the initial requirements are satisfied.

In a software life cycle process, these activities, and others, are coupled with one another based on a life cycle model, of
which there are two main types [Bud03]:

e Linear models, in which the process runs linearly through the activities; for example, the waterfall model.

® Incremental models, in which the process runs iteratively through the activities; for example, the spiral model or the it-
erative development approach.

Software development methods can also guide the software development process by offering procedures and guidelines to
go through these various activities; see Section 6.

2.3. Software Design Process

In a standard listing of software life cycle processes such as ISO/IEC 12207, Sofiware Life Cycle Processes [ISO95], software
design consists of two activities that fit between software requirements analysis and software construction:

® Software architectural design (sometimes called top-level design) describes how the system is broken down and organ-
ized into components the software architecture [[EE00].

e Software detailed design describes the specific behavior of the various components identified by the software architecture.

The output of the design process is a set of models that records the major decisions that have been taken, and describes
each of the software components and units sufficiently to enable their construction [IEE98, Pre01, Bud03].

3. SOFTWARE STRUCTURE AND ARCHITECTURE

In its usual sense, a software architecture defines the internal structure. According to the Oxford English Dictionary, the struc-
ture is “the way in which something is constructed or organized.” For a software system that is its internal design. Since the
mid-1990s, however, software architecture has taken on a broader meaning. For instance, IEEE Standard 1471 (Recommended
Practice for Architectural Descriptions of Software-Intensive systems) [IEE00] defines software architecture as follows:

The fundamental organization of a system embodied in its components, their relationships to each other, and to
the environment, and the principles guiding its design and evolution.

Software architecture, in fact, has been emerging as a discipline on its own, involved with the study, in a generic way, of
software structures and architectures [SG96]. This broader meaning of software architecture gave rise to a number of interest-
ing ideas and concepts about software design at different levels of abstraction. Some of these concepts can be useful during ar-
chitectural design (for example, architectural styles) whereas some pertain more specifically to detailed design (for example,
design patterns). Other notions can also be useful for designing families of systems (also known as product lines). Interesting-
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ly, most of these concepts can be seen as attempts to describe, and thus reuse, generic design knowledge. A key concept,
though, is the notion of view (or viewpoint).

3.1. Architectural Structures and Views

A software architecture description is a complex entity as it serves many purposes, a key one being its use for communication
among the various stakeholders involved in the development of the software system. Those various stakeholders—analysts,
implementers, managers, testers, quality assurance team, and so on—have different roles and needs. Thus, different high-level
facets, or perspectives, of a software design can and should be described and documented. These facets are called views. A
view “represents a partial aspect of a software architecture that shows specific properties of a software system” [BMR+96]. It
is “a collection of models that represent one aspect of an entire system” [MEHO01].

The key role of views in design documentation was recognized as early as the mid-1980s in IEEE Standard 1016, Recom-
mended Practice for Software Design Description (SDD) [IEE98],' whose purpose was to specify “the necessary information
content, and recommended organization” for an SDD. IEEE Standard 1016 recommended that the overall organization of an
SDD be obtained as the composition of a number of “design views,” each containing a subset of the various attributes describ-
ing design entities: decomposition (how the system is partitioned into design entities); dependency (the relationships among
entities and system resources); interface (what a designer, programmer, or tester needs to know to use the design entities); and
detail description (internal design details). ’

Since then, various authors have proposed different sets of views for describing software architectures. A well-known ap-
proach, used within the Rational Unified Process (RUP) [Kru00], is Kruchten’s “4+1 view model” [Kru95], consisting of the

following views:

1. The logical view describes how the functional requirements are satisfied. It identifies the major design packageé, sub-
systems, and classes.

2. The implementation view describes how the design is broken down into implementation units. It identifies the major
software modules such as source code, data files, executables, and so on.

3. The process view addresses issues related to concurrency and distribution; for example, how the various threads of con-
trol are organized and distributed over the various programs, and how they interact.

4. The deployment view shows how the runtime units and components are distributed onto the various processing nodes.

5. The use-case view, which consists of a small number of use cases (see Section 6.3), ties together the other views, illus-
trating how they all work together.

Other sets of views have been proposed, for example, conceptual versus module interconnection versus execution versus
code views [SNH95], and constructional (structural) versus behavioral versus functional versus data modeling views [Bud03].
More generally, according to Clements et al. [CBB+03], views can be classified into three categories, called viewtypes:

1. Module viewtype. These views describe the units of implementation, for example, classes, collections of classes, and
layers.

2. Component-and-connector viewtype. These views describe the units of execution, that is, elements having a run-time
presence; for example, processes, objects, clients, servers, and data stores.

3. Allocation viewtype. These views describe the relationships between a system and its development and execution envi-
ronment, that is, the mapping of software units to elements of the environment; for example, hardware, file system, and
development team.

The set of views selected to document a software architecture depends on various factors, a question discussed in slightly

more detail in Section 5.2. Whatever the exact choice of views, the key idea is that a software architecture is a multifaceted ar-
tifact produced by the design process and composed of a set of relatively independent and orthogonal views.

3.2. Macro/Microarchitectural Patterns: Architectural Styles Versus Design Patterns

Over the last decade, starting with the seminal work of Gamma et al. [GHIV95], the notion of pattern has drawn a lot of at-
tention. Described succinctly, a pattern is “a common solution to a common problem in a given context” [JBR99].

"The 1998 standard is, in fact, an updated version of the previous 1987 standard.
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More precisely, the key idea behind patterns is that, over the years, software development practitioners have observed and
identified a number of recurring problems and solutions. The key goal of patterns is then to describe—thus, to codify and doc-
ument—those commonly recurring solutions to typical problems.

Patterns can be described and documented in various ways, ranging from informal textual descriptions [GHIV95, BMR+96]
to more formal specifications [JTMO00]. Because the goal is to make explicit thus codify—the associated design knowledge in
order to make it transferable, pattern descriptions generally consist of a number of elements. For example, Buschmann et al. in-
troduce a system of patterns in which each pattern is described by, among others, the following attributes [BMR+96]:

¢ The name of the pattern

® The context, that is, the key situations in which the pattern may apply
® An example illustrating the need for the pattern

¢ The general problem—its essence—that the pattern tries to solve

¢ The solution underlying the pattern, both the (static) structure of the pattern’s elements and their run-time (dynamic) be-
havior

® Guidelines for the pattern’s implementation

Additional descriptive elements may also be presented; for example, aliases, possible variants or related patterns, known
uses, and consequences (advantages/disadvantages).
Patterns can be classified into three key major categories, depending on their scope and level of abstraction [BMR+96]:

1. Architectural styles
2. Design patterns
3. Coding idioms

In the following, we elaborate on the first two categories, the latter category being the domain of software construction.

Architectural Styles (Macroachitectural Patterns)

An architectural style has been defined as “a set of constraints on an architecture [that} define a set or family of architectures
that satisfy them” [BCKO03]. More precisely, an architectural style can be seen as a meta-model that provides a software sys-
tem’s high-level organization—its macroarchitecture:

An architectural [style] expresses a fundamental structural organization schema for software systems. It provides
a rich set of predefined subsystems, specifies their responsibilities, and includes rules and guidelines for organiz-
ing the relationships between them. [BMR+96]

Various authors have identified a number of major architectural styles [BMR+96, BCK03, BRJ99, Bos00}:

General structure (for example, layers, pipes and filters, blackboard)
Distributed systems (for example, client—server, three-tiers, broker)

Interactive systems (for example, model-view-controller, presentation-abstraction-control)

Adaptable systems (for example, microkernel, reection)

Other styles (for example, batch, interpreters, process control, rule-based)

The choice of a particular architectural style depends on the quality attributes that must be satisfied: whereas a given style
may help attain certain quality attributes, it may also hinder others. Of course, heterogeneous styles are also possible.
Design Patterns (Microachitectural Patterns)
Although architectural styles can be viewed as patterns describing the high-level organization of software systems—the

macroarchitecture—design patterns are used to describe details at a lower and more local level—the microarchitecture:

{Architectural styles and design patterns] are different in that a style tends to refer to a coarser grain of design so-
lution than a pattern, which tends to refer to a design solution localized within a few (or one) of a system’s many
architectural components. [CBB+03]
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Thus, whereas the application of an architectural style will generally have a significant impact on the general organization of
the various components, applying a design pattern will usually have a much more limited and localized impact.

Although the notion of design pattern needs not be restricted to the object-oriented paradigm, most of the literature in fact
describes object-oriented design patterns. Such patterns can be categorized in various ways. For instance, Gamma et al. use
the following categories [GHIV95]:

® Creational patterns deal with the creation of objects (for example, builder, factory, prototype, singleton).

® Structural patterns deal with the composition of objects (for example, adapter, bridge, composite, decorator, fagcade,
flyweight, proxy).

® Behavioral patterns describe how objects interact (for example, command, interpreter, iterator, mediator, memento, ob-
server, state, strategy, template, visitor).

On the other hand, Buschmann et al. classify patterns into the following categories [BMR+96]:

* Structural decomposition patterns address the “decomposition of subsystems and complex components into cooperating
parts” (for example, whole—part).

® Organization of work patterns define “how components collaborate together to solve a complex problem” (for example,
master—slave).

® Access control patterns define “guards and control access to services and components” (for example, Proxy).

® Management patterns handle “homogeneous collections of objects, services and components in their entirety” (for ex-
ample, command processor, view handler).

® Communication patterns “help organize communication between components” (for example, forward-receiver, dis-
patcher—server, publisher—subscriber).

Given the large number of design patterns and styles described in the literature [GHIV9S, BMR+96, Fow03], it is beyond
the scope of this overview to give a detailed presentation of those various design patterns. Let us conclude, though, that a
modern software designer should understand the key styles and patterns, as this will help avoid “reinventing the wheel” each
time a new design problem is tackled, while establishing a common communication vocabulary among software developers.

3.3. Design of Families of Systems and Frameworks

An important goal of software design has always been to allow for the reuse of software elements. Recent approaches toward
that goal are based on software product lines and software components. A software product line is “a collection of systems
sharing a managed set of features constructed from a common set of core software assets” [BCK03]. A product line thus de-
fines a family of systems and is based on and populated with software components, which are “unit[s] of composition with ex-
plicitly specified provided, required and configuration interfaces and quality attributes” [Bos00].

The detailed presentation of the principles and techniques underlying the design of software product lines is beyond the
scope of the present paper. Let us simply indicate that building a common set of software assets involves identifying the key
commonalities encountered among the various members of the possible family of products—done through domair analysis
[McC97, WL99, Bos00]—as well as accounting for their possible variabilities—done by identifying and defining reusable
and customizable components [McC97, Bos00].

Customization of components can be supported through a number of mechanisms, for example, inheritance, extension,
configuration, template instantiation, and generation [Bos00]. In an object-oriented context, a related notion is that of frame-
work, a partially complete software subsystem that can be extended by instantiating specific plug-ins (also known as hot spots)
[Pre95, BMR+96, Bos00].

4. SOFTWARE DESIGN QUALITY ANALYSIS AND EVALUATION

According to ISO/IEC Standard 9126-1 [ISO01], software quality—defined as “the totality of features and characteristics of a
software product or service that bear on its ability to satisfy stated or implied needs”—can be characterized by the following
six properties: functionality, reliability, usability, efficiency, maintainability, and portability. Each of these may in turn be de-
fined through an appropriate set of attributes [ISO01]. In the following, we briefly introduce some of the quality attributes ap-
plicable to design as well as some techniques to help attain those quality attributes.
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4.1. Design Quality Attributes

A key distinction between the various quality attributes concerns whether their influence is observable or not at run time
[BCKO3]:

® Run-time qualities are observable only while the system is functioning; for example, functionality, usability, perform-
ance, reliability and availability, and security.

® Development-time qualities have an impact on the work of the development and maintenance teams, but are not directly
observable at run time; for example, integrability, modifiability, portability, reusability, and testability.

Although some qualities can be achieved through appropriate architectural choices—for example, modifiability and
reusability, performance—some others cannot—for example, functionality and usability [KB00]. An informal test, suggested
by Kazman and Bass [KB00], to see if a particular quality attribute can be achieved through architectural choices is to ask the
following question: “[Clan I improve [the] rating for that attribute by making structural changes?”

Parnas and Weiss, in their active design review approach [PW85], identify the key desirable properties of a design as being
the following: it should be well structured, simple, efficient, adequate (satisfying the requirements), flexible (easy to change),
practical (module interfaces sufficient for the job), implementable, and standardized (documentation organized in a standard
way). .

Another important quality attribute related with design concerns the architecture’s intrinsic quality known as conceptual in-
tegrity [Bro95], which characterizes an architecture that “reflects one single set of design ideas,” leading to simplicity, consis-
tency, and elegance.

4.2. Measures

A number of measures can be defined to obtain quantitative estimates of a design’s size, structure, or quality. Such measures
generally depend on the selected design approach:

® Function-oriented (structured) measures: the design’s structure, obtained through functional decomposition, is repre-
sented as a structure chart on which measures can be computed; for example, fan-in/fanout, cyclomatic complexity, in-
tegration complexity [MB89, Pre01].

® QObject-oriented measures: the design structure is represented as class diagrams, on which measures can be computed;

for example, weighted methods per class, depth of inheritance tree, number of children, coupling between object class-
es, responses for a class [CK94, Pre01].

4.3. Quality Analysis and Evaluation Tools

Although measures can be used to estimate certain quality attributes—for instance, complexity metrics can be used to evaluate
the testability of a software unit and to determine how much testing needs to be performed—many quality attributes are hard
to quantify. Thus, other techniques must be used to evaluate the quality of a design:

o Software design reviews are informal or semiformal, often group-based, techniques used to verify the quality of design
artifacts; for example, architecture reviews [BCK03], design reviews and inspections [PW85, Bud03], scenario-based
architecture evaluation [BCK03, Bos00], and requirements tracing [TD02].

o Simulation and prototyping are dynamic techniques used to evaluate a design; for example, simulation-based perform-
ance or reliability analysis [BCK03, KB00, Bos00], and feasibility prototyping [BCK03, Bos00].

5. SOFTWARE DESIGN NOTATIONS AND DOCUMENTATION

Many different notations exist to represent software design artifacts, for instance, 18 different kinds of notations are men-
tioned in the Software Design Knowledge Area of the Guide to the SWEBOK [AMBD04]. Some notations are used mostly
during architectural design, whereas others mainly during detailed design, although some can be used in both phases. Some
notations are also used mostly within specific design methods, whereas others are more widely used.

Budgen [Bud03] categorizes the various design notations in terms of black box versus white box: as a black-box notation
“is concerned with the external properties of the elements of a design model,” whereas a white-box notation “is largely con-
cerned with describing some aspect of the detailed realization of a design element” [Bud03}.
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An alternative characterization, which we use below to present briefly a small number of notations, is to distinguish be-
tween notations for describing structural (static) properties—a design’s structural organization—and those for describing be-
havioral (dynamic) properties—the behavior of the software components.

5.1. A Selection of Design Notations

Over the last few years, UML (Unified Modeling Language) [BRJ99] has become an almost de facto standard for software de-
velopment notations. In what follows, we briefly present a (small) selection of software design notations; notations whose
name appear in italics are part of UML. Structural descriptions (static view) These notations, mostly (but not always) graphi-
cal, describe and represent the structural aspects of a software design that is, they describe the major components and how
they are interconnected (static view):

® (Class and object diagrams. These are used to represent a set of classes (and objects) and their relationships [BRJ99].
These diagrams are used in object-oriented design. A related, although somewhat older, notation is entity-relationship
diagrams (ERDs), used to represent conceptual models of data stored in information systems [Mar94, TD02].

¢ Component diagrams. These are used to model the static implementation view of a system, that is, physical things (and
their relationships) such as executables, libraries, tables, files, and documents [BRJ99]. Although their main use is dur-
ing construction, such diagrams can also be used during design; for example, to document the module (work assign-
ment) structure [BCK03].

® Deployment diagrams. These are used to model the static deployment view of a system, that is, “the configuration of run
time processing nodes and the components that live on them” [BRJ99]. Typically, such diagrams can be used to repre-
sent distribution aspects, for example, to model embedded, client/server or distributed systems.

® Structure charts. These are used to describe the calling structure of programs (which procedure or module calls/is called
by which other) [PJ88, Pre01, Bud03]. Such diagrams are at the heart of the structured (functionoriented) design ap-
proach.

® Structure (Jackson) diagrams. These are used to describe the data structures manipulated by a program in terms of se-
quence, selection and iteration [Mar94, Bud03]. These diagrams were initially introduced in JSP (Jackson Structured
Programming) [Jac75].

Behavioral Descriptions (Dynamic View)

The following notations and languages, some graphical and some textual, are used to describe the dynamic behavior of sys-
tems and components. Many of these notations are useful mostly, but not exclusively, during detailed design:

® Activity diagrams. These are used to show the control flow from activity (“ongoing nonatomic execution within a state
machine™) to activity [BRJ99]. These diagrams are related to the older owcharts {Pre01].

® [nteraction diagrams. These are used to show the interactions among a group of objects [BRJ99]. These diagrams come
in two flavors: sequence diagrams put the emphasis on the time-ordering of messages, whereas collaboration diagrams
put the emphasis on the objects, their links, and the messages they exchange on these links.

¢ Data flow diagrams (DFDs). These are used to show the data flow among a set of processes [PJ88, Pre01, Bud03]. These
diagrams were introduced and used by the structured analysis and design approach [YC79].

® State transition diagrams and statechart diagrams. These are used to show the control flow from state to state in a state
machine [BRJ99, Bud03].

e Pseudocode and program design languages (PDLs). These ‘are structured, programming-like languages used to describe,
generally at the detailed design stage, the behavior of a procedure or method [Pre01, Bud03].

5.2. Design Documentation

Given the variety of notations available for design, a key question is how these various notations can be combined to obtain a
coherent design document. There is no clearcut answer to this question, as it depends on many aspects, for instance, the type of
software, the software development method being used, the organization in which/for which the software is developed, the
stakeholders involved, and so on. A key practice, though, is the use of views, introduced in Section 3.

The selection of an appropriate set of views strongly depends on the stakeholders involved: project managers, developers,
testers and integrators, customers, end users, and so on, all have different needs. Satisfying these different needs can best be
described in terms of the relative importance of the various views from each viewtype (module, component-and-connector,
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and allocation; see Section 3.1) [CBB+03]. For instance, a project manager would need detailed allocation views, whereas a
developer would need mostly detailed module and component-and-connector views.

Documenting a view involves, among other things, describing the interfaces of the elements from that view. How such an
interface is defined will depend on the type of element. A key characteristic of any interface specification, though, is that it
should be a two-way description: what the element provides and what it requires—the resources used by the element, and the
assumptions it makes from the environment. Clements et al. [CBB+03] offer a good presentation of these ideas.

Another key idea, formulated initially by Parnas and Clements, is that a design should be presented and documented in a
rational way [CP86, Cle00], even though the process that lead to this design may not have been perfectly rational. As an anal-
ogy, consider the presentation of a major discovery that need not follow the process that led to that discovery (often by trial
and error). In addition, even though this part is not strictly rational, the rationale behind the key decisions should also be
recorded; for instance, the design alternatives that were considered and rejected should be described.

6. SOFTWARE DESIGN STRATEGIES AND METHODS

Various general principles and strategies have been proposed to guide the design process and help improve the quality of the
resulting software [Mar94, BMR+96, Bud03]. In contrast with strategies, methods are more specific in that they generally
suggest a particular set of notations together with a description of a process to be followed when designing software, as well as
heuristics that provide guidance in adapting the method to a particular context [Bud03]. Such methods, which generally inco-
porate, in various ways, the general design principles and strategies, can help improve the quality of the resulting software
when applied in a proper context. They are also useful as a means for transferring knowledge and as a common framework for
teams of developers. ’

6.1. General Strategies and Enabling Techniques

General software design strategies can be described in terms of enabling techniques, a notion introduced by Buschmann et al.
to denote fundamental principles and techniques of software design which are “independent of [any] specific software devel-
opment method, and [. . .] have been known for years” [BMR+96]:

® Abstraction. Abstraction is “the process of forgetting information so that things that are different can be treated as if they
were the same” [LGO1]. Two key mechanisms are abstraction by parameterization—abstract from specific data by in-
troducing parameters—and abstraction by specification—abstract how a module is implemented by referring to an ap-
propriate specification. These mechanisms lead to three major kinds of abstraction: procedural abstraction (to introduce
new operations), data abstraction (to introduce new data types), and control (iteration) abstraction (to iterate over collec-
tions of elements).

® Coupling and cohesion. Coupling is defined as the strength of the relationships between software components, whereas
cohesion is defined by how the elements making up a component are related [BCKO3, Pre01]. As a general rule, cou-
pling between components should be weak, whereas the (internal) cohesion of a component should be high. Although
these concepts were initially introduced for structured design [YC79], they also apply to object-oriented design [PJ0O].

® Divide and conquer. In an algorithmic sense, divide and conquer is a technique that solves a complex problem by divid-
ing it into two or more simpler problems, which are then solved recursively and whose solutions are subsequently com-
bined to obtain the solution to the initial problem. In a function-oriented sense, divide and conquer involves breaking
down a complex problem or task into simpler subproblems or subtasks that can be solved independently, a strategy at the
root of stepwise refinement [Wir71, Bud03]. A related strategy is the separation of concerns, which suggests that “dif-
ferent or unrelated responsibilities should be separated from each other” [BMR+96].

® Information hiding and encapsulation. Information hiding is a general design strategy introduced by Parnas in which
“every module [. . .] is characterized by its knowledge of a design decision which it hides from all others™ [Par72]. A key
principle associated with information hiding is the separation of interface and implementation, wherein the “interface or
definition [of a module is] chosen to reveal as little as possible about its inner workings™ [Par72]. In other words, a pub-
lic interface (known to the clients) is specified, separate from the details of how the component is realized. Another re-
lated notion is encapsulation, defined as “the grouping of related ideas into one unit, which can thereafter be referred to
by a single name” [PJ0O]. Thus, encapsulation combines elements to create a new entity, whose internal details are hid-
den; in other words, encapsulation creates a new abstraction.

® Sufficiency, completeness, and primitiveness. These notions pertain to the idea that a software component should capture
all the important characteristics of an abstraction needed to interact with it, and nothing more [BMR+96, LGO1].
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6.2. Function-oriented (Structured) Design

Structured (function-oriented) design [YC79, PJ88, Pre01, Bud03] is one of the early software design paradigms, in which de-
composition centers on identifying the major systems functions, which are then elaborated and refined in a top-down manner,
that is, using a divide-and-conquer approach based on functional decomposition.

Structured design is generally performed after structured analysis. A typical structured analysis {You89] produces, among
other things, data flow diagrams (DFD) of the various system functions together with associated process descriptions, that is,
descriptions of the processing performed by each subtask, usually using informal pseudocode. Entity-relationship diagrams
describing the data stores can also be used.

Two key strategies have been proposed to help derive a software architecture, represented as a structure chart, from a
DFD:

1. Transaction analysis. A transaction is characterized by some event in the environment that generates a stimulus to the
system, which in turn triggers some system s activity that produces a response having an effect upon the environment.
Transaction analysis consists in identifying the key transaction types of a system and using them as the units of design,
that is, designing separately the processing of each transaction type.

2. Transformation analysis. The key step in deriving a structure chart from a DFD (for a given transaction) is to identi-
fy the central transform, that is, “the portion of the DFD that contains the essential functions of the system and is in-
dependent of the particular implementation of the input and output” [PJ88]. A first-cut (draft) structure chart can then
be obtained by lifting the bubbles associated with the central transform, promoting them at the top level of the struc-
ture chart, as illustrated in Figure 1. Remember that a structure chart is a hierarchical diagram that shows the calls or
is called the relationships. Of course, this initial structure chart will have to be revised and completed, in line with the
quality criteria of cohesion and coupling as well as with various heuristics. Other details may also need to be revised
or added; for example, error handling modules, initialization and termination details, required control flags, and so
on.

Key concepts of structured design are those of coupling and cohesion, which characterize a design of good quality. For in-
stance, a good design should restrict the coupling between modules to normal types of coupling—data, stamp, and control
coupling, data coupling being the preferred form, where communication between modules is through parameters, where each
parameter is an elementary piece of data—and should avoid other pathological forms of coupling—namely, common and con-
tent coupling

Similarly, a good design should give preference to modules having high cohesion; more precisely, modules exhibiting func-
tional cohesion when the module “contains elements that all contribute to the execution of one and only one problem-related
task” [PJ88]. Other, weaker, types of cohesion have been identified, from more cohesive to less cohesive: sequential and com-

Central transform
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Data Flow Diagram (DFD) First-cut structure chart

Figure 1. Using transform analysis to derive a structure chart from a DFD.
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municational, procedural and temporal, logical and coincidental. Those weaker forms of cohesion can sometimes be accept-
able, although the less cohesive ones should preferably be avoided.
Additional heuristics have also been suggested to help improve the quality of the resulting design:

® Fan-in/fan-out. A high fan-in—the number of modules that call a given module M—is considered good, as it indicates
reuse of M. On the other hand, a low to moderate fan-out (maximum 5—7)—the number of modules that M calls—is gen-
erally preferable.

e Decision splitting. Decision splits, which occur when the recognition of a condition and the execution of the associated
action are not kept within the same module, should be avoided.

e Balanced systems. A balanced system, when the top-level modules deal with logical and abstract data (clean and valid
data, independent of implementation format), is preferable.

Structured design, being one of the first well-described and well-known design methods, made important contributions to
the field of software design. Its integration with an appropriate analysis method—structured analysis [You89]—was also one
of its key strengths. With the emergence of object-oriented languages and programming, though, structured design, with its
emphasis on functional decomposition, started to reach its limits.

6.3. Object-oriented Design

The notion of object is intimately tied to the notions of data abstraction, encapsulation, and abstract data type (ADT). More
precisely, an object is described by the following characteristics [Mac82, Boo86]: an object can be created/destroyed, has a
unique (immutable) identity, possesses a (mutable) state (i.e., evolves in time), and exhibits some well-defined behavior
through services it offers. Objects are generally organized into classes, which describe collections of objects sharing the same
structure and behavior, thus the link with data types.?

Over the years, numerous software design methods based on objects, collectively known as object-oriented design (OOD)
methods, have been proposed [Boo86, Boo94, WBWW90, CY91, JBP+91]. Early approaches, in which objects were mostly
similar to entities in entity-relationship modeling and inheritance was not used [Abb83, Boo86], were said to be object-based.
Later approaches, in which inheritance and polymorphism play a key role, are said to be object-oriented (00).

0O design methods aim at developing software systems composed of interacting objects that are highly modular and, thus,
easy to modify, extend, and maintain. OO design models address structural (static) aspects—classes and objects, their rela-
tionships and their grouping as well as behavioral (dynamic) ones—objects’ behavior and interactions. The notations used for
documenting these models take various forms; for example, diagrammatic, textual, and even mathematical. Much like struc-
tured design was intimately tied with structured analysis, existing OO design methods are generally associated with OO0 analy-
sis methods. Contrary to structured analysis and design, though, many of the notations used for OO design can also be used
during requirements analysis, leading to some degree of seamlessness between the two. This seamlessness, however, must not
make one forget that requirements analysis and design do deal with different concerns; put succinctly, problem domain versus
solution domain.

The Unified Modeling Language (UML), because it evolved from the integration of a number of OO methods, provides a
wide variety of notations for OO analysis and design. UML includes various notations in addition to those mentioned in Sec-
tion 5.1, for example, real-time modeling, formal specification using the Object Constraint Language (OCL) [WK99], and so
on. UML is not an OO design method, though; UML is simply a set of notations, neutral with respect to any specific design
method. On the other hand, the Unified Process (UP), elaborated by the same people who developed UML [JBR99], does de-
fine a software development process that incorporates OO analysis and design.

The Unified Process consists of four phases: inception, elaboration, construction, and transition. Each phase, delimited by
an appropriate milestone, consists of one or more iterations, where each iteration generally results in an executable release and
involves a number of core workows, namely, requirements, analysis, design, implementation, and test. From a software design
perspective, the important phases are the elaboration and construction phases, since the architectural baseline (i.c., the soft-
ware architecture description; see the “4+1 view model” described in Section 3.1) is developed during the elaboration phase
whereas most of the detailed design is developed during the construction phase.

The key input to the design workow is a collection of use cases that describe the functional requirements a use case is “a de-
scription of a set of sequences of actions [. . .] that a system performs to yield an observable result [. . J’ [BRI99]—together
with the applicable non-functional requirements. The output of the design workflow is a design model consisting of classes
and their collaborations, possibly organized into packages and subsystems, that provide the intended behavior while satisfying
the non-functional requirements.

2However, note that an ADT does not necessarily define a class of objects. See {Mac82] for a clear exposition of the notions of values versus objects.
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A class diagram models a set of classes and their relationships, for example, association, aggregation, inheritance, depend-
ency, and so on. During design, class diagrams play a central role as they identify the major kinds of objects that will cooper-
ate to produce the system behavior. The analysis model also contains class diagrams. Although these latter classes can provide
a starting point for identifying some of the design model classes, there is not necessarily a direct correspondence between the
two sets of classes; while the analysis classes describe the system intended behavior—the what?, the black-box view—the de-
sign classes instead describe how this behavior is obtained—the how?, the white-box view.

Figure 2 shows a simple UML class diagram for bank accounts. Two different kinds of account are available: Savingac-
count and CheckingAccount. Both are specializations, indicated by an inheritance relationship, of a general Bankac-
count. A Customer owns a bank account, in fact, can own multiple bank accounts (the “*” annotation). Since this is a class
diagram for the design model, some methods have been indicated.

How objects from the various classes collaborate to provide the desired system behavior is described using interaction dia-
grams. As mentioned in Section 5.1, interaction diagrams come in two flavors: sequence diagrams and collaboration dia-
grams. Figure 3 shows a simple collaboration diagram, which involves objects (underlined names), not classes. The example
illustrates how the indicated objects collaborate to perform a transferTo operation, associated with the
BankAccount.class. Each arrow indicates a message being sent (a method being called), conditionally, in the cases of mes-
sages 2 and 3. The numbering of the messages indicates their time ordering.

Although interaction diagrams describe how a number of objects collaborate to realize a given operation, in reaction to a
specific event, they do not describe the behavior of a specific class of objects in reaction to all possible events. Such class spe-
cific behavior can be described using a statechart diagram, a generalized form of state transition diagram. A statechart dia-
gram thus describes an object behavior from an internal viewpoint—how the internal state of an object changes in reaction to
the various events.

The early OO methods focused mostly on data abstraction and ADTs, viewing primarily objects through their compo-
nents and static structural relationships, an approach called “data-driven design” [WBW89]. The Unified Process design ap-
proach, as do many modern OOD methods, instead focuses on properly identifying and assigning responsibilities to class-
es and objects, an approach named “responsibility-driven,” initially introduced by Wirfs-Brock et al. [WBW89, WBWW90].
More precisely, a responsibility is defined as “a contract or an obligation of a class” [BRJ99], or “an obligation to perform
a task or know information” [WBMO03]. Although such contracts can be defined formally, for example, using formal
pre/postconditions as is done in Meyer’s Design by Contract (DBC) approach [Mey92], even informal descriptions can be
useful [LGO1]. Responsibility-driven design generally improves encapsulation, produces a less complex design with im-
proved coupling and cohesion [SC93], and tends to produce systems in which the overall control is better organized and bal-
anced, thus more modular.

The growth of the OO approach over the last two decades has been phenomenal: the rise from OO programming, to design,
then to analysis; the development of a lingua franca (UML), the design patterns movement; and so on. For lack of space, how-
ever, several aspects related with OO design have not been addressed; for example, persistence, error handling, component-
based design, and so on. Once the key ideas of OOD are understood, a next important step, as mentioned in Section 3.2, is to
address the vast literature on OO design patterns.

BankAccount 1 Customer
*  owns

balance

balance ()
transferTo ()
deposit ()
withdraw()

A

SavingAccount CheckingAccount

Figure 2. A UML class diagram for bank accounts.
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2: [b <= amount] withdraw(amount)

:= balance ()

transferTo (b2, amount)

— -

bl :BankAccount

3: [b <= amount] deposit (amount)

b2 :BankAccount

Figure 3. A UML collaboration diagram for a transferTo operation.

6.4. Data-structure-oriented Design

Data-structure-oriented design—also known as Jackson Structured Programming (JSP) [Jac75] is an approach in which the
emphasis is on the data that a program manipulates rather than the functions it performs [Cam89, Pre01, Bud03]. This empha-
sis on data is motivated by the fact that such data is generally more stable (less subject to change) than the functions that need
to be performed.

In JSP, the designer first describes the input and output data—for instance, using Jackson structure diagrams—and then de-
velops the program’s control structure by establishing an appropriate correspondence between the input and output data struc-
ture diagrams. Once the program control structure is properly defined, appropriate program actions and conditions are then
added to obtain the final program. A number of heuristics have also been proposed to deal with special cases; for example,
how to deal with various kinds of mismatches (also known as structure clashes) between the input and output structures by us-
ing program inversion.

JSP’s scope was mostly restricted to the design of data-processing programs using sequential (batch-style) files and
processes. Jackson later introduced the JSD method (Jackson System Development) [Jac83] that deals with the analysis and
design of systems composed of more complex interacting processes involving various entities performing actions, an ap-
proach similar, in certain ways, to object-oriented design.

7. CONCLUSION

Software design is a rich and still evolving field, so this overview could only scratch the surface. In fact, following the spirit of
the Guide to the Software Engineering Body of Knowledge, which aims at presenting generally accepted knowledge—"knowl-
edge and practices [that] are applicable to most projects most of the time, and [such] that there is a widespread consensus
about their value and usefulness” [AMBD04]—this overview should be considered as a guide to the field of software design.
Further detail on the topics discussed in this overview or on more specialized topics related with design (for example, design
of real-time or distributed systems) can be obtained by consulting the various references mentioned in the next section or in
the accompanying papers.
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