Software Engineering

JUNBEOM YOO

Dependable Software Laboratory
KONKUK University

http://dslab.konkuk.ac.kr

Ver. 2.0 (2010.06)

X This lecture note is based on materials from Ian Sommerville 2006.
X Anyone can use this material freely without any notification.

e This lecture provides
— Part I. Overview
— Part II. Requirements
— Part III. Design
— Part IV. Development
— Part V. Verification and Validation
— Part VL. Managing People

» Practice
— SASD : Analysis & Design - Implementation

Konkuk University

Chapter 1.
Introduction to Software Engineering

\\W 4

nlf'\:f\f"l'l 'laYe
UJJCCLLIVEDS

« To introduce software engineering
« To explain software engineering'’s importance
« To answer key questions about software engineering

C
®

|g ne |g

£+\A' f\ E
1Lvvd LI

Software engineering is something

— concerned with theories, methods and tools for professional software
development.

— concerned with cost-effective software development.

Let's define software engineering through 11 FAQs as follows.

AQs

What is software?
What is software engineering?

3. What is the difference between software engineering and computer
science?

4. What is the difference between software engineering and system
engineering?

What is a software process?

What is a software process model?

What are the costs of software engineering?

What are software engineering methods?

What is CASE (Computer-Aided Software Engineering) ?

10 What are the attributes of good software?

11. What are the key challenges facing software engineering?

N

© 0 N oL

\A

g ~+
L. VvViidl

:t" CI\
15 OV

« Software is computer programs and associated documentation such as
requirements, design models and user manuals

» Software products may be developed for a particular customer or for a
general market.
— Generic : developed to be sold to a range of different customers.
e.g. PC software such as Excel or Word

— Bespoke (custom) : developed for a single customer according to their
specification. e.g. Software used in a hospital

« Software engineering is
— An engineering discipline that is concerned with all aspects of software

production.
— All things concerned with a successful development of software

« Software engineers should
— adopt a systematic and organised approach
— use
» appropriate tools,
» techniques depending on the problem to be solved,
» development constraints,
» resources available.

3. What is the Difference between Software
Engineering and Computer Science?

« Computer science is concerned with theory and fundamentals.

« Software engineering is concerned with the practicalities of developing
and delivering useful software.

« Computer science theories are insufficient to act as a complete
underpinning for software engineering (unlike physics and electrical engineering),
since it is practiced/performed by people.

4. \What is the Difference between Software

Engineering and System Engineering?

System engineering is concerned with all aspects of computer-based

systems development including hardware, software and process
engineering.

Software engineering is part of system engineering process concerned
with developlng the software infrastructure, control, applications and
databases in the system.

C \AhAa+ ic
J. vviidl I>

Q)
)
O

« Software process is a set of activities whose goal is the development or
evolution of software.

« Generic activities in all software processes
— Specification : what the system should do

— Development : production of the software system
— Validation : checking that the software is really what the customer wants

— Evolution : changing the software in response to changing demands

« A simplified representation of a software process, presented from a
specific perspective.

« Examples of process perspectives
— Workflow perspective : sequence of activities
— Data-flow perspective : information flow
— Role/action perspective : who does what

» Generic process models
— Waterfall
— Iterative development
— Component-based software engineering

7. What are the Costs of Software Engineering?

« Development costs are roughly
— 60% : development costs
— 40% : testing costs

— For custom (long-lifetime) software, evolution costs often exceed
development costs.

» Costs can vary depending on
— the type of system being developed
— the requirements of system attributes (performance and system reliability)

» Therefore, distribution of costs depends on the development model that
Is used.

Waterfall model
0 25 50 75 100

Specification Design Development Integration and testing

Iterative development

0 25 50 75 100

Specification Iterative development System testing

Component-based software engineering

0 25 50 75 100

Specification ~ Development Integration and testing

Development and evolution costs for long-lifetime systems
0 10 200 30 400

System development System evolution

Activity-cost distribution varying depending on software process models

Konkuk University

16

Q
o

\AJh A
Vviid

Organized way of producing software according to the process

+
L

@M
)
O

ar

Structured approaches to software development which include system

models, notations, rules, design advice and process guidance.

Model descriptions
» Descriptions of graphical models which should be produced
Rules
» Constraints applied to system models
Recommendations
» Advice on good design practice
Process guidance
« What activities to follow

Q \AWhAa
J. vvilld

+ m
L

e
15 ©

Q
0}
(@
V)
@)

ANCLC /—_
AOoL (LO

—k
2
_.D
Q
-
g
('D
_.D
LCD

mput

o CASEs are Software systems that are intended to provide automated
support for software process activities and software engineering methods.

— Requirements and design
— Programming and debugging
— Testing

10. What are the Attributes of Good Software?

The good software should
— deliver the required functionality and performance to the user
— be maintainable, dependable and acceptable.

* Maintainability
— Software must evolve to meet changing needs.
« Dependability
— Software must be trustworthy.
« Efficiency
— Software should not make wasteful use of system resources.
o Acceptability
— Software must be accepted by the users for which it was designed.
— It must be understandable, usable and compatible with other systems.

C
®

1 VY A \7

||||||ai’y

Software engineering is an engineering discipline that is concerned with
all aspects of software production.

Software products consist of developed programs and associated
documentation.

Essential product attributes are maintainability, dependability, efficiency
and usability.

The software process consists of activities that are involved in developing
software products. Basic activities are software specification, development,
validation and evolution.

Methods are organized ways of producing software. They include
suggestions for the process to be followed, the notations to be used,
rules governing the system descriptions produced, and design guidelines.

CASE tools are software systems which are designed to support routine
activities in the software process such as editing design diagrams,
checking diagram consistency and keeping track of program tests which
have been run.

Konkuk University

21

Chapter 2.
Socio-technical Systems

\\W 4

nlf'\:f\f"l'l 'laYe
UJJCCLLIVEDS

To explain what a socio-technical system is

To explain the distinction between a socio-technical system and a
computer-based system

To introduce the concept of emergent system properties
« To explain about system engineering
* To discuss legacy systems and why they are critical to many businesses

vctarn ?
SYyol .

em

n
Q)

» A purposeful collection of inter-related components working together to
achieve some common objective

— May include software, mechanical, electrical and electronic hardware and be
operated by people.

o Technical computer-based systems

— Include hardware and software, but where the operators and operational
processes are not normally considered to be part of the system.

— The system is not self-aware. (e.g. Lap-top, MP3 player, cell phones, etc.)

» Socio-technical systems

— Systems that include technical systems but also operational processes and
people who use and interact with the technical system.

— Socio-technical systems are governed by organisational policies and rules.
(e.g. flight control system, transportation reservation system, etc.)

Characteristics of Socio-technical System

« Emergent properties

— Properties of the system as a whole, depending on the system components
and their relationships

— Features :
* non-deterministic
« complex relationship with organizational objectives

— Non-deterministic

* They do not always produce the same output when presented with the
same input, because the system'’s behaviour is partially dependent on
human operators.

— Complex relationships with organisational objectives

» The extent to which the system supports organisational objectives does
not just depend on the system itself.

§

Nt Dr
L M

i
U)

ergent Proper

« Emergent properties are a consequence of the relationships between
system components.

» Therefore, they can only be assessed and measured once the
components have been integrated into a system.

Property

The volume of a system (the total space occupied) varies depending on how the

Volume .
component assemblies are arranged and connected.

System reliability depends on component reliability but unexpected interactions can

Rty cause new types of failure and therefore affect the reliability of the system.

The security of the system (its ability to resist attack) is a complex property that cannot
Security be easily measured. Attacks may be devised that were not anticipated by the system
designers and so may defeat built-in safeguards.

This property reflects how easy it is to fix a problem with the system once it has been
Repairability discovered. It depends on being able to diagnose the problem, access the components
that are faulty and modify or replace these components.

This property reflects how easy it is to use the system. It depends on the technical

ety system components, its operators and its operating environment.

Konkuk University

\ 7

Types of

)
'h

§

EI'I
LC)
r_-l-
'U

TS

» Functional properties

— These appear when all the parts of a system work together to achieve some
objective.

— For example, a bicycle has the functional property of being a transportation
device once it has been assembled from its components.

* Non-functional properties

— These relate to the behaviour of the system in its operational environment.
— Examples are reliability, performance, safety, and security.

\7

Qyv/c
Yo

v\

'c 7\ o~
I CIllIDS

yO t

 We need to consider the reliability from aspect of systems
— Even if we have reliable software components,
— System failures often occur dus to unforeseen interactions between reliable
components.

» Therefore, we need system engineering.

« Influences on reliability

— Hardware reliability

« What is the probability of a hardware component failing and how long does it take
to repair that component?

— Software reliability

« How likely is it that a software component will produce an incorrect output.
— Operator reliability

» How likely is it that the operator of a system will make an error?

ems E |g ne |g

« System engineering is concerned with
— specifying, designing, implementing, validating,
— deploying and maintaining socio-technical systems

« System engineering is also concerned with
— services provided by the system,
— constraints on its construction,
— operation and the ways in which it is used

m

Cliiio LITyHITTlhing rliuLcoo

« System engineering process
— Usually follows a “Waterfall” model.

— Involves engineers from different disciplines who must work together, and
misunderstanding occurs here.

Evolution

System
elopment Installation

Example: Inter-Disciplinary Involvement in
System engineering

Mechanaical

Architecture

Konkuk University

31

f‘\l \7

Leq <N
sydiy Dy°

v\

'I'f\ o~
LCI11O

Socio-technical systems that
— Developed 10~20 years ago.
— Have been in a stable manner up to now.
— However, new business needs require a new efficient system.

Crucial to the operation of a business

Often too risky to change it with new ones
— Bank customer accounting system
— Aircraft maintenance system

Legacy systems constrain new business processes and consume a high
proportion of company budgets to maintain it..

Konkuk University

33

Leq <N
€gacy Sys

Hardware

— may be obsolete mainframe hardware.

Support software

— may rely on support software from suppliers who are no longer in business.
Application software

— may be written in obsolete programming languages.
Application data

— often incomplete and inconsistent.

Business processes

— may be constrained by software structure and functionality.
Business policies and rules

— may be implicit and embedded in the system software.

Runs-on

m II\“"\I‘\I C\Il"l'l\m Fhmr\r\r\nn+t—
I Lcydh J)’DLCIII \..UIII[JUI CliL
Embeds
knowledge

of

Policies & Rules

Uses Constrains

Application Business
Dat _ - Processes

Konkuk University 35

1 1 A rm

C ~
SUIlTIllida

v\ 7
|

y

« Socio-technical systems include computer hardware, software and
people, and are designed to meet some business goal.

« Emergent properties are properties that are characteristic of the
system as a whole.

« The systems engineering process includes specification, design,
development, integration and testing. System integration is
particularly critical.

« Human and organisational factors have a significant effect on the
operation of socio-technical systems.

« A legacy system is an old system that continues to provide essential
services.”

Konkuk University

37

nlf'\:f\f"l':\ YaYe
UJJCCLLIVEDS

To explain what a critical system is

To explain four dimensions of dependability - availability, reliability, safety
and security

To explain why, for achieving dependability, you need to avoid mistakes,
detect and remove errors and limit damage caused by failure @ mid-tem problem)

(v
\

v\

+i~ral Cyvic+yAn p
LiCdadl .)ybLC'IIID

Safety-critical systems

— Failure results in loss of life, injury or damage to environment
— Ex) Chemical plant protection system

Mission-critical systems

— Failure results in failure of some goal-directed activities
— Ex) Spacecraft navigation system

Business-critical systems

— Failure results in high economic losses
— Ex) Customer accounting system in bank

+h

L IVC' 11U

eve |JIII N US> U1

\I

(r ct
) _)/D

The costs of critical system failure are so high.

Therefore, development methods for critical systems are not cost-
effective for other types of system.

Examples of development methods

— Formal methods (specification and verification)
— Static analysis

— External quality assurance

§

For critical systems, it is usually the case that the most important system
property is the dependability of the system.

It reflects the extent of the user’s confidence that it will operate as users
expect and that it will not ‘fail’ in normal use.

Dependability of system equates to its trustworthiness.
« Dependable system is a system that is trusted by its users.

« Principal dimensions of dependability
— Availability, Reliability, Safety, Security

The ability of the system The ability of the system The ability of the system The ability of the system

to deliver services to deliver services to operate without to protect itself against
when requested as specified catastrophic failure accidental or deliberate
intrusions

Konkuk University 43

N+
UL

7\ - n 'Y aVa A If'\ I \ /4 n 'Y a Vel
LIITIT LJC [J NAaplil _y r1 |J
Reparability

— To which extent the system can be repaired in the event of a failure

Maintainability
— To which extent the system can be adapted to new requirements

Survivability
— To which extent the system can deliver services whilst under hostile attack

Error tolerance
— To which extent user input errors can be avoided and tolerated

nAahilityvs C Acte
Udiull Ly UL

p N

Dependability costs tend to increase exponentially as required levels of
dependability increase.

— More expensive development techniques and hardware are required.
— Increased testing and system validation are also required.

Cost 4

[
»

Low Medium High Very High Ultra High
Dependability

.
e

IJ Nda UIIIL_y LLUIIVUITIICS

Because of very high costs of dependability achievement
It may be more cost effective to accept untrustworthy systems and pay

for failure costs.

However, it depends on
— Social and political factors
« Poor reputation for products may lose future business.

— System type
« For business systems, modest levels of dependability may be adequate.

Aviatlahility, anA Ralialilitys
I-\VGIICIUIIIL_y dl iU T\C'IICIUIIIL_y
« Availability

— The probability that a system will be operational and able to deliver the
requested services, at a point in time

Reliability

— The probability of failure-free system operation over a specified time in a
given environment for a given purpose

Both of these attributes can be expressed quantitatively.
This class considers them as the same.

. An event that occurs at some point in time when the system does not deliver a
System failure . :

service as expected by its users

An erroneous system state that can lead to system behavior that is unexpected by
System error

system users.
A characteristic of a software system that can lead to a system error. For example,
System fault failure to initialize a variable could lead to that variable having the wrong value

when it is used.

Human error

. Human behavior that results in the introduction of faults into a system.
or mistake

Konkuk University 48

<
Q
D
<

D
(_D

 Fault avoidance

— Use development technique which either minimize the possibility of mistakes
or trap mistakes before they result in the introduction of system faults

e Fault detection and removal

— Use verification and validation techniques which increase probability of
detecting and correcting errors before system goes into service

e Fault tolerance

— Use run-time techniques to ensure that system faults do not result in system
errors and/or to ensure that system errors do not lead to system failures

Safety is a system property that reflects the system’s ability to operate,
normally or abnormally, without danger of causing human injury or
death and without damage to the system’s environment.

Exclusive requirements

— Exclude undesirable situations rather than specify required system services.
— "Should not” property

Accident
(mishap)

Risk

Damage

Hazard

Hazard severity

Hazard
probability

An unplanned event or sequence of events which results in human death or injury,
damage to property or to the environment. A computer-controlled machine injuring
its operator is an example of an accident.

This is a measure of the probability that the system will cause an accident. The risk
is assessed by considering the hazard probability, the hazard severity and the
probability that a hazard will result in an accident.

A measure of the loss resulting from a mishap. Damage can range from many
people killed as a result of an accident to minor injury or property damage.

A condition with the potential for causing or contributing to an accident. A failure
of the sensor that detects an obstacle in front of a machine is an example of a

| R -
rdZdrd.

An assessment of the worst possible damage that could result from a particular
hazard. Hazard severity can range from catastrophic where many people are killed
to minor where only minor damage results.

The probability of the events occurring which create a hazard. Probability values
tend to be arbitrary but range from probable (say 1/100 chance of a hazard
occurring) to implausible (no conceivable situations are likely where the hazard
could occur).

Konkuk University

51

y ALHITVCITITTIL

Hazard avoidance

— Design the system so that some classes of hazard simply cannot arise

Hazard detection and removal

— Design the system so that hazards are detected and removed before they
result in an accident

Damage limitation

;
(D
n
—+

D
QD
—+
3
=3
3,
[72]
(D
—+

D
(D
Q.
©
3
QO

(@]

(D
—+

D
QO
—+

3
3

-
(D
wn
—
=

—h
S
(@)
3

— Includes protection feat:

A i N~

an accident

CA"'I Ill':+\ / 4
STLUILILY

« Security is a system property that reflects the system’s ability to protect

itself from accidental or deliberate external attack.

« Security is becoming increasingly important as systems are networked so
that external access to the system through the Internet is possible.

« Security is an essential pre-requisite for availability, reliability and safety.

Exposure

Vulnerability

Attack

Threats

Control

Possible loss or harm in a computing system. This can be loss or damage to data or
can be a loss of time and effort if recovery is necessary after a security breach.

A weakness in a computer-based system that may be exploited to cause loss or
harm.

An exploitation of a system vulnerability. Generally, this is from outside the system
and is a deliberate attempt to cause some damage.

Circumstances that have potential to cause loss or harm. You can think of these as a
system vulnerability that is subjected to an attack.

A protective measure to reduce a system vulnerability. Encryption would be an
example of a control that reduced a vulnerability of a weak access control system.

Konkuk University

54

11w

CI\/"
SCCLUI

+\l 11w '
L

At“t“ N 7 M\
y MAoouldliLT

e Vulnerability avoidance
— Design the system so that vulnerabilities do not occur

— For example, if there is no external network connection, any external attack is
impossible.

o Attack detection and elimination

— Design the system so that attacks on vulnerabilities are detected and
neutralised before they result in an exposure

— For example, virus checkers find and remove viruses before they infect a
system.

» Exposure limitation

— Design the system so that the adverse consequences of a successful attack
are minimized

— For example, a backup policy allows damaged information to be restored.

1 1 A

C ~
SUITITTd

"2l W 4
l

y

A critical system is a system where failure can lead to high economic loss,
physical damage or threats to life.

» Dependability of a system reflects user’s trust in that system.

« Availability is the probability that it will be available to deliver services
when requested.

« Reliability is the probability that system services will be delivered as
specified.

« Safety is a system attribute that reflects the system’s ability to operate
without threatening people or the environment.

« Security is a system attribute that reflects the system’s ability to protect
itself from external attack.

Konkuk University

57

nlf\:f\f“l‘:\ 1N\
UJCULLIVEDS

To introduce software process models

To describe three generic process models

To describe common process activities

To explain the Rational Unified Process(RUP) model

Cf\':'l‘\ll"\lﬁh nv‘f\ﬁf\f‘f‘
SQUILVWAICT F1UCLCOoO

A structured set of activities required to develop a software system
— Specification

— Design

— Validation

— Evolution

« A software process model is an abstract representation of a process.
— Waterfall model
— Evolutionary development
— Component-based software engineering

— Many variants

\A/

Atarfall NMAAAal
vvalci iall IviIOUUCI

S

* A classic life cycle model
— Suggests a systematic, sequential approach to software development
— The oldest paradigm
— Separate and distinct phases of specification and development

— Useful in situations where
e requirements are fixed and work is to proceed to completion in a linear manner

\A/

~FArfall N
vvdl dlil

Ar NAaAal
clld IVIOUC]H

S

« Inflexible partitioning of project into distinct stages makes it difficult to
respond to changing customer requirements.

« Therefore, it is only appropriate when
— Requirements are well-understood.
— Changes will be fairly limited during design process.

« Waterfall model is mostly used for large system engineering projects
where a svstem is developed at several sites

J]J\-\-— 1 rJ oA A e X

However, few business systems have stable requirements.

\I

~l ¥
LVUIUL

'Y 2% Y 2 Wi h \l
L/C

dly

§

<
'SS

« Exploratory development

— Evolve a final system from an initial outline specification to work with
customers.

— Start with well-understood requirements and add new features as proposed
by the customer.

Initial Version

Outline :
Description ntermediate

Versions

\7

Cy/A
LVU

\ W 4

II I'I'. |’ 7\ 7\
IUL cVvC

1 A\ Y 2\ Wi h
1Vl 1dl L/

y

I Vv If'\'l'
I L

Oplllell

* Problems
— Lack of process visibility
— Systems are often poorly structured.
— Special skills (e.g. in languages for rapid prototyping) may be required.

« Applicability
— For small or medium-size interactive systems
— For parts of large systems (e.g. the user interface)
— For short-lifetime systems

C
VU

+ Dﬂt‘f\
N{-Dase

v\

ompon

Q.

.
1 If'\
I

rfng

Systems are integrated from existing components or COTS (Commercial-off-the-
shelf) systems.

Based on systematic reuse

Process stages

Konkuk University 65

r

el

mm

r adlivul |l

IULCCOO 1L

« System requirements always evolve in the course of a project.
» Process iteration itself is often a part of the process for large systems.

« Iteration can be applied to any of the generic process models.

« Two (related) approaches
— Incremental delivery (= evolutionary development)
— Spiral development

n la\Wra v\ 'I'
L/C

a VE plll NT

Spit

Represented as a spiral.

No fixed phases - loops in the spiral are chosen depending on what is
required.

Risks are explicitly assessed and resolved throughout the process.

Spiral model sectors
— Objective setting
» Specific objectives for the phase are identified.
— Risk assessment and reduction
» Risks are assessed and activities put in place to reduce the key risks.

— Development and validation

« A development model for the system is chosen which can be any of the generic
models.

— Planning
» The project is reviewed and the next phase of the spiral is planned.

N

O

)

Q)

\ W 4

M
L/

Determine objectives,
alternatives and
constraints

Plan next phase

7\ I'\It'\
cVvCiUV

mt‘\lf'\'l'

pIIICIIL

REVIEW

Requirements plan
Life-cycle plan

De velopment
plan

Integration
and test plan

<
)

Q.

®

Evaluate alternatives,
identify, resolve risk
Risk
analysis
Risk
analysis
Risk
analysis Orpeer
Prototype 3 tional
Prototype 2 protoype
Risk
analysis Proto-
type 1
Simulations, models, benchmarks
Concept of
Oper ation S/W
requir ements Product _

design Detailed

Requirement design

valida tion o
Design Unit test
V&V Integration
Acceptance test
Series test Develop, verify

next-level product

2 2% e [’ Y nlf' \7
r

/I Fﬁ 7\ 'aVYealfaYel @ A f"l'l I‘l':f\t"
= CUILHITTTIOT ULCOO ALLIVILICO

Software specification

Software design and implementation
Software validation

Software evolution

> wN e

Eii
Q)
=
o

vvcp

Process of establishing

— What services are required and

— Constraints on the system’s operation and development
— Called "Requirements Engineering”

Requirements engineering process

Konkuk University

70

N

on

Ul

gl dil HIPICHICHILdl

Process of converting system specification into executable system.

Software design
— Design a software structure to realize the specification

Implementation
— Translate the design structure into an executable program.
— Programming is a personal activity. No generic programming process.

Software design process

T
-

C vdlilud

[’ Y

1
LIVUIL I

-s

Verification and validation (V & V) is intended to show that
— System conforms to its specification.
— System meets requirements of the system customer.

— Involves
» Checking (Formal/Informal)
» Review processes
« System testing

System testing involves executing the system with test cases derived
from its specification.

U rilasco

|g gb N

Unit or Component testing

— Individual components are tested independently.
System testing

— Testing of the system as a whole.
Acceptance testing

— Testing with customer data to check whether the system meets the
customer’s needs.

Service

73

\7

-~ A E 7\
vwdlit LVU

m

THT TS
IULIVUI I

Software is inherently flexible and can change.

As requirements change through changing business circumstances, the
software that supports the business must also evolve and change.

Konkuk University

74

Tha DA+ IIIV\'FA/NID/\
111 I\dAdll I U

iIONal uhnitieda rrocess

A modern process model
— Derived from working groups on the UML

« Normally described from 3 perspectives
— Dynamic perspective : shows phases over time
— Static perspective : shows process activities
— Practice perspective : suggests good practice.

RUP (Dynamic Perspective)

Phase iteration

Ny
>

Inception Elaboration Construction Transition

Konkuk University

76

Workflowsactivitesy of the RUP (Static Perspective)

Business

- The business processes are modelled using business use cases.
Modeling

Actors who interact with the system are identified and use cases are developed to

Requirements .\ del the system requirements.

Analysis and A design model is created and documented using architectural models, component
Design models, object models and sequence models.

The components in the system are implemented and structured into
Implementation implementation sub-systems. Automatic code generation from design models helps
accelerate this process.

Testing is an iterative process that is carried out in conjunction with implementation.

Test System testing follows the completion of the implementation.

Deployment A product release is created, distributed to users and installed in their workplace.

Configuration
and Change This supporting workflow managed changes to the system (see Chapter 29).
Management

Project

Management This supporting workflow manages the system development (see Chapter 5).

This workflow is concerned with making appropriate software tools available to the
software development team.

Konkuk University 77

Environment

11D (.
r

RU ood Practice (Practice Perspective)

a

« Suggestions:
— Develop software iteratively
— Manage requirements
— Use component-based architectures
— Model software Visually
— Verify software quality
— Control changes to software

* More than 1,00 best practices.

1 1 A rm \7

C -~ -
SUIlTItidly

Software processes are the activities involved in producing and evolving
a software system.

« Software process models are abstract representations of these processes.

* Generic process models describe organization of software processes.
Examples include the waterfall model, evolutionary development and
component-based software engineering.

« General software process activities are specification, design and
implementation, validation and evolution.

« The Rational Unified Process is a generic process model based on UML.

Konkuk University

80

Chapter 5.
Project Management

\ 7

nlf\:f\f“l'l 'laY@
UJCULLIVEDS

To explain main tasks undertaken by project managers

To introduce software project management and to describe its distinctive
characteristics

To discuss project planning and planning process
« To discuss the notion of risks and risk management process

3

f\

WwWdilt rlioujcil

Vianage

E§

« Concerned with activities involved in ensuring that software is delivered
— on time and
— on schedule and

— in accordance with the requirements of the organizations developing and
procuring the software.

* Needed because software development is always subject to budget and
schedule constraints that are set by the organization developing the
software.

nt‘\f\f‘
rUJCcL

§

)
—

+ N~
L IvVid

(Q
D

» Proposal writing

* Project staffing

» Project planning and scheduling

* Project costing

« Project monitoring and reviews

» Personnel selection and evaluation
« Report writing and presentations

(@

cr

-
™

<

M

n

DA

A+ -F
r1UJCCL dll

INg

« May not be possible to appoint ideal people to work on a project
— Project budget may not allow for the use of highly-paid staff.
— Staff with appropriate experience may not be available.

— Organization may wish to develop employee skills through performing
software projects.

« Managers have to work within these constraints especially when there
are shortages of trained staff.

¢-'I-

g_2.

ning

Probably the most time-consuming project management activity
— Continuous activity from initial concept through to system delivery
— Plans must be regularly revised as new information becomes available.

Various different types of plan may be developed to support main
software project plan.

I ™

Quality Plan

Validation Plan

Configuration
Management Plan

Maintenance Plan

Staff Development
Plan

Describes the quality procedures and standards that will be used in a project. See
Chapter 27.

Describes the approach, resources and schedule used for system validation. See
Chapter 22.

Describes the configuration management procedures and structures to be used.
See Chapter 29.

Predicts the maintenance requirements of the system, maintenance costs and
effort required. See Chapter 21.

Describes how the skills and experience of the project team members will be
developed. See Chapter 25.

Konkuk University 86

¢-'I-

g_2.

ning Process

Activities: produce tangible outputs for management to judge progress
Milestones : end-point of a process activity
Deliverables : project results delivered to customers

Waterfall process allows straightforward definition of progress milestones.

Activities

Milestones

Konkuk University

87

+ CAlhAaA, u
CL L.I ICTUuU

ling Process

g_2.

Split project into tasks and estimate time and resources required to
complete each task.

— Organize tasks concurrently to make optimal use of workforce.

— Minimize task dependencies to avoid delays caused by one task waiting for
another to complete.

Depend on project manager's intuition and experience.

activity
ependenci

Software Requirements Activity Charts
and Bar Charts

Konkuk University

88

A f‘+:\ l:+\l kl/\+\ll’\lﬁ|l
MACLIVI Ly INT LVVUI
14/7/03 15 days
8 days
T1 25/8/03
25/7/03
4/7/03 T6
/7 M3
7 days
@ 15 days 20 days i
T7 T11
T2
25/7/03 11/8/03 5/9/03
10 days /1 10 days /8/
= TS 5days (M0
T T10 | 10days
25 days
T8 Finish

19/9/03
Konkuk University 89

Nne

m N

11T

4/7

11/7 18/7 25/7

1/8 8/8 15/8 22/8 29/8

5/9

12/9

19/9

‘ Start

T4

no []

T2

l\I/HQ

17 |

T3 |

VERK |
T8

¢ M4

T9 |

M7 4

T10 |

’ Finish

Konkuk University

90

Staff Allocation
4/7 11/7 18/7 25/7 1/8 8/8 15/8 22/8 29/8 5/9 12/9 19/9
| |
Fred |T4
T8 T11
T12
Jane |TI1
T3
T9
Anne |T2
T6 T10
Jim T7
| |
Mary 15
| |

Konkuk University

>

}

§
r-'l-

s
n
E

Nage

« Concerned with identifying risks and drawing up plans to minimize their
effect on a project.
« A risk is a probability that some adverse circumstance will occur
— Project risk affects schedule or resources.
— Product risk affects quality or performance of the software being developed.
— Business risk affects the organization developing or procuring the software.

« Risk management process

F

Konkuk University 92

1 1 A

C ~
SUITITTd

"2l W 4
l

y

Good project management is essential for project success.

Managers have diverse roles but their most significant activities are
planning, estimating and scheduling.

* Project scheduling involves preparing various graphical representations
showing project activities, their durations and staffing.

« Risk management is concerned with identifying risks which may affect
the project, and planning to ensure that these risks do not develop into
major threats.

Konkuk University

94

Chapter 6.
Software Requirements

N A
UV

\ 7

I\f"l'l 'laY@
CLLIVEDOS

To introduce concepts of user and system requirements
To describe functional and non-functional requirements

To explain how software requirements may be organized in a
requirements document

I I v\ + I I

q ements |g neering

Requirements engineering is the process of establishing
— the services that the customer requires from a system
— the constraints under which it operates and is developed

The requirements are the descriptions of the system services and
constraints that are generated during the requirements engineering
process.

Df\ﬂll Iﬁf\Mf\lf'\'l't"
T\C'LIU ICITICTILS

« Range from a high-level abstract statement of service or system
constraint to detailed mathematical functional specification.

« Types of requirements

— User requirements

« Statements in natural language, diagrams of the services the system provides and
its operational constraints

e Written for customers
e Defined.

— System requirements

» Structured document setting out detailed descriptions of the system’s functions,
services and operational constraints.

» Define what should be implemented
* May be part of a contract between clients and contractors
» Specified.

Requirements Definitions and Specifications

User Requirement Definition

1. The software must provide a means of representing and accessing external files

created by other tools.

System Requirement Specification

. The user should be provided with facilities to define the type of external files.

. Each external file type may have an associated tool which may be applied to the file.
. Each external file type may be represented as a specific icon on the user’s display.

. Facilities should be provided for the icon representing an external file type to be

defined by the user.
. When a user selects an icon representing an external file, the effect of that selection is

to apply the tool associated with the type of the external file to the file represented by
the selected icon.

Konkuk University 100

C,
B

+ I I\I n_Ciin
L I I

vs. NON- t

JU
L)

on

OnNa NC

NC

Functional requirements

— Statements of services which the system should provide
— How the system should react to particular inputs

— How the system should behave in particular situations

Non-functional requirements

— Constraints on the services or functions offered by the system
« timing constraints
« constraints on the development process
« Standards

Domain requirements

— Requirements that come from the application domain of the system
— Reflect characteristics of the target domain

— May be functional or non-functional or the both

_§
D

)]
~—
W

v\

CyvAanrnn \/ \ 7 ~
L Clll

Nla | TRCVC G/t
AdITIPIC. LIDOTO OYyol

« System description: A LIBSYS library system

— Provides a single interface to a number of databases of articles in different
libraries

— Users can search for, download, and print these articles for personal study.

* Function requirements

— The user shall be able to search either all of the initial set of databases or
select a subset from it.

— The system shall provide appropriate viewers for the user to read documents
in the document store.

— Every order shall be allocated a unique identifier (ORDER_ID) which the user
shall be able to copy to the account’s permanent storage area.

Requirements Completeness and Consistency

* Problems arise when requirements are not precisely stated.
— Ambiguous requirements may be interpreted in different ways.

« In principle, requirements should be both complete and consistent.
— Complete
» They should include descriptions of all facilities required.

— Consistent
» There should be no conflicts or contradictions in the descriptions of the

system facilities.

« In practice, it is impossible to produce a complete and consistent
requirements document with natural languages.

I\

§

FD

N I:.. 4, Al
et I L dl

r-'l-
W

7\ AT/ D”
NUI HNCLolidl NCyu

Define system properties and constraints
— Reliability

— Response time

— Storage requirements

— Constraints on I/O device capability

— System representations

— Etc

Non-functional requirements may be more critical than functional
requirements.
— If these are not met, the system is totally useless.

Classification of Non-Functional Requirements

« Three types of non-functional requirements

— Product requirements
» Specify that the delivered product must behave in a particular way
* e.g. execution speed, reliability, etc.

— Organizational requirements
» Requirements which are a consequence of organizational policies and procedures
* e.g. process standards, implementation requirements, etc.

— External requirements
» Requirements which arise from the factors external to the development process
* e.g. interoperability requirements, legislative requirements, etc.

klf\lf'\ I:IIV'\"":AV‘\"\I DI\“II:V"/\MI\V‘\" T\llf'\f\(‘
INUTT=TUlicuolidl NTUYUuIlclhiclit 1ypeo

Non-functional
requirements

Product Organisational External
requirements requirements requirements

Efficiency Reliability Portability Interoperability Ethical
requirements requirements requirements requirements requirements
Usability Delivery Implementation Standards Legislative
requirements requirements requirements requirements requirements

Performance Space Privacy Safety
requirements requirements requirements requirements

Konkuk University

106

E I v\

CX |||p Ol

C)
-
|
L
Fx
r-'l-
C)
JU
L)
3
([)
;+
W

e Product requirement

— 8.1 The user interface for LIBSYS shall be implemented as simple HTML
without frames or Java applets.

« Organisational requirement

— 9.3.2 The system development process and deliverable documents shall
conform to the process and deliverables defined in XYZCo-SP-STAN-95.

« External requirement

— 7.6.5 The system shall not disclose any personal information about customers
apart from their name and reference number to the operators of the system.

)

v\

emen

A"\If‘ A 1 'I't"
10dld U Lo

ain Rq

Non-functional requirements may be very difficult to state precisely.
— Imprecise requirements may be also difficult to verify.
— Write a “goal” first & transform into “ verifiable non-functional requirements”

Goal

— A general intention of the user, (e.g. ease of use)

— "The system should be easy to use by experienced controllers and should be
organized in such a way that user errors are minimized.”

Verifiable non-functional requirement
— A statement using some measure that can be tested objectively

— "Experienced controllers shall be able to use all the system functions after a
total of two hours training. After this training, the average number of errors
made by experienced users shall not exceed two per day.”

v\ ™ Ilf'\ II 'aY a's)

nf\ 'aYa B 'Y o 'I'
LUl dlill NCQYQUITCTTTITTIL

S

* Describe system characteristics and features of the target domain
— Derived from the application domain

« Domain requirements may be
— new functional requirements
— constraints on existing requirements
— definition of specific computations

« If domain requirements are not satisfied, the system may be unworkable.

mn

nf\ 'aYe B! II 'aY ' 2aVala
LUl idlll L,i CITIClH |

'I' E I v\
L LA

|||p

1T V
1

c RCVC
) LIDOTO

« There shall be a standard user interface to all databases which shall be
based on the Z39.50 standard.

« Because of copyright restrictions, some documents must be deleted
immediately on arrival. Depending on the user’s requirements, these
documents will either be printed locally on the system server for
manually forwarding to the user or routed to a network printer.

Problems with Natural Language Specification

Ambiguity
— Readers and writers of the requirement must interpret the same words in the
same way.
— Natural language is naturally ambiguous.

Over-flexibility
— The same thing may be said in a number of different ways in the specification.

Lack of modularisation
— NL structures are inadequate to structure system requirements.

Alternatives to natural language specifications
— Structural language specification
— Graphical notations
— Design description language
— Mathematical specifications

N

~—

-5

(@

II/'/\A I"\If'\ﬂl [HaVea Va CV‘\’\/‘:'F:I"‘\'I‘:AV‘\I‘
IcTuU Ldliiguayc opclLlliLalivulls

The freedom of writing requirements is limited by a predefined template.

Form-based specifications

Insulin Pump/Control Software/SRS/3.3.2

Function Compute insulin dose: Safe sugar level

Description Computes the dose of insulin to be delivered when the current measured sugar level is in
the safe zone between 3 and 7 units.

Inputs Current sugar reading (r2), the previous two readings (r0 and rl)
Source Current sugar reading from sensor. Other readings from memory.
OutputsCompDose S the dose in insulin to be delivered

Destination Main control loop

Action: CompDoase is zero if the sugar level is stable or falling or if the level is increasing but the rate of
increase is decreasing. If the level is increasing and the rate of increase is increasing, then CompDose is
computed by dividing the difference between the current sugar level and the previous level by 4 and
rounding the result. If the result, is rounded to zero then CompDose is set to the minimum dose that can
be delivered.

Requires Two previous readings so that the rate of change of sugar level can be computed.
Pre-condition The insulin reservoir contains at least the maximumallowed single dose of insulin..
Post-condition 0 is replaced by rl then rl is replaced by r2

Side-effects None

'aY aYe

I|\|-|--|-
al LA LIVl 1D

NOld

G\

p |

» Graphical notation is useful
— when you need to show how state changes
— where you need to describe a sequence of actions.

« Different graphical models are

ATM Database
explained in Chapter 8.
card > Card number
1 4
Card OK
PIN request ‘
PIN .
. . ionmenu T TTTTTTTTToTToS Validate card
« Sequence diagram (ATM example) : . Option meny i
<<exception>>
invalid card
Withdraw request Balance request
2
Balance
Amount request «
ARG < mmmmmm - Handle request
= Debit (amount)
5 >
<<exception>> g
insufficient cash |« Debit response
Card
Card removed
i Complete
Cash ~~ T TTTTTTTTT transaction

Cash removed
»
Receipt

Ty
11

L

'I'I'\ If'\
(erface o

:i?
'_'!‘

on

Most systems must operate with other systems.

Operating interfaces must be specified as part of the requirements.
— Procedural interfaces

— Data structures that are exchanged

— Data representations

Formal notations are an effective technique for interface specification.

interface PrintServer {

I/ defines an abstract printer server
Il requires: interface Printer, interface PrintDoc
// provides: initialize, print, displayPrintQueue, cancelPrintJob, switchPrinter

void initialize (Printer p) ;

void print (Printer p, PrintDoc d) ;

void displayPrintQueue (Printerp) ;

void cancelPrintJob (Printer p, PrintDoc d) ;

void switchPrinter (Printer p1, Printer p2, PrintDoc d) ;
} lIPrintServer

Df\ﬂ
NTyu

11 v\ If'\'l'
L

oV 7\ o~ N 1 IM/\V‘\"‘
ICITICTILS UCUIIICITIL

Requirements document is an official statement of what is required of

the system developers.
— Should include both user requirements and system requirements

— Should be a set of WHAT the system should do rather than HOW it should do
it

IEEE standard on requirements document
— Introduction

— General description _ Preface

— Specific requirements - Introduction

— Appendices - Glossary .
PP - User requirements definition

— Index - System architecture

- System requirements specification
- System models

- System evolution

- Appendices

- Index

C
®

N2 a's)

MiMa

"2l W 4
l

y

Requirements set out what the system should do and define constraints
on its operation and implementation.

Functional requirements set out services the system should provide.

Non-functional requirements constrain the system being developed or
the development process.

User requirements are high-level statements of what the system should
do.

System requirements are intended to communicate the functions that the
system should provide.

A software requirements document is an agreed statement of the system
requirements.

The IEEE standard is a useful starting point for defining more detailed
specific requirements standards.

Konkuk University 117

Chapter 7.
Requirements Engineering Processes

\ 7

nlf\:f\f“l'l 'laY@
UJCULLIVEDS

To describe principal requirements engineering activities and their
relationships

To introduce techniques for requirements elicitation and analysis
To describe requirements validation and the role of requirements reviews
To discuss the role of requirements management

§

en

F

C| g g OCesses
Requirement engineering processes vary widely depending on
— Application (target) domain

— people involved

— organization developing the requirements

Generic activities common to all requirements engineering processes

Konkuk University 120

@
=3
D
)
5

D
D

2
D
@)
C
="
)]
~—
wn
EI'I
()
.
D)
(@)

System requirements
specification and
modeling

~. User requirements
specification

Business_requirements
specification

System .
rec"ui‘ren_\ents User Feasibility
elicitation requirements study

elicitation

Requirements
elicitation

System requirements
document

Konkuk University

Reviews

U
R)
@
()
M
n
n
M
n

Requirements
specificatio

Prototyping

Requirements

validation

121

C Y
I J

’NNN"\N1 II.
Cdolill

I+\I C'I'I IA\I
L

1. y 2uwuudy

« Decides whether or not the proposed system is worth to develop

» A short focused study to check
— If the system contributes to organizational objectives
— If the system can be engineered using current technology and within budget
— If the system can be integrated with other systems that are used

* Questions for feasibility:
— What if the system was not implemented?
— What are the problems in the current process ?
— How will the proposed system help to satisfy customer’s requirements?
— What will be the integration problems?
— Is new technology needed? What skills?
— What facilities must be supported by the proposed system?

P)
L

DI\”
- NCUYu

[}

A~
Ml lda

11 II'I'\MI\V'\'I' I ‘l' ‘I' 'Y "\IF\A I\l
ICITICIIL I LdLivll alllu |

ySS

Cita

c L
> L

Called also requirements discovery
To find out about

— application domain, services that the system should provide
— system'’s operational constraints

May involve various stakeholders

— end-users, managers, engineers
— domain experts, trade unions, etc.

Problems:
— Stakeholders don't know what they really want.
— Stakeholders express requirements in their own terms.
— Different stakeholders may have conflicting requirements.
— Organizational and political factors may influence the system requirements.
— The requirements change during the analysis process.

n D nrantAnd
L

~ ~ ~ c Cli~i¥yat+iA
I'\CLlUIICIIICII SO LIICILALIVUI

(D
n

Requirements discovery

— Interact with stakeholders to discover
their requirements

— Discovery domain requirements also
Requirements
Classification and

Requirements classification and T
organization

— Group related requirements and
organize them into coherent clusters

Prioritization and negotiation Requirsments

— Prioritize the requirements and Discovery
resolve conflicts among requirements

Requirements documentation
— Document requirements

— Input it into the next round of the
spiral

'@

~A
u

m

Ann~l
Ml lial

Requirements
Prioritization and
Negotiation

Requirements
Documentation

c NicrAv/iAaryy
> UIOLUVClY

III Vv

q ement

« Requirements discovery is the process of
— gathering information about the proposed and existing systems
— distilling the user and system requirements from this information

« Sources of information
— documentation
— system stakeholders
— specifications of similar systems

\II \Al

T 'I'I\ v\
LTI VITWITIY

N

« The requirements engineering team puts questions to stakeholders about
the system to develop.
— An efficient way of requirements discovery

« Two types of interview
— Closed interviews : pre-defined set of questions are answered

— Open interviews : no pre-defined agenda and a range of issues are explored
with stakeholders

* A mix of closed and open-ended interviews is normally used.

N

@)
M

)

Q
.
N

O

Real-life examples of how the system can be used

An efficient way of requirements discovery

Scenarios should include descriptions of

Starting situation, normal flow of events and finishing situation
Exception cases
Information about other concurrent activities

Initial assumption: The user has logged on to the LIBSYS system and has located the journal containing the
copy of the article.

Normal: The user selects the article to be copied. He or she is then prompted by the system to either
provide subscriber information for the journal or to indicate how they will pay for the article. Alternative

payment methods are by credit card or by quoting an organisational account number.

The user is then asked to fill in a copyright form that maintains details of the transaction and they then
submit this to the LIBSYS system.

The copyright form is checked and, if OK, the PDF version of the article is downloaded to the LIBSYS
working area on the user's computer and the user is informed that it is available. The user is asked to select
a printer and a copy of the article is printed. If the article has been flagged as ‘print-only’ it is deleted from
the user’s system once the user has confirmed that printing is complete.

127

o N F"\t“f\f‘
UoSCT LdoSCO

A scenario based technique in the UML
— Identify actors in an interaction
— Describe interactions between actors and the system

LIBSYS use cases

Library
User

Supplier

User administration

Article search

Atticle printing

Catalogue services

Ve

/

/

Library
Staff

C| NC

§

M
Lld

CE

agra

Add detail to use-cases by showing the sequence
the system

of event processing in

e copyrightForm: myWorkspace: myPrinter:
item: Article Form Workspace Printer
s
a
User
request
Lt request
- complete
return a
copyright OK
deliver
B article OK
BT send %
- inform " confirm

iV

delete

o

I I 'Y s

LI ement U

p +
O V L

ation

Demonstrate whether the requirements we defined are what the
customer really wants.

— Requirements error costs are high, so validation is very important

Requirements validation checks:

— Validity : Does the system provide the functions which support the customer’s
needs well?

— Consistency : Are there any requirements conflicts?
— Completeness : Are all functions required by the customer included?

— Realism : Can the requirements be implemented with available budget and
technology?

— Verifiability : Can the requirements be checked?

" +c \ /Al
uirements vai

Te
U

I +inn Tarhni
| L

1N r Yall
Vil 1ICTCLIT T

- Nliacg
d L«IUCD

* Requirements reviews
— Systematic analysis of requirements
— Manual analysis
— Focusing on
» Verifiability (Testability), Comprehensibility
» Traceability, Adaptability

* Prototyping
— Develop an executable model of the system to check the requirements

« Test-case generation
— Develop test cases for the requirements to check testability

>
}

v\

emen

;1-
wn
E

LC)
3
;+

/] edu

« The process of managing requirements change during the RE process
and system development

« Requirements are inevitably incomplete and inconsistent.
— New requirements emerge during the process, as business needs change and
a better understanding of the system is developed.
— Different viewpoints have different requirements and these are often
contradictory.

Identified _ — Revised
problem - — - - - | Requirements

Konkuk University 132

» Concerned with the relationships between requirements, their sources
and the system design

— Source traceability
 Links from requirements to stakeholders who proposed these requirements

— Requirements traceability
» Links between dependent requirements

— Design traceability
 Links from the requirements to the design

Traceability Matrix Req.id 11 12 13 21 22 23 31 32
11 D R
1.2 D D D
13 R R
2.1 R D D
2.2
2.3 R D
3.1 R

3.2 R

 ACE ~l Ci
\.I‘\.)EI Ul oU

upport

« Requirements storage
— Requirements should be managed in a secure and managed data store.

« Change management
— A workflow process whose stages should be clearly defined
— Information flow between stages are partially automated.

« Traceability management
— Automated retrieval of the links between requirements/sources/designs

C
®

N2 a's)

MiMa

"2l W 4
l

y

The requirements engineering process includes a feasibility study,
requirements elicitation and analysis, requirements specification and
requirements management.

Requirements elicitation and analysis involves domain understanding,
requirements collection, classification, structuring, prioritization and
validation.

Systems have multiple stakeholders with different requirements.
Social and organization factors influence system requirements.

Requirements validation is concerned with checks for validity, consistency,
completeness, realism and verifiability.

Business changes inevitably lead to changing requirements.
Requirements management includes planning and change management.

Konkuk University 136

N A
UV

\ 7

I\f"l'l 'laY@
CLLIVEDOS

To explain why the context of a system should be modelled as a part of
requirements engineering process

To describe behavioural modelling, data modelling and object modelling
To show how CASE workbenches support system modelling

~ A
uc

em Mo

ling

Helps analysts to understand the functionality of the system.
— System models are used to communicate with customers.

Different models present the system from different perspectives
— External perspective : showing the system'’s context or environment
— Behavioural perspective : showing the behaviour of the system
— Structural perspective : showing the system or data architecture

System model types

~AAale clh v +lha AA n.-.-,-\,-.l At AffAarant ctar~NnAac
LJClLd }JIULCDDIIIH maodaei. DIIUVVIIIy IIUVV LIIC UCILCI ID }JIUL O5CU al Ulliciciit DLdbe
— Composition model: showing how entities are composed of other entities

— Architectural model: showing principal sub-systems

— Classification model: showing how entities have common characteristics
— Stimulus/response model: showing the system'’s reaction to events

— Many ones

« System Context (models) are used to illustrate the operational context of
a system

— Showing what lies outside the system boundaries
— Showing the system and its relationship with other systems

— Social and organizational concerns may affect the decision of system
boundaries.

Security

System Context Model System
for ATM

Auto-Teller
System

Database

Konkuk University 140

5°,
=S
o)
0O
(D
N
N
<
)
Q
®

Process models show the overall process supported by the system.

Delivery

Equipment
Spec.

equipment

Spec. +
Supplier +
estimate

Order
Notification

Installation
Instructions

Equipment
Spec.

Choose - Install
Supplier ~equipment

Qrder_Details

and l

BIaanO(rZ)n:der Checked and
Signed Order Form

Equipment procurement process delivered
uipm

Installation
Acceptance

Equipment
Details

Konkuk University 141

f\lf'\"\\llt'\ll "\I “ AAI\I
CIIdVIU ral viodel

 Behavioural models are used to describe the overall behaviour of the

system.
— Data processing models : showing how data is processed as it moves through
the system
— State machine models : showing how the system responses to events

— Two models show different perspectives.
— Both of them are required to describe the system’s behaviour.

Ldld FIOC Sii Iy V odaeil
« Data flow diagrams(DEDs) are used to model the system’s data
processing.
— Show the processing steps as data flows through a system
— Use simple and intuitive notation that customers can understand
— Show end-to-end processing of data
Order processing DFD Checked and singed
rder notification
. omplete igne Signed
Order details grdeflfotrr: orzgr fodrm order form

+
Blank order form

Equipment Signed
Spec. order form
Order
details

Order amount
+

Account details

Konkuk University 143

N/ I

+AatA A~ nAa NMAAAD
tate iviacnine iviogaei

S

C+Aa
Sld

« State machine models model the behaviour of the system in response to
external and internal events.
— Show the system’s responses to stimuli
— Often used for modelling real-time systems
— Show system states as nodes and events as arcs between these nodes
Full
pow er Full power
= do: set power
= 600
N
'Fimer
Waiting
do: gisplay Rull = Set .tlime Number Operation
A F ki do: operate
Half et : \\ \Door -+
power Timer closed Cancel
Door Start AN
1 open - / Door i
Half power Enabled open Waiting
= do: set power Door do: display do: display
= 300 closed 'Ready’' time
State machine mode for Dissbed

. do: displ =
Microwave model % atting'

SCIlIIdlILIC Dadld IviuUCi

Semantic data models are used to describe the logical structure of data
processed by the system.

— Entity-relation-attribute model : setting out the entities in the system,
relationships between these entities, and the entity attributes

— Widely used in rational database design

t.tIArticle published-in tilource
itle m n title
authors = publisher
. . pdf file P ble-t issue
Library semantic model fee ee-payableto 1 jate
X pages
1
delivers .
1 n
n | i
Order %Opyright 1 Country
order number gency In copyright form
total payment name ™ tax rate
date address
tax status
na
places
Buyer
name
address
e-mail

billing info

UVJjcCLl IVIUUCH

Object models describe the system in terms of object classes and their
associations.

— An object class is an abstraction over a set of objects with common attributes
and the services (operations).

— Object classes are reusable across systems.

« Various object models
— Inheritance model
— Aggregation model
— Interaction model

n

A N
NNeri

tance ivioaei

« Inheritance models organize domain object classes into a hierarchy.
— Classes at the top of the hierarchy reflect common features of all classes.
— Object classes inherit their attributes and services from one or more super-

classes.
Library user
i Name
User class hierarchy ame
Phone

Registration #

Register ()
De-register ()
Reader Borrower
Affiliation Items on loan
Max. loans
Staff Student
Department Major subject

Department phone Home address

IJ e 1NNeri

<

'I"'\ | aVala
Ldl ICLC

Multiple inheritance allows object classes to inherit from several super-
classes.

— May lead to semantic conflicts where attributes/services with the same name
in different super-classes have different semantics

— Make class hierarchy reorganisation more complex

Book Voice recording
Author Speaker
Ed|t|9n Duration
Publication date Recording date
ISBN

Talking book
Tape

7N\

on Mo

~AAal
UC|

Nhie NATOA
Object Aggrega

k_

« Aggregation models show how classes are composed of other classes.
— Similar to the part-of relationship in semantic data models

Study pack
Course title
Number
Year
Instructor
1 | | |
Assignment OHP slides Lecture Videotape
notes
Credits Slides Text Tape ids
|]
Exercises Solutions
#Problems Text

Description Diagams

I

nlf'\:f\f'l' f\ "\\l:t'\l 1 AA’\I
UIVJTLL DCIdVIUUI V ULUIC|

« Object behavioural models show the interactions between objects
— To produce some particular system behaviour specified as in use-cases
— Called interaction model
— Sequence diagrams (or collaboration diagrams) in the UML

Ecat: . Lib1:
Catalog :Library Item NetServer

:Library User

Lookup
Display

Issue

Issue licence
Accept licence

Compress

Deliver

C
®

-|-.,-..,-+.. rand NAthhAA
crucaureada ivietnoa

Structured methods incorporate system modelling as an inherent part of
the method.

Structured methods define
— a set of models
— a process for deriving these models
— rules and guidelines that should apply to the models
— CASE tools to support system modelling

CASE Workbench:

— A coherent set of tools that is designed to support related software process activities
such as analysis, design or testing.

— Analysis and design workbenches support system modelling during both requirements
engineering and system design.

— May support a specific design method
— May support to create several different types of system model

Analysis and Design Workbench: An example

- Facilities

Import/Export
Faciliti

Konkuk University 152

C
®

N2 a's)

MiMa

"2l W 4
l

y

A model is an abstract system view. Complementary types of model
provide different system information.

Context models show the position of a system in its environment with
other systems and processes.

Data flow models are used to model the data processing in a system.

State machine models model the system’s behaviour in response to
internal or external events.

Semantic data models describe the logical structure of data which is
imported to or exported by the systems.

Object models describe logical system entities, their classification and
aggregation.

Sequence models show the interactions between actors and the system
objects that they use.

Structured methods provide a framework for developing system models.

Konkuk University 154

Chapter 13.
Application Architectures

\ 7

nlf\:f\f“l'l 'laY@
UJCULLIVEDS

To explain two fundamental models of business systems - batch
processing system and transaction processing system

To describe abstract architecture of resource management systems
To explain how generic editors are event processing systems
To describe the structure of language processing systems

r-'l-
3
—
M
(@)
—+

Q

jene

)

ric Applic

e As businesses have much in common,

— their application systems also tend to have a common architecture that
reflects the application requirements.

\7

on Types

.|.
dl

Al
AppIic

« Application types

1. Data processing application
» Data driven applications
* Process data in batches without user intervention during the processing.
e Ex) Billing system, Payroll system

2. Transaction processing application
» Data-centered applications
* Process user requests and update information in a system database.
* Ex) E-commerce system, Reservation system

3. Event processing system
« System actions depend on interpreting events from the system’s environment.
« Ex) Word processor, Real-time system

4. Language processing system
« Users' intentions are specified in a formal language.
* Processed and interpreted by the system.
« Ex) Compiler, Command interpreter

n 'I' n v\ \l f\m
L/dl r gy oyolLlcill

1 ~N T o Ve
i dld UL

« Data-centered system, where databases used are usually orders of
magnitude larger than the software itself.

— Data is input and output in batches.
— Have an input-process-output structure

Input-Process-Output model

» Printer

Konkuk University 160

C

nﬁ'l"'\
Ldid~T

\VAIJ

~ M
uUvv U

dgra

v\

— Round-edged rectangles : transformations

Arrows : data-flows

— Rectangles : data (input/output)

Salary payment DFD

Employee
records

Read employee
record

Read monthly
pay data

Monthly pay
data

Write tax

. "
Tax deduction + SS transactions
number + tax office
Write pension
Monthly pay data =
rates
Decoded Pension
employdee Valid deduction +
recor employee record SS number
o Validate - Compute))
employee data salary Empoyee data Print payslip
e Jd \ -+ deductions
~ Pay information AN Net payment + bank
\\ account info.
Tax \ - Write bank
tables \ transaction

Social security

1 . .
deduction + SS number Write social

security data

DFD shows how data is processed as it moves through a system.

Tax
transactions

Pension data

L]
PRINTER

Bank
transactions

Social security

data

L. dlodUlLIVUIT FTULCTOOITNIY OYo

« Transaction processing systems process
— User requests for information from a database or
— User requests to update the database.

— Users make asynchronous requests for service which are then processed by a

transaction manager.
— Many examples
» Transaction processing middleware
» Information system architecture
» Resource allocation system
» E-commerce system architecture

Konkuk University 162

n~ N
gy vl

N Dy a\VY.ViaY e
I cvvdlcCc

1ULCCOS Ul

« Transaction management middleware or teleprocessing monitors

— Handle communications with different terminal types, serializes data and
sends it for processing

— Query processing takes place in the system database and results are sent
back through the transaction manager to the user’s terminal.

Account queries
and updates

Serialized
transaction

ATM and Terminals

Konkuk University

163

'aY a'a) I‘If'\
Clll F'cn

Tn;f\lf'm’\'l' 7N\ C\ lt"l' +f\f‘+l 1 /A
1O HIduivul] .))/DL LCLLUIC

« Information systems can be organized as a layered architecture.

o LIBSYS example :

LIBSYS organization

Web browser inteface

LIBSYS Forms and Print
login query manager manager

Distributed Document Rights

search retrieval manager Accounting
Library index
DB1 DB2 DB3 DB4 DBn

Konkuk University 164

1 1/

DI\(“A 7\ AII 'I' 7\ M C\lf"l'l\m
NCOoSLUILC Al LIV OyolLCill

OCad

» Resource allocation systems manage fixed amount of resource and
allocate them to users.

— Timetabling system : the resource being allocated is a time period
— Library system : the resource being managed is books for loan
— Air traffic control system : the resource being managed is the airspace

« Layer resource allocation architecture

User inter face

User Resource Query

authentication delivery management
Resource Resource policy Resource
management control allocation

Transaction management
Resource database

'aY a'a) ﬁl/\
Clll 'cn

E 'araVl 22 22 VaY afala C\ lt"l' 'I'f\ﬁ'l‘l I oV Y
LTCUIHITTICTCLC .))/DL LCCLLUIC

« E-commerce systems are internet-based resource management systems
— Accept electronic orders for goods or services

— Organized using a multi-tier architecture with application layers associated
with each tier

Application

b Browser b Server
, ; Server

Database

Konkuk University 166

vent Processin ng Systems

d LChy/n
J. LVCII

Event processing systems respond to events in the system’s environment.

— Event timing is unpredictable, so the architecture has to be organized to
handle this.

— Many common systemes:

» Word processors
» Games

» Real-time systems
» Etc.

\l v\

Edit Ng SYS tem

« Editing systems are the most common types of event processing system.
— Single user system
— Must provide rapid feedback to user actions

. . File System
— Organized around long transactions)
ave
— May include recovery facilities orer
Y Y
Ancillary data Editor data
Ancillary Editing
commands commands
A A
Y Command
Display
-« Interpret
Update T m

Event

Process

Screen
A

et Refresh

/] I»-\ N
. LdlIgu

\I v\

Sing System

age Pro

« Language processing systems accept a natural or artificial language as
input and generate some other representation of that language.

— May include an interpreter

« Components of language processing systems

— Lexical analyzer

— Symbol table

— Syntax analyzer - Translator

- Syntax tree iructions > Gheck e,

— Semantic analyzer Generate

— Code generator v
Abstract m/c
Instructions

\J
Interpreter

Data > Fetch > Results
Execute

Lexical Syntax Semantic

Analyzer Analyzer Analyzer

Pretty-

Optimizer

Code
Generator

Konkuk University 170

C
®

N2 a's)

MiMa

"2l W 4
l

y

Generic models of application architectures help us understand and
compare applications.

Important classes of application are data processing systems, transaction
processing systems, event processing systems and language processing
system.

Data processing systems operate in batch mode and have an input-
process-output structure.

Transaction processing systems allow information in a database to be
remotely accessed and modified by multiple users.

Event processing systems include editors and real-time systems.

In an editor, user interface events are detected and an in-store data
structure is modified.

Language processing systems translate texts from one language to
another and may interpret the specified instructions.

Konkuk University 172

Chapter 14.
Object-Oriented Design

\ 7

nlf\:f\f“l'l 'laY@
UJCULLIVEDS

To explain how a software design may be represented as a set of
interacting objects that manage their own states and operations

To describe the activities in object-oriented design process

To introduce various models that can be used to describe an object-
oriented design

« To show how the UML may be used to represent these models

Ihi
J

v\ 'I'

eve plll NT

Object-oriented analysis, design and programming are related but
distinct.

OOA : concerned with developing an object model of the application domain

OOD : concerned with developing an object-oriented system model to
implement requirements

OOP : concerned with realizing an OOD using an OO programming language
such as Java or C++

Characteristics of OOD

Objects are abstractions of real-world or system entities.

Objects encapsulate state and representation information.

System functionality is expressed in terms of object services.

Shared data areas are eliminated.

Objects communicate by message passing.

Objects may be distributed and may execute sequentially or in parallel.

A\I
U

S ~f NMNN
vd \ A

g Ol

« Easier maintenance
— Objects may be understood as stand-alone entities.

« Objects are potentially reusable components.

« Easy to implement for some systems
— There may be an obvious mapping from real world entities to system objects.

UUJTLL dIU UJJTLL Uidooto

* Objects are entities in software system
— Represent instances of real-world and system entities
* Object classes are templates for objects
— Used to create objects
— May inherit attributes and services from other object classes

is an entity that has a state and a defined set of operations which operate on that state.
The state is represented as a set of object attributes. The operations associated with the object
provide services to other objects (clients) which request these services when some computation is
required.

Objects are created according to some definition. An object class definition serves as a
template for objects. It includes declarations of all the attributes and services which should be
associated with an object of that class.

Konkuk University 177

del

"\ 7~ 1 I

|g Nguage

| lnifiaA NMA
uniriea vio

« Several different notations for describing object-oriented designs were
proposed in the 1980s and 1990s.

e Unified Modelling Language(UML) is an integration of these.
— Describes notations for a number of different models that may be produced
during OO analysis and design
— A de facto standard for OO modelling

0O
Q
n
n
m
Q)
=
j=2
L

Emv‘\lf\\lf\f\ hlf'\:f\f"l'

LITIPIVYCT UUJJTLL
Employee

name: string

address: string

dateOfBirth: Date
employeeNo: integer
socialSecurityNo: string
department: Dept

manager: Employee

salary: integer

status: {current, left, retired}
taxCode: integer

join

leave ()

retire ()
changeDetails ()

nlr'\:f\f"l' r. 2222 BEa
UJJTLLl L

I +
UllTiriutl L

m

on

Ca

« Conceptually, objects communicate by message passing.

 Messages
— Name of service requested by calling object
— Copies of information required to execute the service

« In practice, messages are often implemented by procedure calls.
— Name = procedure name
— Information = parameter list

// Call a method associated with a buffer object that returns the next value in the buffer
v = circularBuffer.Get () ;

// Call the method associated with a thermostat object that sets the temperature
// to be maintained
thermostat.setTemp (20) ;

1HZatliON ana Lnneritance

Zd

1enera

)

« (lasses may be arranged in a class hierarchy, where one class (a super-
class) is a generalization of one or more other classes (sub-classes).

— A sub-class inherits the attributes and operations from its super class and
may add new methods or attributes of its own.

— Generalization in the UML is implemented as an inheritance in OO
programming languages.

Employee
Manager Programmer
budgetsControlled project
dateAppointed proglanguages
Project Dept. Strategic
Manager Manager Manager

projects dept responsibilities

C i £f Trila
[L | 1

Ar -I-
IHHICTIL

eatures O ance

« Advantages:
— Abstraction mechanism : may be used to classify entities.
— Reuse mechanism at both the design and the programming level.

— Inheritance graph is a source of organizational knowledge about domains and
systems.

e Problems:

— Object classes are not self-contained. They cannot be understood without
reference to their super-classes.

— Designers have a tendency to reuse the inheritance graph created during
analysis. It may lead to significant inefficiency.

— Inheritance graphs of analysis, design and implementation have different
functions and should be separately maintained.

m

1INA ~
Ul

UIVIL ASO0UCLIdL

d

» Objects and object classes participate in relationships with other objects
and object classes.

« In the UML, a generalized relationship is indicated by an association.

— May be annotated with information that describes the association
* May indicate that an attribute of an object is an associated object
* May indicate that a method relies on an associated object

is-member-of

is-managed-by

manages

Konkuk University 183

r.f\lf'\f‘l Ilf'lf'f\lf'\'l' nlf'\:f\f'l'
CUNCUTICTIL UUJTCL

* The nature of objects :
— Self-contained entities are suitable for concurrent implementation.

— Message-passing model of object communication can be implemented
directly if objects are running on separate processors in a distributed system.

e Servers

— The object is implemented as a parallel process (server) with entry points
corresponding to object operations.

— If no calls are made to it, the object suspends itself and waits for further
requests for service.

« Active objects

— Objects are implemented as parallel processes and the internal object state
may be changed by the object itself and not simply by external calls.

— Thread in Java is a simple construct for implementing concurrent objects.

\ 7

Jdvd |

~A
1HHT1Sadlu

« Thread in Java is a simple construct for implementing concurrent objects.

— Threads must include a method called run() and this is started up by the Java
run-time system.

— Active objects typically include an infinite loop so that they are always
carrying out the computation.

UojeClt-ur C ntea ve N FIrocess

« Structured design processes involve developing a number of different
system models.
— Require a lot of effort for development and maintenance of these models
— For small systems, it may not be cost-effective.

— However, for large systems developed by different groups, design models are
an essential communication mechanism.

« Common key activities for OOD processes

1. Define the context and modes of use of the system
Design the system architecture (Architectural design)
Identify the principal system objects (Object identification)
Develop design models
Specify object interfaces (Object interface specification)

v W

Example: Weather Mapping System Description

A weather mapping system is required to generate weather maps on a regular basis
using data collected from remote, unattended weather stations and other data
sources such as weather observers, balloons and satellites. Weather stations transmit
their data to the area computer in response to a request from that machine.

The area computer system validates the collected data and integrates it with the data
from different sources. The integrated data is archived and, using data from this
archive and a digitised map database a set of local weather maps is created. Maps
may be printed for distribution on a special-purpose map printer or may be displayed
in a number of different formats.

1. System Context and Models of System Use

« Develop an understanding of the relationships between the software
being designed and its external environment

« System context
— A static model that describes other systems in the environment
— Use a subsystem model to show other systems

« Model of system use

— A dynamic model that describes how the system interacts with its
environment

— Use use-cases to show interactions

Clll 1VIUD

11 \7

Iy 74 ~
UDYDL U

C
®

Weather mapping system

S

«subsystem»
Data collection «subsystem»
Data display
Observer Satellite
User Map
Comms interface display
Weather Map Map
station Balloon printer
«subsystem» «subsystgrp»
Data processing Data archiving
Data
Data Data storage
checking integration
Map store Data store

>
~
Q.

@

Weather station use-case ..
Use-case description

System Weather station
Startup
Use-case Report
Actors Weather data collection system, Weather station
Data The weather station sends a summary of the weather data that has been
Shutdown collected from the instruments in the collection period to the weather data
collection system. The data sent are the maximum minimum and average
ground and air temperatures, the maximum, minimum and average air
Report pressures, the maximum, minimum and average wind speeds, the total rainfall
/N and the wind direction as sampled at 5 minute intervals.
Stimulus The weather data collection system establishes a modem link with the weather
Calibrate station and requests transmission of the data.
Response The summarised data is sent to the weather data collection system

Comments Weather stations are usually asked to report once per hour but this frequency

Test may differ from one station to the other and may be modified in future.

I

P, r~ht
L. ICHITL

I\f"l'll "\I h
eCctural ve

SIgn

Design the system architecture using the understanding about the
interactions between the system and its environment.

« A layered architecture is appropriate for the weather station
— Interface layer for handling communications
— Data collection layer for managing instruments
— Instruments layer for collecting data

Weather station

«subsystem» Mg)r(wtae%ﬁglall 1
Interface communications

«subsystem» ESA?%E%?QS b
Data collection weather data

«subsystem» Package of 1
Instruments instruments for raw
data collections

P,
J.

UVJCCL 1UCITILITICaAllVUl |

Identifying objects (or object classes) is the most difficult part of object
oriented design.

— No 'magic formula' for object identification.

— Relies on the skill, experience and domain knowledge of system designers

— An iterative process

Approaches to object identification:

— Use a grammatical approach based on a natural language description of the
system (used in Hood OOD method)

— Based on the identification on tangible things in the application domain

— Use a behavioural approach and identify objects based on what participates
in what behaviour

— Use a scenario-based analysis. The objects, attributes and methods in each
scenario are identified.

\Alaa+hhAar CHAat+iAn
vvCalLlicTl oladllUul |
WeatherStation
identifier

repor tWeather ()
calibrate (instruments)
test ()

startup (instruments)
shutdown (instruments)

Ground
thermometer

temper ature

test ()
calibrate ()

O
O
D

—
0

(@)
Q)
wn
wn
M
wn

WeatherData

airTemper atures
groundT emper atures
windSpeeds
windDirections
pressures

rainfall

collect ()
summarise ()

Anemometer Barometer
windSpeed pressure
windDirection height
test () test ()

calibrate ()

¥\ N

Ily

Develop odel

/]
%.

Sign M

« Design models show the objects, object classes and relationships
between these entities.

— Static models describe the static structure of the system in terms of object
classes and relationships.

— Dynamic models describe the dynamic interactions between objects.

« Examples of design models:

— Sub-system model : shows logical groupings of objects into coherent
subsystems

— Sequence model : shows the sequence of object interactions

— State machine model : show how individual objects change their state in
response to events.

— Other models include use-case models, aggregation models, generalisation
models, etc.

Vv

IIIf'\l"\I 7\ f'\
J Clll VU

byS

C + AAl
) L UC|

« Show how the design is organized into logically related groups of objects.
— A logical model
— The actual organization of objects may be different.
— In the UML, these are shown using packages

«subsystem» «subsystem»
Interface Data collection
CommsController WeatherData
Instrument

WeatherStation Status

«subsystem»

Instruments

Air .
thermometer RainGauge Anemometer
Ground Barometer WindVane

thermometer

ye N

LJ| nce vioael

S

« Show the sequence of object interactions that take place
— Objects are arranged horizontally across the top.
— Time is represented vertically, so models are read top to bottom.
— Interactions are represented by labelled arrows.
— Different styles of arrow represent different types of interaction.

— Thin rectangle in an object lifeline represents the time when the object is the
controlling object in the system.

:CommsController ‘WeatherStation ‘WeatherData

request (report)

Data collection

E acknowledge ()
report () :
L
summarise ()

send (report)
reply (report)

acknowledge ()

+a+A NMa~rlhina NMAAAIl CravyrarhAarde
LA LT 1vVIidAdClLIlI1IlICT [IVIOUCI., oldadilLcllidl L

C+Aa
Sld

« Show how objects respond to different service requests and the state
transitions triggered by these requests

Operation calibrate () o
o = Calibrating
1 N calibration OK
startu . test ())
Shutdown PO - Waiting =~ Testing
- 4 transmission don
d shutdown () ansmission done test complete
|
Transmitting
clock collection
done reportWeather ()d

A weather summary
/ - complete
. Summarising P

Collecting

Weather station

<\ - 'c If'\
errace S

NhiA -|-T+
UD|CCL LIIL

:h
:!‘

on

C
J. I

k_

» Object interfaces specification make the design of objects and other
components performed in parallel.
— Objects may have several interfaces (viewpoints).
— The UML uses class diagram for interface specification

interface WeatherStation {
public void WeatherStation () ;

public void startup () ;
public void startup (Instrument i) ;

public void shutdown () ;
public void shutdown (Instrument i) ;

public void reportWeather () ;

public void test () ;
public void test (Instrument i) ;

public void calibrate (Instrument i) ;
public int getID () ;

} //WeatherStation

1 1 A

C ~
SUITITTd

"2l W 4
l

y

OOD is an approach to design so that design components have their
own private state and operations.

« Objects should have constructor and inspection operations. They provide
services to other objects.

* Objects may be implemented sequentially or concurrently.

« The Unified Modelling Language provides different notations for defining
different object models.

« A range of different models may be produced during an object-oriented
design process. These include static and dynamic system models.

« Object interfaces should be defined precisely using a programming
language like Java.

Konkuk University 200

Chapter 15.
Real-Time Software Design

\ 7

nlf\:f\f“l'l 'laY@
UJCULLIVEDS

To explain the concept of a real-time system and why these systems are
usually implemented as concurrent processes

To describe a design process for real-time systems
To explain the role of real-time operating systems

To introduce generic process architectures for monitoring and control
and data acquisition systems

Vv

ITM \ 7 7\ o~
1= Cllio

f\"\ 7\ o~ t'"l'
NCdI= THTIT Syol

« Systems which monitor and control their environment

« Inevitably associated with hardware devices
— Sensors : collect data from the system environment
— Actuators : change the system's environment (in some way)

« Time is critical.
— Real-time systems MUST respond within specified times.

« Real-time system is a software system where the correct functioning of the
system depends on

— the results produced by the system and
— the time at which these results are produced

o Soft real-time system

— Operation is degraded if results are not produced according to the specified
timing requirements.

« Hard real-time system

— Operation is incorrect if results are not produced according to the timing
specification.

Given a stimulus, the system must produce a response within a specified
time.

Periodic stimuli
— Stimuli which occur at predictable time intervals
— Example: a temperature sensor may be polled 10 times per second.

Aperiodic stimuli

_ 1 1 Tal ~Nrr irtahla fimAac
SUITTIUIL VVITIICIHT ULUCU ICLANMIT LIHITITO

— Example: a system power fallure may trigger an interrupt which must be
processed by the system.

« Because of the need to respond to timing demands made by different
stimuli/responses, the system architecture must allow for fast switching
between stimulus handlers.

« Timing demands of different stimuli are different so a simple sequential
loop is not usually adequate.

« Real-time systems are therefore usually designed as cooperating
processes with a real-time executive controlling these processes.

— Cooperating processes
— One real-time executive

207

Konkuk University

Actuator

Stimulus Response

Actuator Control |

Sensor Control Data Process

Konkuk University

208

Clll L

v\ If'\'l'
L

ements

« Sensor control processes
— Collect information from sensors
— May buffer collected information in response to a sensor stimulus.

« Data processor
— Carries out processing of collected information
— Computes the system response

« Actuator control processes
— Generates control signals for the actuators

Rea

|_T
1= |

Vv

me

2Y 22 aa)

ogramimm

Dy
Pl

ng

Hard-real time systems may have to programmed in assembly language
to ensure that deadlines are met.

Languages such as C allow efficient programs to be written, but do not have

constructs to support concurrency or shared resource management.

— Java supports lightweight concurrency (threads and synchronized methods)

and can be used for some soft real-time systems.

Real-time versions of Java are now available addressing problems like

Not possible to specify thread execution time

Different timing in different virtual machines
Uncontrollable garbage collection

Not possible to discover queue sizes for shared resources
Not possible to access system hardware

Not possible to do space or timing analysis

m Design

« Design both the hardware and the software associated with system
— Partition functions to either hardware or software

— Design decisions should be made on the basis on non-functional system
requirements.

— Hardware delivers better performance but potentially longer development and
less scope for change.

=

N

Dy

-Time Sy sign Process

C'CI FTTTHIT Oy OoLTITIS e

Identify the stimuli to be processed and the required responses to these
stimuli.

For each stimulus and response, identify the timing constraints.

Aggregate the stimulus and response processing into concurrent
processes. A process may be associated with each class of stimulus and
response.

Design algorithms to process each class of stimulus and response. These
must meet the given timing requirements.

Design a scheduling system which will ensure that processes are started
in time to meet their deadlines.

Integrate using a real-time operating system.

Tm

1 1M |g

r-'l-
Q)
r_-l-
wn

« May require extensive simulation and experiment to ensure that these
are met by the system

« May mean that certain design strategies such as object-oriented design
cannot be used because of the additional overhead involved

« May mean that low-level programming language features have to be
used for performance reasons

I Tmn C\ll“
= HHTIT OyS

v\

C'CI LCI11 V ode

ling

The effect of a stimulus in a real-time system may trigger a transition
from one state to another.

Finite State Machines (FSM) can be used for modelling real-time systems.

— However, FSM models lack structure. Even simple systems can have complex
models.

— The UML includes notations for defining state machine models.

See Chapter 8 for further examples of state machine models.

0
—
-5
O
Y
=
O
N
—t
Q)
—
M
<

>
~

o

Q.
D

Timeout
Card
inserted T
into reader Reading Initialising
do: get CC do: initialise ==
details display
4 \
) Card removed Hose' out of holster
Waiting " Card OK
b |
® - do Sv'éﬁf%e Validating Ready Delivering
do: validate do: L
1 4 credit card Nozzle del(ijver fgel |
trigger on update display
Timeout Invalid card Nozzle trigger off
(T | Nozzle trigger on
Resetting . SEOFE)GE]
do: display CC
error
Payin
Payment ack. ying H ;
— — — do: debit . 0se in
CC account holster

Vv M\

nlf'\f\lf'
nic Jpycid

\I v\

I T N\ I\ o~
1= 1 Ny oyolllio

Rea

« Real-time operating systems are specialized operating systems which
manage the processes in the RTS.

— Responsible for process management and resource (processor and memory)
allocation

— May be based on a standard kernel which is used unchanged or modified for
a particular application

— Do not normally include facilities such as file management

« Real-time operating system components
— Real-time clock : provides information for process scheduling
— Interrupt handler : manages aperiodic requests for service
— Scheduler : chooses the next process to be run
— Resource manager : allocates memory and processor resources
— Dispatcher : starts process execution

Real-time
clock

Processes
awaiting
resources

Ready
list

C A
VU

,//

'Y 2aa)

pon

Scheduling
information

1

- Scheduler -

Process resource
requirements

1
Resource
manager

Ready Released

processes

= Despatcher =

1
Executing process

n

Interrupt
handler

Available
resource
list
o

resources

Processor
list

I\I

§

O
O
O
D

)

m
1=

\I'I'
LC

C+Anr
Stop Sys

§
M
)
—+

n

N Ol

« Configuration manager

— Responsible for the dynamic reconfiguration of the system software and
hardware.

— Hardware modules may be replaced and software upgraded without stopping
the systems.

« Fault manager

— Responsible for detecting software and hardware faults and taking
appropriate actions (e.g. switching to backup disks)

— To ensure that the system continues in operation

Dy
r

'aVYalfaYel @ nlf'
IULCCOoO Il

« The processing of some types of stimuli must sometimes take priority.
— Interrupt level priority
» Highest priority
» Allocated to processes requiring a very fast response
— Clock level priority
» Allocated to periodic processes

« Within these, further levels of priority may be assigned.

—)
—
M

a2V

-
P
—
N
M

C

<

O

Control is transferred automatically to a pre-determined memory
location.

— This location contains an instruction to jump to an interrupt service routine.

— Further interrupts are disabled, the interrupt serviced and the control returned
to the interrupted process.

Interrupt service routines MUST be short, simple and fast.

r\ I I

n 'aValaYel @ C ¥\ N
r ULCOoo OTIVILITIY

A~ Dr
U 1

€O|L

* In most real-time systems, there will be several classes of periodic
process, each with different periods (the time between executions),
execution times and deadlines (the time by which processing must be
completed).

» The real-time clock ticks periodically and each tick causes an interrupt
which schedules the process manager for periodic processes.

« The process manager selects a process which is ready for execution.

rrocess ividina y

E§

« Concerned with managing the set of concurrent processes.
» Periodic processes are executed at pre-specified time intervals.

e The RTOS uses the real-time clock to determine when to execute a
process taking into account

— Process period : time between executions.
— Process deadline : the time by which processing must be complete.

RTOS Process Management

fo S 23 i o S e
. = - - i .
- - - .

Scheduler

- e] 7 o po

e
]

Choose processes for Allocate memory and Start execution on
execution processor an available processor

Konkuk University 222

Frocess .)VVI CI

LE:

« The scheduler chooses the next process to be executed by the processor.
— Depends on a scheduling strategy.

* The resource manager allocates memory and a processor for the process
to be executed.

« The dispatcher takes the process from ready list, loads it onto a
processor and starts execution.

» Scheduling strategies
— Non pre-emptive scheduling

» Once a process has been scheduled for execution, it runs to completion or until it is
blocked for some reason (e.g. waiting for I/O).

— Pre-emptive scheduling

» The execution of an executing processes may be stopped if a higher priority process
requires service.

— Scheduling algorithms
» Round-robin , Rate monotonic , Shortest deadline first, many others.

v\

ems

-

/4

IVIOUI'] U I DYoLl

I\If'\'l‘lf'f\
11 dall Ul1ILTV

<

+f\lﬁ
LUI

« Continuously check sensors and take actions depending on sensor values.
« Monitoring systems examine sensors and report their results.
« Control systems take sensor values and control hardware actuators.

B <

E

P (A4) A4

ATM and Terminals
224

Konkuk University

1 1 A

C ~
SUITITTd

"2l W 4
l

y

Real-time system correctness depends not just on what the system does
but also on how fast it reacts.

« A general real-time system model involves associating processes with
sensors and actuators.

« Real-time systems architectures are usually designed as a number of
concurrent processes.

« Real-time operating systems are responsible for process and resource
management.

* Monitoring and control systems poll sensors and send control signal to
actuators.

Konkuk University 226

Chapter 17.
Rapid Software Development

\ 7

nlf\:f\f“l'l 'laY@
UJCULLIVEDS

To explain how an iterative and incremental development process lead to
faster delivery of more useful software

To discuss the essence of agile development methods
To explain the principles and practices of extreme programming
To explain the roles of prototyping in software process

Rapid Software Development

Rapidly changing business environments
— make businesses have to respond to new opportunities and competition
— Require rapid software development

Businesses may be willing to accept lower quality software if rapid
delivery of essential functionality is possible.

Because of the changing environment, it is often impossible to arrive at a
stable and consistent set of system requirements.

Therefore a waterfall model of development is impractical.

Approach to development based on iterative specification and delivery is
the only way to deliver software quickly.

Characteristics of Rapid Software
Development Process

« System is developed in a series of increments.
— Specification, design and implementation are performed concurrently.
— End users evaluate each increment and make proposals for later increments.
— No detailed specification and design documentation

Konkuk University 231

o
-y
Q

-
Q)
0)
—t
M
-,
N
)
N
@
O
-5
D
33
M
v
O
M
<
@
O
O
33
M
=)
~+

« Advantages:

Accelerated delivery of customer services

« Each increment delivers the highest priority functionality to the customer.
User engagement with the system

« Users have to be involved in the development to specify their requirements.

e Problems:

Management problems

« No document makes the progress hard to be judged and problems hard to be
found.

Contractual problems

» The normal contract may include a specification, but it does not have it.
Validation problems

« Without a specification, what is the system being tested against?
Maintenance problems

« Continual change tends to corrupt software structure, and makes it more expensive
to change and evolve to meet new requirements.

« For some large systems, incremental iterative development and delivery
may be impractical.

* An experimental system is developed
— as a basis for formulating the requirements, and
— thrown away, when the system specification has been agreed.

i

Konkuk University 233

\7

L/I1IC CLLIVEDOS

ICIHILCCO 111l UV

* Incremental development
— To deliver a working system to end-users
— Start with those requirements which are best understood
— Example: Agile, XP

* Throw-away prototyping
— To validate or derive system requirements.
— Starts with those requirements which are poorly understood
— Example: Prototyping

Ag

I\“f\ 7\
ICT IVICLI IV

thoo

From dissatisfaction with the overheads involved in design methods

Focus on the code rather than the design

Based on an iterative approach to software development

Intended to deliver working software quickly

Intended to evolve software quickly to meet changing requirements
Best suited to small/medium-sized business systems or PC products

Embrace change

Customer The customer should be closely involved throughout the development process. Their role is provide
involvement and prioritise new system requirements and to evaluate the iterations of the system.
Incremental The software is developed in increments with the customer specifying the requirements to be
delivery included in each increment.
People not The skills of the development team should be recognised and exploited. The team should be left to
process develop their own ways of working without prescriptive processes.

Expect the system requirements to change and design the system so that it can accommodate these

changes.
Maintain Focus on simplicity in both the software being developed and in the development process used.
simplicity Wherever possible, actively work to eliminate complexity from the system.

Konkuk University 235

. +

AI"\IA ~— 1 7~ AA
FoOpiIems wiin y V LIHTOUU

It can be difficult to keep the interest of customers who are involved in
the process.

Team members may be unsuited to the intense involvement that
characterizes agile methods.

Prioritizing changes can be difficult where there are multiple
stakeholders.

Maintaining simplicity requires extra work.

Contracts may be a problem as with other approaches to iterative
development.

v\

eme

VN N

+
X1r N

C
LA

nlf'f\ 2’2 2
r

lugrauun

» Extreme Programming (XP) is the best-known agile method.
— Takes an ‘extreme’ approach to iterative development
— New versions may be built several times per day.
— Increments are delivered to customers every 2 weeks.

— All tests must be run for every build and the build is only accepted if tests
run successfully.

» XP release cycle:

for this re to tasks

Evaluate Release software ot oltae

Konkuk University 237

Tf\t"

+
ICTOL

¥\

mm

VD
VAN o

 XP is a test-first development.
— Incremental tests are developed from scenarios.
— Users are involved in test development and validation.

Automated test harnesses are used to run all component tests each time that
a new release is built.

o Test-first development

Writing tests before code to clarify the requirements to be implemented.

Tests are written as programs rather than data so that they can be executed
automatically.

Test includes a check that it has executed correctly.

All previous and new tests are automatically run when new functionality is
added in order to check that the new functionality has not introduced errors.

n .If' nlﬁf\ 22 a2l a) :If'\
rdil r

-~ 1 NN : 7~ Vn
dl rogyrdirnineg mr Ar

« In XP, programmers work in pairs, sitting together to develop code.
— Helps develop common ownership of code
— Help spread knowledge across the team

— Serves as an informal review process as each line of code is looked at by
more than 1 person.

— Encourages refactoring as the whole team can benefit from this

« Development productivity with pair programming is similar to that of two
people working independently.

Ndpyliu I‘\[JIJ L N DUeve IJIII IL}

~~

DADND
N\AL/

e Other RAD approaches except Agile methods have been used for many
years.
— Designed to develop data-intensive business applications
— Rely on programming and presenting information from a database
— RAD environment:
« Database programming language
 Interface generator

 Links to office applications
» Report generators

T
11

(EITaCe uenel CILUII

a

Many applications are based on complex forms
— Developing forms manually is a time-consuming activity.

RAD environments include support for screen generation including
— Interactive form definition using drag and drop techniques

— Form linking where the sequence of forms to be presented is specified
— Form verification where allowed ranges in form fields is defined

Visual Programming

— Scripting languages such as Visual Basic support visual programming where
the prototype is developed by creating a user interface from standard items
and associating components with these items.

— A large library of components exists to support this type of development.
— May be tailored to suit the specific application requirements.

\I:t“l I"\I nlﬁf\l\llﬁf\mm:v‘\ﬂ \AI:‘|'If'\ DI\I [Nalal
vioudl I'IUHICIIIIIIIII Iy VVILIT INCUDSC
Menu component
Date component
File Edit Views Layout Options Help
General
12th January 2000 Index
Range c‘heckmg 3.876
script
User prompt
component +
Draw canvas script
component
Tree display

component

CO\T
\ A

C DI\I 1 /A
oS IN\CULDC

An effective approach to rapid development is to configure and
assemble existing off-the-shelf systems.

For example, a requirements management system could be built by
using

— A database to store requirements

— A word processor to capture requirements and format reports

— A spreadsheet for traceability management

ftwal ng

-~ A n \I
vwdlitT i

CA
QU

typi

« A prototype is an initial version of a system used to demonstrate
concepts and try out design options. (Throw-away prototyping)

« A prototype can be used

— In the requirements engineering process to help with requirements elicitation
and validation

— In design processes to explore options and develop a Ul design

— In the testing process to run back-to-back tests Back-to-back test

« Benefits of prototyping
— Improved system usability
— A closer match to users’ real needs
— Improved design quality
— Improved maintainability
— Reduced development effort

Konkuk University 244

Prototyping Plan

Outline
Definition

Executable
Prototype

Konkuk University

Evaluation
Report

245

C
®

1 VY A \7

||||||ai’y

An iterative approach to software development leads to faster delivery of
software.

Agile methods are iterative development methods that aim to reduce
development overhead and so produce software faster.

Extreme programming includes practices such as systematic testing,
continuous improvement and customer involvement.

Testing approach in XP is a particular strength where executable tests are
developed before the code is written.

Rapid application development (RAD) environments include database
programming languages, form generation tools and links to office
applications.

A throw-away prototype is used to explore requirements and design
options.

Konkuk University 247

\ 7

nlf\:f\f“l'l 'laY@
UJCULLIVEDS

To explain benefits of software reuse and some reuse problems
To discuss several different ways to implement software reuse

To explain how reusable concepts can be represented as patterns or
embedded in program generators

To discuss COTS reuse
« To describe the development of software product lines

C
®

'F‘l'\ll"\lf'f\ DI\I 1 /A
1Lvvdl I\CUOLDC

In most engineering disciplines, systems are designed by composing
existing components that have been used in other systems.

To achieve better software, more quickly and at lower cost, we need to
adopt a design process that is based on systematic software reuse.

Reuse-based software Engineering

— Application system reuse

« The whole of an application system may be reused either by incorporating it

without change into other systems (COTS reuse) or by developing application
families

PG 2.

— Component reuse

« Components of an application from sub-systems to single objects may be reused.
Covered in Chapter 19.

— Object and function reuse

« Software components that implement a single well-defined object or function may
be reused.

Increased
dependability

Reduced process
risk

Effective use of
specialists

Standards
compliance

Accelerated
development

Reused software, that has been tried and tested in working systems, should be more
dependable than new software. The initial use of the software reveals any design and
implementation faults. These are then fixed, thus reducing the number of failures when the
software is reused.

If software exists, there is less uncertainty in the costs of reusing that software than in the
costs of development. This is an important factor for project management as it reduces the
margin of error in project cost estimation. This is particularly true when relatively large
software components such as sub-systems are reused.

Instead of application specialists doing the same work on different projects, these specialists
can develop reusable software that encapsulate their knowledge.

Some standards, such as user interface standards, can be implemented as a set of standard
reusable components. For example, if menus in a user interfaces are implemented using
reusable components, all applications present the same menu formats to users. The use of
standard user interfaces improves dependability as users are less likely to make mistakes
when presented with a familiar interface.

Bringing a system to market as early as possible is often more important than overall

development costs. Reusing software can speed up system production because both
development and validation time should be reduced.

Konkuk University

251

Increased
maintenance cost

Lack of tool support

Not-invented-here
syndrome

Creating and
maintaining a
component library

Finding,
understanding and
adapting reusable

components

)

DA
NCUSCT

If the source code of a reused software system or component is not available then
maintenance costs may be increased as the reused elements of the system may become
increasingly incompatible with system changes.

CASE toolsets may not support development with reuse. It may be difficult or impossible to
integrate these tools with a component library system. The software process assumed by
these tools may not take reuse into account.

Some software engineers sometimes prefer to re-write components as they believe that
they can improve on the reusable component. This is partly to do with trust and partly to
do with the fact that writing original software is seen as more challenging than reusing
other people’s software.

Populating a reusable component library and ensuring the software developers can use this
library can be expensive. Our current techniques for classifying, cataloguing and retrieving
software components are immature.

Software components have to be discovered in a library, understood and, sometimes,
adapted to work in a new environment. Engineers must be reasonably confident of finding
a component in the library before they will make routinely include a component search as
part of their normal development process.

Konkuk University

252

DI\I 14 /A 2 e A
NCUuUOSC CI 1US

cape

* Reuse is possible at a range of levels from simple functions to complete
application systems.

» The reuse landscape covers the range of possible reuse techniques.

Design
patterns
Component Application)
frameworks product lines Aspect-oriented
software development
Compolnent—based - COTS Program
development Legacy system Integration generators
wrapping
Configurable vertical
applications
Service-oriented
systems
Program

libraries

DA
N\C

Design patterns
Component-based

development

Application
framework

Legacy system
wrapping

Service-oriented
systems

Application product
lines

COTS integration

Configurable
vertical applications

Program libraries

Program generators

Aspect-oriented
software
development

~lh

Se }JIJ CIHICOS

Reuse Approaches

Generic abstractions that occur across applications are represented as design patterns that
show abstract and concrete objects and interactions.

Systems are developed by integrating components (collections of objects) that conform to
component-model standards. This is covered in Chapter 19.

Collections of abstract and concrete classes that can be adapted and extended to create
application systems.

Legacy systems (see Chapter 2) that can be ‘wrapped’ by defining a set of interfaces and
providing access to these legacy systems through these interfaces.

Systems are developed by linking shared services that may be externally provided.

An application type is generalised around a common architecture so that it can be adapted
in different ways for different customers.

Systems are developed by integrating existing application systems.

A generic system is designed so that it can be configured to the needs of specific system
customers.

Class and function libraries implementing commonly-used abstractions are available for
reuse.

A generator system embeds knowledge of a particular types of application and can
generate systems or system fragments in that domain.

Shared components are woven into an application at different places when the program is
compiled.

NUIIKNUKN UIIIVCIDILy

254

11/ r If'\'l' D I 7\
OC. UV cHtL neuse

DA
I\C

* When reuse program or design components, we have to follow the
design decisions made by the original developer of the component.

— May limit the opportunities for reuse

« Concept reuse is a more abstract form of reuse.
— A particular approach is described in an implementation independently.
— An implementation is then developed.

« Two main approaches to concept reuse
— Design patterns
— Generative programming (Program generator)

n ﬂlf'\ n I\If'lf'\
L/C y | TALLCilli

« Design pattern is a way of reusing abstract knowledge about a problem
and its solution.
— A pattern is a description of the problem and the essence of its solution.
— Should be sufficiently abstract to be reused in different settings

— Patterns often rely on object characteristics such as inheritance and
polymorphism.

e Elements in design patterns
— Name : Meaningful pattern identifier

— Problem description

— Solution description : Not a concrete design but a template for a design
solution that can be instantiated in different ways

— Consequences : Results and trade-offs of applying the pattern

Subject

@\

| -

()

>

| -

()

wn

O

O
i

OO

<ty — AN

<doUn
| |

—

| -

()

>

| -

()]

wn

O

O

257

Konkuk University

'2AWIaY s n"\'l"l'f\lf'lf'\
1 VCI IFdLlLcili

Name : Observer
Description : Separates the display of object state from the object itself
Problem description : Used when multiple displays of state are needed
Solution description : See slide with UML description

Consequences : Optimizations to enhance display performance are impractical

Subject

Attach (Observer)
Detach (Observer)
Notify () ==========---

by |

for all o in observers
o -> Update ()

ConcreteSubject

-

return subjectState

GetState ()

subjectState

Observer
Update ()
ConcreteObserver -
observerState =
Update () --------- subject -> GetState ()
observerState

)

I\If'\f\lf'ﬂ"'
CliICTIidl

Program generators involve the reuse of standard patterns and

O

D"\(‘f\
—“Ddo>SC

e
|

algorithms.

— Embedded in the generator and parameterised by user commands. A

~
U

DA
NCUSCT

program is then automatically generated.
— Possible when domain abstractions and their mapping to executable code can

be identif

A domain specific language is used to compose and control these

abstractions.

ied.

Application
Description

Application Domain
Knowledge

Database

Konkuk University

259

§

Q)
D
-
D
)
Q)

-

\7 f‘ ; n
r

Types of

—
O

Ogra

« Types of program generator
— Application generators : for business data processing
— Parser and lexical analyzer generators : for language processing
— Code generators : in CASE tools

« Generator-based reuse is very cost-effective, but its applicability is limited
to a relatively small number of application domains.

« [t is easier for end-users to develop programs using generators
compared to other component-based approaches to reuse.

DAl CA -|- NvrinantadA NAav/alAnRrmAANF
neuse. p CL-UlIciitcuUu b/cve |J||I NT

« Aspect-oriented development addresses a major software engineering
problem - the separation of concerns.

— Concerns are often not simply associated with application functionality but
are cross-cutting, e.g. all components may monitor their own operation, all
components may have to maintain security, etc.

— Cross-cutting concerns are implemented as aspects and are dynamically

woven into a program. The concern code is reused and the new system is
generated by the aspect weaver.

Aspect 1 Aspect 2
Input source code . i Generated code
Aspect
<statements 1> = WeZver = <Sté;\tementls 1>
join point 1 spect
<statements 2> <statements 2>
join point 2 Aspect 2

<statements 3> <statements 3>

l,c

aimeworkK

N Alf'\lf'\
SC. I'\IJ[J

DA
N\C

« Frameworks are a sub-system design made up of a collection of abstract
and concrete classes and the interfaces between them.

— The sub-system is implemented by adding components to fill in parts of the
design and by instantiating the abstract classes in the framework.

* Frameworks are moderately large entities that can be reused.

e Framework classes

— System infrastructure framework

« Support the development of system infrastructures such as communications, user
interfaces and compilers

— Middleware integration framework

« Standards and classes that support component communication and information
exchange

— Enterprise application framework

» Support the development of specific types of application such as
telecommunications or financial systems

I 7~ °* ‘l' 7N\ \ 7

ReusSe. I‘\}JlJ dllUll Oyo

v

7\ DI\II
Clll I\C

'I' o N
L S5C

« Involves the reuse of entire application systems
— by configuring a system for an environment
— by integrating two or more systems to create a new application

e Two approaches
— COTS product integration
— Product line development

FnTC AAII/"" Df\llt"f\
U O FOAQUCt neuse

e COTS : Commercial Off-The-Shelf
COTS systems are usually complete application systems offering APIs.

— Build large systems by integrating COTS systems
— Effective development strategy for some types of system such as E-commerce
systems

« Key benefits
— Faster application development
— Usually lower development costs

ChAir

\ A LE y I CINOICES

C
®

* Which COTS products offer the most appropriate functionality?
— There may be several similar products that may be used.

 How will data be exchanged?
— Individual products use their own data structures and formats.

« What features of the product will actually be used?
— Most products have more functionality than is needed.
— You should try to deny access to unused functionality.

Vv

il C
MICITID

ILCH ration o

Lack of control over functionality and performance
— COTS systems may be less effective than they appear.

e Problems with inter-operability

— Different COTS systems may make different assumptions that means
integration is difficult.

* No control over system evolution
— COTS vendors do not control system evolution.

e Support from COTS vendors
— COTS vendors may not offer support over the lifetime of the product.

\I’\MV‘\II\‘ E nlﬁf\ﬁlllﬁhlﬁf\f\v‘\+ C\lt"l'f\m
dall IIJIC. L= TUOUCUICITICIIL .)_YDLCI 11
e On the client, standard e-mail
and web browsing programs are
used.
Client

e On the server, an e-commerce
platform has to be integrated

Web E-mail
browser system
with an existing ordering system.

Server — Involves writing an adaptor so

_ that they can exchange data.
E-commerce Ordering and | i ol
system invoicing — An e-mail system is also

— integrated to generate e-mail for

: clients. This also requires an
SAEN Adaptor :
system ap adaptor to receive data from the

ordering and invoicing system.

Konkuk University 267

CA'F"'\AI"\ oV &Y AAI If'l' I:If'\f\
SUILVWdAIC FOauct Line

Software product lines or application families are applications with
generic functionality that can be adapted and configured for use in a
specific context.

« Adaptation may involve
— Component and system configuration
— Adding new components to the system
— Selecting from a library of existing components
— Modifying components to meet new requirements

A~ Thc~+ M AvA A N+
U L 1l L L/C L

Pro Cl INnstance VE plll N

Elicit stakeholder requirements
— Use existing family member as a prototype
Choose closest-fit family member
— Find the family member that best meets the requirements

Re-negotiate requirements

— Adapt requirements as necessary to capabilities of the software
Adapt existing system

— Develop new modules and make changes for family member

Deliver new family member
— Document key features for further member development

Renegotiate
requirements
Elicit Choose closest-
stakeholder fit family
requirements member
Adapt existing Deliver new
system family member

Konkuk University

269

C
®

N2 a's)

MiMa

"2l W 4
l

y

Advantages of reuse are lower costs, faster software development and
lower risks.

Design patterns are high-level abstractions that document successful
design solutions.

Program generators are also concerned with software reuse - the
reusable concepts are embedded in a generator system.

Application frameworks are collections of concrete and abstract objects
that are designed for reuse through specialisation.

COTS product reuse is concerned with the reuse of large, off-the-shelf
systems.

Problems with COTS reuse include lack of control over functionality,
performance, and evolution and problems with inter-operation.

Software product lines are related applications developed around a
common core of shared functionality.

Konkuk University 271

Chapter 19.
Component-Based Software Engineering

\\W 4

nlf'\:f\f"l'l 'laYe
UJJCCLLIVEDS

To explain that CBSE is concerned with developing standardized
components and composing them into applications

To describe components and component models
To show principal activities in CBSE process

To discuss approaches to component composition and problems that
may arise

C
\ A

A PA A A n+ A NDAav/iAa AN
IIIIJ L U L/C

D"\t"f\ 7N\ N\
LDdoC VCIUMITIT N1

Component-based software engineering (CBSE) is an approach to

software development that relies on software reuse.

— Emerged from the failure of object-oriented development to support effective
reuse

— Single object classes are too detailed and specific to reuse.

Components are more abstract than object classes and can be
considered to be stand-alone service providers.

[’ Y

CDoOoL LooClliIlidlo

o (BSE essentials
— Independent components specified by their interfaces
— Component standards to facilitate component integration
— Middleware that provides support for component inter-operability
— Development process that is geared to reuse

« Apart from the benefits of reuse, CBSE is based on sound software
engineering design principles
— Components are independent so do not interfere with each other.
— Component implementations are hidden.
— Communication is through well-defined interfaces.
— Component platforms are shared and reduce development costs.

v\

N P c
MICITID

 RCLC e
DOL 1V

Component trustworthiness
— How can a component with no available source code be trusted?

Component certification
— Who will certify quality of the components?

Emergent property prediction
— How can the emergent properties of component compositions be predicted?

Requirements trade-offs

— How do we do trade-off analysis between the features of one component and
another?

f-t\mnt\n/\nl-n
CUNTPULICTILW

« Components provide a service without regard to where the component is
executing or what its programming language is.

- A component is an independent executable entity that can be made up of
one or more executable objects.

- The component interface is published and all interactions are through the
published interface.

Konkuk University 277

5
-
Q)
0)
—
M
-

Co Ul LUINTTPUTITTIL

S

M
Q

Component standardisation means that a component that is used in a CBSE process has to
Standardized conform to some standardised component model. This model may define component interfaces,
component meta-data, documentation, composition and deployment.

A component should be independent — it should be possible to compose and deploy it without
Independent having to use other specific components. In situations where the component needs externally
provided services, these should be explicitly set out in a requires’ interface specification.

For a component to be composable, all external interactions must take place through publicly
Composable defined interfaces. In addition, it must provide external access to information about itself such
as its methods and attributes.
To be deployable, a component has to be self-contained and must be able to operate as a
stand-alone entity on some component platform that implements the component model. This
usually means that the component is a binary component that does not have to be compiled
before it is deployed.

Deployable

Components have to be fully documented so that potential users of the component can decide
Documented whether or not they meet their needs. The syntax and, ideally, the semantics of all component
interfaces have to be specified.

Konkuk University 278

C
Vv

r-'l-
)
'h

v\

ompon

r-'l-
|——|

([
(‘)
M

Provides interface
— Defines the services that are provided by the component to other

components
Requires interface
— Defines the services that specifies what services must be made available for
the component to execute as specified.

Requires interface Provide interface
Defines the services
that are provided

by the component
to other components

Defines the services
from the component’s Component
environment that it
uses

279

Konkuk University

Example: A Data Collector Component Interface

Requires interface Provides interface

addSensor

removeSensor
startSensor

sensorManagement

Data collector stopSensor
sensorData testSensor
initialize
report
listAll

C
\ A

7N\ Y\

N A nt NAAAI
IIIIJ L IVIOUCI

S

Component model is a definition of standards for component

implementation, documentation and deployment.
— EJB model (Enterprise Java Beans)

— COM+ model (NET model)

— CORBA component Model

Component model specifies how interfaces should be defined and the
elements that should be included in the interface definition.

Elements of component models Customisation
Naming
convention
Composition Documentation
Interface Specific Meta-data Packaging Evolution
definition interfaces access support
Interfaces _ Usage Deployment
information and use

Component model

“A la\V.Vieal ofa CI |v'\v'\t\v"|'
| cvvdl JUIJ[JUI L

~AAl
IVIIUUI

« Middleware provides support for executing components.
— Component models are the basis of middleware.
 Component model implementations provide

— Platform services : allow components written according to the model to communicate
— Horizontal services : application-independent services used by different components

« Container
— A set of interfaces used to access the service implementations
— To use services provided by a model

Horizontal services

Component Transaction Resource
management management management
Concurrency Persistence Security

Platform services

Inter face Exception Component

Addressin I
9 definition management communications

C
\ A

v\ 11

ompon

'I'n\l Vv M\ 'Fll‘
L LC |

7\ M\ Df\ o N
N CVCIUMITIC I 11Ul I\NCUODC

Components developed for a specific application usually have to be
generalized to make them reusable.

A component is most likely to be reusable if it associated with a stable
domain abstraction (business object).

— In a hospital, stable domain abstractions are associated with the fundamental
purpose - nurses, patients, treatments, etc.

Component reusability
— Should reflect stable domain abstractions
— Should hide state representation
— Should be as independent as possible
— Should publish exceptions through the component interface

Trade-off between reusability and usability
— The more general the interface, the greater the reusability.
— But it is then more complex and hence less usable.

F 'Y 2aa

7\ 7 W .I.
C LUHTPU

N1

r.l\f"l' f\'c Df\l It""\lf'\l
CUOL Ul INCTUL>dVI

The development cost of reusable components may be higher than the
cost of specific equivalents.

« Generic components may be less space-efficient and may have longer
execution times than their specific equivalents.

« This extra reusability enhancement cost should be an organization cost
rather than a project cost.

v r- v\

eim Lo |||p

f‘\l \7

Leq <N
sydiy Dy°

+
L

U)

Existing legacy systems that fulfill a useful business function can be re-
packaged as components for reuse.

— Involve writing a wrapper component that implements provides and requires
interfaces to access the legacy system

— Although costly, this can be much less expensive than rewriting the legacy
system.

'
|\

DCLC
DoOoL

When reusing components, it is essential to make trade-offs between
ideal requirements and the services actually provided by available

nlﬁf\f‘f\f‘f‘
rTULCOS

components.
Developing outline requirements

Searching for components then modifying requirements according to

available functionality

Searching again to find if there are better components that meet the revised

requirements

Outline system
requirements

Identify candidate
components

Modify requirements
according to
discovered
components

Architectural
design

Identify candidate
components

Konkuk University

Compose
components to
create system

286

F 'Y 22 aVYa
VU IIIIJ

+
a
M
n

(D
Eié
0
Q)
,
o
b
wn
Wn

Nt

e Trust

— You need to be able to trust the supplier of a component.
« At best, an un-trusted component may not operate as advertised.
« At worst, it can breach your security.

« Requirements
— Different groups of components will satisfy different requirements.

e Validation

— Component specification may not be detailed enough to allow
comprehensive tests to be developed.

— Components may have unwanted functionality. How can you test this will not
interfere with your application?

F 7N\ Y\

VU IIIIJ Nt LO

|||p0 sition

» Process of assembling components to create a system

— Involve integrating components with each other and with the component
infrastructure

— Normally have to write ‘glue code’ to integrate components

« Types of composition

— Sequential composition
» Where the composed components are executed in sequence
 Involves composing the provides interfaces of each component
— Hierarchical composition
* Where one component calls on the services of another.

« The provides interface of one component is composed with the requires interface of
another

— Additive composition
« The interfaces of two components are put together to create a new component

f\mv‘\f\ﬂl If\lf'\

SR
A B {
¢ 9

(b)

Konkuk University

L

T 'I'I'\ aVala
LCIl IdlC

T v\
N 1]

NC Illp

e Parameter incompatibility
— Operations have the same name but are of different types.
* Operation incompatibility
— Names of operations in the composed interfaces are different.

» Operation incompleteness
— Provides interface of one component is a subset of the requires interface of another.

, string location(string pn)
phoneDatabase (string command)

string owner (string pn
addressFinder g (g pn)

string propertyType (string pn)

displayMap (string postCode, scale)
mapDB (string command)

mapper printMap (string postCode, scale)

AAA~AR+A~
UCI|JL

rrm N+
I UV N1

ompon

Address the problem of component incompatibility by reconciling the
interfaces of the components that are composed.

— Different types of adaptor are required depending on the type of composition.

An addressFinder and a mapper component may be composed through
an adaptor that strips the postal code from an address and passes this
to the mapper component.

Konkuk University 291

I'\UCI}JLUI 1UI LJdld _UIICCLLUI O
sensorManagement
start
stolp
Sensor Adapter Data collector
getdata sensorData

§
O

)

O
5

)
—

addSensor
removeSensor
startSensor
stopSensor
testSensor
initialise
report

listAll

LI1TLCT I1dLCT OCIllidllliCo

* Have to rely on component documentation to decide if syntactically
compatible interfaces are actually compatible

* Object Constraint Language (OCL)
— Define constraints that are associated with UML models.

— Based around the notion of pre and post condition specification - similar to
the approach used in Z

-- The context keyword names the component to which the conditions apply
context addltem

-- The preconditions specify what must be true before execution of additem
pre: PhotoLibrary.libSize() > 0
PhotoLibrary.retrieve(pid) = null

-- The postconditions specify what is true after execution

post: libSize () = libSize()@pre + 1
PhotoLibrary.retrieve(pid) = p
PhotoLibrary.catEntry(pid) = photodesc

context delete
pre: PhotoLibrary.retrieve(pid) <> null ;
post: PhotoLibrary.retrieve(pid) = null

PhotoLibrary.catEntry(pid) = PhotoLibrary.catEntry(pid)@pre
PhotoLibrary.libSize() = libSize()@pre - 1

N\ 'Y 2'a

1dlu 1o I CUNTTPUOSILTUT

-~ 7\ n
aUiC =

When composing components, you may find
— Conflicts between functional and non-functional requirements
— Conflicts between the need for rapid delivery and system evolution

e You need to make decisions such as

— What composition of components is effective for delivering the functional
requirements?

— What composition of components allows for future change?
— What will be the emergent properties of the composed system?

(a) Data Data Report
collection management generator Report
Data
b
) collection Data base

Report

C
®

1 VY A \7

||||||ai’y

CBSE is a reuse-based approach to defining and implementing loosely
coupled components into systems.

A component is a software unit whose functionality and dependencies
are completely defined by its interfaces.

A component model defines a set of standards that component
providers and composers should follow.

Component composition is the process of ‘wiring’ components together
to create a system.

When composing reusable components, you normally have to write
adaptors to reconcile different component interfaces.

When choosing compositions, you have to consider required functionality,
non-functional requirements and system evolution.

Konkuk University 296

Chapter 22.
Verification and Validation

nlf\:f\f“l‘:\ 1N\
UJCULLIVEDS

To introduce software verification and validation

To discuss distinction between software verification and validation
To describe program inspection process and its role in V & V

To explain static analysis as verification technique

« To describe the Cleanroom software development process

"\'I':I\ o~ .A
vCllliCdtllull vo. V U

" 1N
| L

ation

« \Verification
— "Are we building the product right?”
— The software should conform to its specification.

« Validation
— "Are we building the right product?”
— The software should do what the user really requires.

V &LV FProcess

« V&V is a whole life-cycle process
— Must be applied at each stage in the software process.

« Two principal objectives
— Discovery of defects in a system

— Assessment of whether or not the system is useful and useable in an
operational situation

e Goals of V&V

— V&V should establish confidence that the software is suitable for purpose.
— Does not mean completely free of defects

— Rather, it must be good enough for its intended use.

— The type of use will determine the degree of confidence that is needed.

\/ Q) \/ C A "
vV O V CUIIT

« V&V confidence depends on the system’s purpose, user expectations,
and marketing environment.
— Software function
» The level of confidence depends on how critical the software is to an organization.
— User expectations
« Users may have low expectations of certain kinds of software.
— Marketing environment

» Getting a product to market early may be more important than finding defects in
the program.

N

—
Q)

Fi'

A h\l
na v

Software Inspection
— Analyze static system representation to discover problems (Static Verification)

— May be supplemented by tool-based document and code analysis

Software Testing

=3.

A
<
—h
O

Q)

)

o

— Exercising and observing product behaviour (Dynamic Verification)

— System is executed with test data and its operational behaviour is observed.

Software
Inspection
Requirements High-Level Formal . :
Specification Design Specification DiElliee) (DEsig el

Prototype

Konkuk University

.
L

303

§
_|

Dy
Pl

Ogra ng
« Can reveal the presence of errors, NOT their absence

— Can validate non-functional requirements as we can execute the software and
see how it behaves

— Should be used in conjunction with static verification to provide full V&V
coverage

« Types of testing

— Defect testing
» Tests designed to discover system defects
» A successful defect test is one which reveals the presence of defects in a system.
» Covered in Chapter 23

— Validation testing
* Intended to show that the software meets its requirements.

» A successful test is one that shows that a requirements has been properly
implemented.

)
)

cr

7~ ﬂlf'\fJ n If'\ll
gy dliu UCuy

ug

S

(
wn

ging

Defect testing and debugging are different.
— Testing is concerned with establishing the existence of defects in a program.
— Debugging is concerned with locating and repairing these errors.

Debugging involves formulating a hypothesis about program behaviour
and testing these hypotheses to find the system error.

Debugging process:

o S S S e
e e e e

e

Test Results Specification Test Cases

Konkuk University 305

\/ Q, \/
vV X V

ning

« V&V Planning should start early in the development process.
— The plan should identify the balance between static verification and testing.

— Test planning is about defining standards for testing process rather than
describing product tests.

« V-Model for Software Testing

Service

Konkuk University 306

CA'F"'\AI"\ oV Y TI\("I' Iﬂ
S0Ttware i1est rian

A description of the major phases of the testing process. These might be as

UESTE) [P described earlier in this chapter.

Requirements Users are most interested in the system meeting its requirements and testing
traceability should be planned so that all requirements are individually tested.
Tested items The products of the software process that are to be tested should be specified.

An overall testing schedule and resource allocation for this schedule. This,

el el obviously, is linked to the more general project development schedule.

It is not enough simply to run tests. The results of the tests must be systematically
recorded. It must be possible to audit the testing process to check that it been
carried out correctly.

Test recording
procedure

Hardware.and SR section should set out software tools required and estimated hardware utilisation.
requirements

Constraints affecting the testing process such as staff shortages should be

Constraints anticipated in this section.

Konkuk University 307

CA
QU

\AIJ

£+
1L

7\

Tlf'\t"
1 Ul |

If'\l\f"l'
HopPTLL

ware

« Software inspection involves people examining the source representation

with aim of discovering anomalies and defects.

Does not require execution of system
May be used before implementation

May be applied to any representation of the system (requirements, design,
configuration data, test data, etc.)

Effective technique for discovering program errors

« Advantages:

Many different defects may be discovered in a single inspection.
In testing, one defect may mask another so several executions are required.

— Using domain and programming knowledge, reviewers are likely to have seen

the types of error that commonly arise.

» Inspection and testing are complementary and not opposing verification
techniques.

— Both should be used during the V & V process.

« Inspections

— (Can check conformance with a specification but not conformance with the
customer’s real requirements

— (Cannot check non-functional characteristics such as performance, usability, etc.

nv"t‘\ﬂv""\m TV'\
I'Iuyldlll 111

 Formalized approach to document reviews
— Intended explicitly for detecting defects (not correction)

« Defects may be
— Logical errors

— Anomalies in the code that might indicate an erroneous condition
(e.g. an uninitialized variable)

— Non-compliance with standards

aYea

r 1Mo CLLIUT

ICTTCUINIUILIVULNTDS TUI

« A precise specification must be available.
« Team members must be familiar with the organization standards.

« Syntactically correct code or other system representations must be
available.

* An error checklist should be prepared.

« Management must accept that inspection will increase costs early in the
software process.

« Management should not use inspections for staff appraisal, i.e. finding
out who makes mistakes.

[} n f\f’\lel eV &Y
rroceqaure

o

» Inspection procedure
— Present system overview to inspection team

— Code and associated documents are distributed to inspection team in
advance

— Inspection takes place and discovered errors are noted
— Modifications are made to repair discovered errors
— Re-inspection may or may not be required

Konkuk University 312

T ™ S

Author or Owner

Inspector

Reader

Scribe

Chairman or Moderator

Chief Moderator

The programmer or designer responsible for producing the program or
document. Responsible for fixing defects discovered during the inspection
process.

Finds errors, omissions and inconsistencies in programs and documents. May
also identify broader issues that are outside the scope of the inspection team.

Presents the code or document at an inspection meeting

Records the results of the inspection meeting

Manages the process and facilitates the inspection. Reports process results to
the Chief moderator.

Responsible for inspection process improvements, checklist updating, standards
development, etc.

Konkuk University

313

n (K ar
I\ I

r II"I'
HITCUKIISL

» Checklist of common errors should be used to drive inspections.
— Depend on the programming languages
— Reflect the characteristic errors that are likely to arise in the language

« In general, the weaker type checking language, the larger the checklist.

« Examples of common errors in checklists
— Data faults
— Control faults
— Input/Output faults
— Interface faults
— Storage management faults
— Exception management faults

AN
M\

v\

1 I‘I‘f\ N
LUl Id

+A A
LC U

A \I

+~+
tadliC I-\I_y

d

Static analyzers are software tools for source text processing.

— Parse the program text and try to discover potentially erroneous conditions
— Very effective as an aid to inspections
— A supplement to inspections but not a replacement

Fault Class Static Analysis Check

Data fault

Control faults

Input/output faults

Interface faults

Storage
management faults

Variables used before initialisation

Variables declared but never used

Variables assigned twice but never used between assignments
Possible array bound violations

Undeclared variables

Unreachable code
Unconditional branches into loops

Variables output twice with no intervening assignment

Parameter type mismatches
Parameter number mismatches
Non-usage of the results of functions
Uncalled functions and procedures

Unassigned pointers

Pointer arithmetic 315

.F

ANAC C+at+timr ANrn~lvy
yb Ul oldlLiC Alldl

y

S

S

d

« All stages generate vast amounts of information, and must be used with
care.

I ™

Control Flow Analysis Checks for loops with multiple exit or entry points, finds unreachable code, etc.

Detects uninitialized variables, variables written twice without an intervening

ReiE) U ATElEE assignment, variables which are declared but never used, etc.

Interface Analysis Checks the consistency of routine and procedure declarations and their use
Information Flow Identifies the dependencies of output variables. Does not detect anomalies
Analysis itself but highlights information for code inspection or review

Identifies paths through the program and sets out the statements executed in

Path Analysis that path. It is potentially useful in the review process.

Konkuk University 316

llean A~AF C+at+i~r A \,
UoOCT Ul oldLliC M I _y

» Particularly valuable when a language such as C is used.
— C has weak typing and many errors are undetected by the C compiler.

» Less cost-effective for languages like Java
— Java has strong type checking and can therefore detect many errors during
compilation.

\'} I LCI

Q.
n

+1~arn +he ou
LI

N TNt g

‘II'I
§
>
>~

Q
<
M
~—+
-
@)

e Formal methods can be used when a mathematical specification of
system is prepared.
— Ultimate static verification technique : formal verification
— Involve detailed mathematical analysis of the specification
— Develop formal arguments that a program conforms to its mathematical
specification

Argu

=

Q

1 VYN /N ‘I'
L

A1+ C
Uullic I v .

~—+
=)
O
Q.
n

S dDO or

« Advantages:

Produce mathematical specifications which require detailed analysis of the
requirements and this is likely to uncover errors

Detect implementation errors before testing, when the program is analyzed
alongside the specification

« Disadvantages:

Require specialized notations that cannot be understood by domain experts

Very expensive to develop specification and even more expensive to show
that the program meets that specification

May be possible to reach the same level of confidence more cheaply using
other V & V techniques

FII\'\I"\V‘I\AM CI\'F'I‘\AI’\IF/\ nf\\lf\lf\lf'\lf\f\f\lf'\'l'
CIiICTAdl OVl oUlILVvwdI T LJCVCIU[JIIIC L
e (leanroom process

— Defect avoidance rather than defect removal

— Based on

operational
profile

Incremental development

Formal specification

Static verification using correctness arguments
Statistical testing to determine program reliability

Konkuk University

320

@)
N
Q)
-
Q)
0)
—
M
3,
W
)]
-

§
U
=

)
n
O
@
Q)
O
O
(D
n
n

« (Cleanroom
— Formal specification using a state transition model
— Incremental development where the customer prioritises increments

— Structured programming : Limited control and abstraction constructs are used
in the program.

— Static verification using rigorous inspections
— Statistical testing of the system

« Team organization:
— Specification team: Responsible for developing and maintaining the system
specification.
— Development team: Responsible for developing and verifying the software.
The software is NOT executed or even compiled during this process.

— Certification team: Responsible for developing a set of statistical tests to
exercise the software after development. Reliability growth models are used
to determine when reliability is acceptable.

\I 'Y Y aaloadaVYay as) n e VarfaYel @
CadllllTOUITNl FTULCOD

"\II 1
Lvadl

LIVIT Ul Ul

d

* The results of using the Cleanroom process have been very impressive
with few discovered faults in delivered systems.

— Independent assessment shows that the process is no more expensive than
other approaches.

— There were fewer errors than in a 'traditional' development process.

« However, the process is not widely used.

— It is not clear how this approach can be transferred to an environment with
less skilled or less motivated software engineers.

C
®

N2 a's)

MiMa

"2l W 4
l

y

Verification and validation are not the same thing. Verification shows
conformance with specification; validation shows that the program meets
the customer’s needs.

Test plans should be drawn up to guide the testing process.

Static verification techniques involve examination and analysis of the
program for error detection.

Program inspections are very effective in discovering errors.

Program code in inspections is systematically checked by a small team to
locate software faults.

Static analysis tools can discover program anomalies which may be an
indication of faults in the code.

Cleanroom development process depends on incremental development,
static verification and statistical testing.

Konkuk University 324

\ 7

nlf\:f\f“l'l 'laY@
UJCULLIVEDS

To discuss distinctions between validation testing and defect testing

To describe principles of system and component testing

To describe strategies for generating system test cases

To understand essential characteristics of tools used for test automation

VN N

Hny

frrar~rvraA TA~H
ILvvdiICT ICOL

CA
QU

« Component testing
— Testing of individual program components
— Usually responsibility of developers
— Tests are derived from the developer's experience.

» System testing
— Testing of groups of components integrated to create a system or sub-system
— Responsibility of independent testing team
— Tests are based on system specification.

Software developer Independent testing team

Konkuk University 327

Design test

cases

Prepare test
cases

Run program

Compare

to test ¢

Test cases

with test data

Test data

Test result

Konkuk University

Test reports

328

udlo Ul

)

« Validation testing

— To demonstrate to developer and system customer that the software meets its
requirements

— A successful test shows that the system operates as intended.

» Defect testing

— To discover faults or defects in the software where its behavior is incorrect or
not in conformance with its specification

— A successful test is a test that makes the system perform incorrectly and so
exposes a defect in the system.

N\ 7~

LIl

em 1I1es

System testing involves integrating components to create a system or

sub-system

Two phases:

— Integration testing
« Test team has access to system source code.
« System is tested as components are integrated.

— Release testing
« Test team tests a complete system to be delivered as a black-box.

« Involves building a system from its components and testing it for
problems that arise from component interactions.

— Top-down integration

» Develop the skeleton of the system and populate it with components
— Bottom-up integration

» Integrate infrastructure components then add functional components

Architectural validation

— Top-down integration testing is better at discovering errors in the system
architecture.

System demonstration

— Top-down integration testing allows a limited demonstration at an early stage
in the development.

Test implementation
— Often easier with bottom-up integration testing

Test observation
— Problems with both approaches
— Extra code may be required to observe tests.

CICCIDC

ting

Process of testing a system release that will be distributed to customers
— To increase the supplier’s confidence that the system meets its requirements

Release testing is usually black-box or functional testing
— Based on the system specification only

— Testers do not have knowledge of the system implementation.

» Release testing may include Inputs causing

T anomalous
— Performance testing Input test data

le / behaviour
CHirnce +Actinm~ \
— DU ECoS LESLNy

Black-box testing

\ 4
System I
r 1

Outputs which reveal
the pesence of

Output test result Oe / defects

Konkuk University

333

sl '@ T

'cf\ 2 aVala v\
11OUl111dl 1L IC Iy

Per

« Release testing may involve testing emergent properties of system.
— Performance
— Reliability

» Performance tests usually involve planning a series of tests where the
load is steadily increased until the system performance becomes
unacceptable.

C
®

'I'Il'f'\t"t"
LICOoS TCOLUTIY

Exercises the system beyond its maximum design load.
— Stressing the system often causes defects to come to light.
Stressing the system to test failure behaviour.

— Systems should not fail catastrophically.
— Stress testing checks for unacceptable loss of service or data too.

Stress testing is particularly relevant to distributed systems that can
exhibit severe degradation as network becomes overloaded.

F 'Y 22 aVYa
VU IIIIJ

IS lg

« Component testing is the process of testing individual components in
isolation.

— Defect testing process

« Components may be
— Individual functions or methods within an object
— Object classes with several attributes and methods

— Composite components with defined interfaces used to access their
functionality

addo>o> ICOL

M\ + | N A~
\ L Ul Ily

eC

S,

Complete test coverage of a class involves
— Testing all operations associated with an object
— Setting and interrogating all object attributes
— Exercising object in all possible states
Inheritance makes it more difficult to design object class tests
— Since the information to be tested is not localized.

Need to define test cases for all methods

WeatherStation - reportWeather, calibrate,
- test, startup and shutdown

identifier

Using a state model, identify sequences of state
reﬁgrt\:Ve(aTthfr 0 ts) transitions to be tested and the event sequences
calibrate tinstruments to cause these transitions
test ()
startup (instruments) For example:

shutdown (instruments) Waiting -> Calibrating -> Testing -> Transmitting -> Waiting

L

LCIl IdllC

1N

ting

« To detect faults due to interface errors or invalid assumptions about
interfaces

— Particularly important for object-oriented development as objects are defined
by their interfaces

« Guidelines for interface testing

— Design tests so that parameters to called procedure are at the extreme ends
of their ranges

— Always test pointer parameters with null pointers

— Design tests which cause the component to fail

— Use stress testing in message passing systems

— In shared memory systems, vary the order in which components are activated

T\l

TV'\'I' 7 M\ a2VaVYe
1110 L 1ypeo

If"c"\
1 1d

el

« Interface types
— Parameter interfaces
» Data passes from one procedure to another.
— Shared memory interfaces
* Block of memory is shared between procedures or functions.
— Procedural interfaces
» Sub-system encapsulates a set of procedures to be called by other sub-systems.
— Message passing interfaces
» Sub-systems request services from other sub-systems.

,c

(errace crrors

1N

e Interface errors

— Interface misuse

» Calling component calls another component and makes an error in its use of its
interface.

e e.g. parameters in the wrong order
— Interface misunderstanding

» Calling component embeds assumptions about the behaviour of the called
component which are incorrect.

— Timing errors

» Called and calling component operate at different speeds and out-of-date
information is accessed.

« Involves designing the test cases (inputs and outputs) used to test the
system

— To create a set of tests that are effective in validation and defect testing

» Test case design approaches
— Requirements-based testing
— Partition testing
— Structural testing

III 'Y s

LI ements oasea iestl 'Y

A general principle of requirements engineering is that requirements
should be testable.

Requirements-based testing is a validation testing technique where you
consider each requirement and derive a set of tests for that requirement.

rdi LILIVIT 1COL

v\ N

"y

Input data and output results often fall into different classes where all
members of a class are related.

Each of these classes is an equivalence partition or domain where the
program behaves in an equivalent way for each class member.
— Test cases should be chosen from each partition.

Equivalence partitioning 3 11
4 7 10

LI 1 L

Less than 4 Between 4 and More than D I

Number ofinput \alues

9999 100000
10000 50000 99999
11 1 N1

Less than 10000 Between 10000 and 99999 More than 99999 I

Input values Konkuk University 43

« Sometime called white-box testing.
— Derives test cases according to program structure.
— Knowledge of the program is used to identify additional test cases.

« Objective is to exercise all program statements.
— A number of structural testing techniques exist, i.e. path testing
— A number of testing coverage exist.

Test data

Tests Drives

Test outputs

Konkuk University 344

—
=)
_|

ting

* To ensure that all the paths in the programs are executed

— Starting point for path testing is a program flow graph that shows nodes
representing program decisions and arcs representing the flow of control.

— Statements with conditions become nodes in the flow graph.

Flow-graph for

binary search 2 Independent test paths:
' 1,234,567 8,9 10, 14
3 1,23, 45 14
' 1,2,3,45,6,7 11, 12, 5,
¢ 1,2, 3,4,6,7 2 11, 13,5

L]
bottom > top ¢ = while bottom <= top

Test cases should be derived so that
6 all of these paths are executed.

elemArray [mid] != key o 11

elemArray [mid] >key’/ elemArray [mid] < key A dynamlc program analyzer may be
; ~ - used to check that paths have been
Executed.

elemArray
[mid] = key

14 = 10

Tf\f‘
1ICTOo

Vv

+ II'I'A ﬂ'l' 7N\
L LUI1a iVl |

AN
M\

« Testing workbenches provide a range of tools to reduce the time
required and total testing costs.

— Most are open systems, because testing needs are organization-specific.
— Sometimes difficult to integrate with closed design and analysis workbenches.

Test workbench

Konkuk Universi 346

1 1 A

C ~
SUITITTd

"2l W 4
l

y

Testing can show the presence of faults in a system, but it cannot prove
there are no remaining faults.

« Component developers are responsible for component testing. System
testing is the responsibility of a separate team.

« Integration testing is testing increments of the system. Release testing
involves testing a system to be released to a customer.

« Interface testing is designed to discover defects in the interfaces of
composite components.

« Equivalence partitioning is a way of discovering test cases - all cases in a
partition should behave in the same way.

« Structural analysis relies on analysing a program and deriving tests from
this analysis.

« Test automation reduces testing costs by supporting the test process
with a range of software tools.

Konkuk University 348

Chapter 27.
Quality Management

\ 7

nlf\:f\f“l'l 'laY@
UJCULLIVEDS

To introduce the quality management process and key quality
management activities

To explain the role of standards in quality management

To explain the concept of a software metric, predictor metrics and control
metrics

* To explain how measurement may be used in assessing software quality
and the limitations of software measurement

;'I'\Al A n I I \I “A
Iitware uaili

Ly vianage

3

CA
QU

« Concerned with ensuring that the required level of quality is achieved in
a software product.

— Involves defining appropriate quality standards and procedures, and ensuring
that these are followed.

— Should aim to develop a 'quality culture’ where quality is seen as everyone’s
responsibility.

e Quality ?

— Means a product should meet its specification.

* Quality problems in software systems

— There is a tension between customer quality requirements (efficiency,
reliability, ...) and developer quality requirements (maintainability, reusability, ...)

— Some quality requirements are difficult to specify in an unambiguous way.
— Software specifications are usually incomplete and often inconsistent.

0
<

I'I'\l F v\ m
L

d y LO |||p omise

Cannot wait for specifications to be improved before paying attention to
quality management.

We must put quality management procedures into place to improve
quality in spite of imperfect specification.

Scope of guality Management

— Quality management is particularly important for large complex systems. The
quality documentation is a record of progress and supports continuity of
development as the development team changes.

— For smaller systems, quality management needs less documentation and
should focus on establishing a quality culture.

§
)
—t
t
<

<
E

LC)
D
(D
n

Quality assurance
— Establish organisational procedures and standards for quality.

Quality planning
— Select applicable procedures and standards for a particular project and
modify these as required.

Quality control

— Ensure that procedures and standards are followed by the software
development team.

Quality management should be separate from project management to
ensure independence.

MNiialifvs NMana~narmant arnA CAfriarara NMavialArnmAaant
{Y dlll.y Ivid IGHCIHC IL AdliIuU o0ViLlvvdl LJCVCIU'JIIIC' 1L
Software development D1 D2 D3 D4 D5
process
Quality management
process v v v v v
—

Fooob l Vool

Standards and Quality Plan

procedures Quality review reports

DA

rirocess anda GQUCT

II\I
rro all

aY
Udlily

« The quality of a developed product is influenced by the quality of the
production process.

— Important in software development as some product quality attributes are
hard to assess.

« However, there is a very complex and poorly understood relationship
between software processes and product quality.

Dy
Pl

7\

rOCess- uality

<y

I~
vd

Y
\{

There is a straightforward link between process and product in
manufactured goods, but more complex for software.

— Application of individual skills and experience is particularly imporant in
software development.

— External factors such as the novelty of an application or the need for an
accelerated development schedule may impair product quality.

Must be careful not to impose inappropriate process standards.

Konkuk University 357

II I \l At“t“ll 2l Y 2 Valal -~ N IJ C'I'ﬁ A"\ A
dllly AooUuldlliLc dilu oldl NAaras

0
KU

« Standards are the key to effective quality management.
— May be international, national, organizational or project standards.
— Encapsulations of best practice

e Product standards
— define characteristics that all components should exhibit, e.g. a common
programming style.
» Process standards

— define how the software process should be enacted.

U
-5

@)
Q
)
—

Q)
>
ON
Y
=

o

0O
M
n
N
N
—
Q)
D)
Q.
Q)
-
Q
W

Product standards Process standards

Design review form

Requirements document structure

Method header format

Java programming style

Project plan format

Change request form

Design review conduct

Submission of documents to CM

Version release process

Project plan approval process

Change control process

Test recording process

Konkuk University

359

Fropiems witn >tanaaras

They may not be seen as relevant and up-to-date by software engineers.
They often involve too much bureaucratic form filling.

If they are unsupported by software tools, tedious manual work is often
involved to maintain the documentation associated with the standards.

+AAF\\,M+
talilUdiU> LU/C

C"\ -~ - 7N\ N\
Sldliud CVCIUMITICITIL

« Standard development involves practitioners in development.
— Engineers should understand the rationale underlying the standard.

« Standard should be reviewed regularly.

— Standards can quickly become outdated and this reduces their credibility
amongst practitioners.

» Detailed standards should have associated tool support.
— Excessive clerical work is the most significant complaint against standards.

T
1

O

'JaXelalala
oOU JUUU

« An international set of standards for quality management.

— Applicable to a range of organizations from manufacturing to service
industries.

« SO 9001

— Applicable to organisations which design, develop and maintain products.

— A generic model of the quality process that must be instantiated for each
organization using the standard.

O
O
O
-
S

 —

Management responsibility Quality system

Control of non-conforming products

Design control

Handling, storage, packaging and delivery Purchasing

Purchaser-supplied products
Process control

Inspection and test equipment
Contract review

Document control

Internal quality audits

Servicing

Product identification and traceability
Inspection and testing

Inspection and test status

Corrective action

Quiality records

Training

Statistical techniques

Konkuk University

363

T
1

C
®

m

M) ~
\ Ul |

O

NN £ +
UUU C© I L

Ca

|

f\lf'+
CIl L

Quality standards and procedures should be documented in an
organizational quality manual.

An external body may certify that an organization’s quality manual
conforms to ISO 9000 standards.

Some customers require suppliers to be ISO 9000 certified.

ISO 9000

Quality Models

instantiated as

Organizational documents
OVEI YA\ EIVEY

Quality Process

is used to develop instantiated as

Project 1 Project 2 Project 3

OVEINYALET! OVEINYALET! Quality Plan

supports

Konkuk University

364

1 1A

ocumen

Particularly important - documents are the tangible manifestation of the
software.

Documentation process standards

— Concerned with how documents should be developed, validated and
maintained.

Document standards
— Concerned with document contents, structure, and appearance.

Document interchange standards
— Concerned with the compatibility of electronic documents.

Stage 1:
Creation

Stage 2:
Polishing

Stage 3:
Production

m nlf'
1 1

o
)
M
n
n

Incorporate
Review draft review
comments

Re-draft
document

Create Initial
draft

Approved document

Check final
draft

Produce final
draft

Proofread text

Approved document

Produce print
masters

Layout text Review layout Print copies

Konkuk University 366

el

al

7 1 IMI\V'\'I' C‘l"'\lf'\A At"
UCUIITICITILU oldl IU UuoS

Document identification standards
— How documents are uniquely identified.

Document structure standards
— Standard structure for project documents

Document presentation standards
— Define fonts and styles, use of logos, etc.

Document update standards
— Define how changes from previous versions are reflected in a document.

'a Yl Bl a2Vala) ‘I' T 'I'I\ If'\ ﬂf\ A"\ A
ocument Lntercna 'yc NAaras

« Document interchange standards allow electronic documents to be
exchanged, mailed, etc.

— Needed to define conventions for their use e.g. use of style sheets and
macros.

* Need for archiving.

— The lifetime of word processing systems may be much less than the lifetime
of the software being documented.

— An archiving standard may be defined to ensure that the document can be
accessed in future.

I I \ /
dll

LE:

0
u

e Quality plans
— Set out the desired product qualities and how these are assessed.
— Defines the most significant quality attributes.
— Should define the quality assessment process.
— Set out which, where and when organizational standards be applied.

e Quality plan structure
— Product introduction
— Product plans
— Process descriptions
— Quality goals
— Risks and risk management

e Quality plans should be short, succinct documents
— If they are too long, no-one will read them.

Konkuk University

Portability

Usability

Reusability

Efficiency

Learnability

370

0
u

I I \7
dll

C AN |
_)/\._Ultl

O

Quality control involves checking the software development process to
ensure that procedures and standards are being followed.

Two approaches to quality control
— Quality reviews
— Automated software assessment and software measurement

nl I \I DA\IIA\AI("
Uadlity REVIEWS

Quality reviews are the principal method of validating the quality of a
process or of a product.

« A group examines part or all of a process or system and its
documentation to find potential problems.

« Different types of review with different objectives
— Inspections : for defect removal (product)
— Reviews : for progress assessment (product and process)
— Quality reviews (product and standards).

Property Principal Purpose

Design or
Program
Inspections

Progress
Reviews

Quality
Reviews

To detect detailed errors in the requirements, design or code. A checklist of possible
errors should drive the review.

To provide information for management about the overall progress of the project.
This is both a process and a product review and is concerned with costs, plans and
schedules.

To carry out a technical analysis of product components or documentation to find

mismatches between the specification and the component design, code or
documentation and to ensure that defined quality standards have been followed.

Konkuk University

373

nl I \I DA\I:A\AI("
Uadlity REVIEWS

Quality reviews carefully examine part or all of a software system and its
associated documentation.

— Code, designs, specifications, test plans, standards, etc. can all be reviewed.

— Software or documents may be 'signed off' at a review which signifies that
progress to the next development stage has been approved by management.

Any documents produced in the process may be reviewed.

Review teams should be relatively small and reviews should be fairly
short.

Records should always be maintained of quality reviews.

\ 7 \AIJ fllh [’

Df\ 1 A\ f"l':f\ ‘e
N\CVICVV TUIlICLIVIID
e Quality function

— Part of the general quality management process

* Project management function
— Provide information for project managers.

« Training and communication function
— Product knowledge is passed between development team members.

\ 7 \AIJ

Df\ 1 A\ Df\t“l II'I'
NCVICVV I\NCOUIL

S

« Comments made during the review should be classified
— No action : No change to the software or documentation is required.
— Refer for repair : Designer or programmer should correct an identified fault.

— Reconsider overall design : The problem identified in the review impacts other
parts of the design. Some overall judgement must be made about the most
cost-effective way of solving the problem.

« Requirements and specification errors may have to be referred to the
client.

Software Measurement and Metrics

« Software measurement is concerned with deriving a numeric value for an
attribute of a software product or process.

— Allows for objective comparisons between techniques and processes.

« Although some companies have introduced measurement programs,
most organizations still don't make systematic use of software
measurement.

« Few established standards in this area.

Software Metric

« Any type of measurement which relates to a software system, process or
related documentation
— Lines of code in a program
— The Fog index
— Number of person-days required to develop a component

— etc

« Allow the software and the software process to be quantified.
— May be used to predict product attributes
— May be used to control the software process.
— Can be used for general predictions.
— Can be used to identify anomalous components.

U
=

M

o

(@

—
@)

)
Q.
M)

)
—
-

Q
O
O

Software
Process

Control
Measurements

Measurement

>
~

<

M
~—
-

O
n

Software
Product

Predictor
Measurements

Decisions

Konkuk University

379

A I v\

LFICS AS IIIIJ

IVietl

« A software property can be measured.

» The relationship exists between what we can measure and what we want
to know. We can only measure internal attributes but are often more
interested in external software attributes.

« This relationship has been formalized and validated.

« It may be difficult to relate what can be measured to desirable external
quality attributes.

Number of procedure

parameters

Maintainability \

’ Cyclomatic complexity

Reliability

Program size
in lines of code

Portability

Number of error messages

Usability

Length of use manual

Konkuk University 381

“AA’\FIIIFI\MI\V‘\'I‘ nlﬁf\f‘f\f‘ﬁ
IVICAOUICTITITCIIL FTULCOSOD

« A software measurement process may be a part of a quality control
process.

— Data collected during this process should be maintained as an organizational
resource.

— Once a measurement database has been established, comparisons across
projects become possible.

component

Konkuk university 382

Ldld _UJICCLIVII

* A metrics programme should be based on a set of product and process
data.

« Data should be collected immediately (not in retrospect) and, if possible,
automatically.

« Three types of automatic data collection
— Static product analysis
— Dynamic product analysis
— Process data collation

1 1V \7

Ldld ALLUIdLYy

d

 Don't collect unnecessary data

— The questions to be answered should be decided in advance and the required
data identified.

« Tell people why the data is being collected.
— It should not be part of personnel evaluation.

« Don't rely on memory
— Collect data when it is generated not after a project has finished.

0
-
o

(@)

—
~
Y

<

M
—
-

2}
n

A quality metric should be a predictor of product quality.

Classes of product metric

— Dynamic metrics : Collected by measurements made of a program in
execution.

— Static metrics : Collected by measurements made of the system
representations

— Dynamic metrics help assess efficiency and reliability.
— Static metrics help assess complexity, understandability and maintainability.

N

n\llf'\"\m. IF\A "\'I':f 7\
L/ U aliC IVIC

M C+ i
_YIICIIIIIL dall DL LIICOD

« Dynamic metrics are closely related to software quality attributes

— Relatively easy to measure the response time of a system (performance
attribute) or the number of failures (reliability attribute).

« Static metrics have an indirect relationship with quality attributes

— Need to try and derive a relationship between these metrics and properties
such as complexity, understandability and maintainability.

CA'F"'\AI’\ /N
SUILVWdAIC

Aivi~+ NMAatvri~c
U L IVICLIILS

Produc

Software Description
Metric i

Fan-in / Fan-
out

Length of code

Cyclomatic
complexity

Length of

identifiers

Depth of
conditional

nesting

Fog index

Fan-in is a measure of the number of functions or methods that call some other
function or method (say X). Fan-out is the number of functions that are called by
function X. A high value for fan-in means that X is tightly coupled to the rest of the
design and changes to X will have extensive knock-on effects. A high value for fan-
out suggests that the overall complexity of X may be high because of the
complexity of the control logic needed to coordinate the called components.

This is a measure of the size of a program. Generally, the larger the size of the code
of a component, the more complex and error-prone that component is likely to be.
Length of code has been shown to be one of the most reliable metrics for
predicting error-proneness in components.

This is a measure of the control complexity of a program. This control complexity
may be related to program understandability. I discuss how to compute cyclomatic
complexity in Chapter 22.

This is a measure of the average length of distinct identifiers in a program. The
longer the identifiers, the more likely they are to be meaningful and hence the more
understandable the program.

This is a measure of the depth of nesting of if-statements in a program. Deeply
nested if statements are hard to understand and are potentially error-prone.

This is a measure of the average length of words and sentences in documents. The

higher the value for the Fog index, the more difficult the document is to understand.

Konkuk University

387

UUJCLLUEUTICTHILEU IVICLHILO

Object-Oriented Description
Metric >

Depth of

inheritance tree

Method fan-
in/fan-out

Number of
overriding
operations

This represents the number of discrete levels in the inheritance tree where sub-classes
inherit attributes and operations (methods) from super-classes. The deeper the inheritance
tree, the more complex the design. Many different object classes may have to be
understood to understand the object classes at the leaves of the tree.

This is directly related to fan-in and fan-out as described above and means essentially the
same thing. However, it may be appropriate to make a distinction between calls from
other methods within the object and calls from external methods.

This is the number of methods that are included in a class weighted by the complexity of
each method. Therefore, a simple method may have a complexity of 1 and a large and
complex method a much higher value. The larger the value for this metric, the more
complex the object class. Complex objects are more likely to be more difficult to
understand. They may not be logically cohesive so cannot be reused effectively as super-
classes in an inheritance tree.

This is the number of operations in a super-class that are over-ridden in a sub-class. A
high value for this metric indicates that the super-class used may not be an appropriate
parent for the sub-class.

Konkuk University 388

|’

“A 1 1 VA A If'\'l' A N
L Alld

7N\ 7\ I\l
IVICAOUICIITICI | I

y

SIS
« It is not always obvious what data means

— Analysing collected data is very difficult.

« Professional statisticians should be consulted if available.
« Data analysis must take local circumstances into account.

1 1 A

C ~
SUITITTd

"2l W 4
l

y

Software quality management is concerned with ensuring that software
meets its required standards.

e Quality assurance procedures should be documented in an organizational
quality manual.

« Software standards are an encapsulation of best practice.
« Reviews are the most widely used approach for assessing software quality.

« Software measurement gathers information about both the software
process and the software product.

e Product quality metrics should be used to identify potentially
problematical components.

« There are no standardized and universally applicable software metrics.

Konkuk University 391

Chapter 28.
Process Improvement

\ 7

nlf\:f\f“l'l 'laY@
UJCULLIVEDS

To explain the principles of software process improvement

To explain how software process factors influence software quality and
productivity

To explain how to develop simple models of software processes

« To explain the notion of process capability and the CMMI process
improvement model

n o aaValea
r1OULC

t" Tm ' aA\WIiaY a'a
1

'aY'a 7N 'I'
HIPTOVETTITTIL

« Understanding existing processes and introducing process changes to
improve product quality, reduce costs or accelerate schedules.

* Most process improvement work so far has focused on defect reduction.
This reflects the increasing attention paid by industry to quality.

* However, other process attributes can also be the focus of improvement.

Process Description
Attributes i

Understandability
Visibility
Supportability
Acceptability
Reliability
Robustness
Maintainability

Rapidity

To what extent is the process explicitly defined and how easy is it to understand the
process definition?

Do the process activities culminate in clear results so that the progress of the process is
externally visible?

To what extent can CASE tools be used to support the process activities?

Is the defined process acceptable to and usable by the engineers responsible for
producing the software product?

Is the process designed in such a way that process errors are avoided or trapped before
they result in product errors?

Can the process continue in spite of unexpected problems?

Can the process evolve to reflect changing organisational requirements or identified
process improvements?

How fast can the process of delivering a system from a given specification be completed?

Konkuk University 395

n el e\ v\ 'aA\VWial a'a

7 N\ f‘T 'aY'a 'Y a +r—\l
FTOULCOS LITTIPYTOUVEITITIHIL O

yCI

S

* Process measurement

— Attributes of the current process are measured. These are a baseline
for assessing improvements.

* Process analysis

— The current process is assessed and bottlenecks and weaknesses are
identified.

» Process change

— Changes to the process that have been identified during the analysis
are introduced.

Measure

Konkuk University 396

Dy
Pl

I +\I

L)’

el e\

ocess and GQUCT

(M)
le, YU

Process quality and product quality are closely related.

— The quality of the product depends on its development process.

A good process is usually required to produce a good product.
— For manufactured goods, process is the principal quality determinant.
— For design-based activity, other factors are also involved especially the
capabilities of the designers.

Process

Quality

Development
Technology

Product
Quality

Cost, Time and
Schedule

Konkuk University 398

I I \ / E
dll I

n -~ — 7\ o~
Quaiity ractors

For large projects with ‘average’ capabilities, the development process
determines product quality.

For small projects, the capabilities of the developers is the main
determinant.

* The development technology is particularly significant for small projects.

« In all cases, if an unrealistic schedule is imposed then product quality will
suffer.

D
r

e

ULCOS UidoollICadlliVll

Informal
— No detailed process model.
— Development team chose their own way of working.

Managed
— Defined process model which drives the development process.

Methodical
— Processes supported by some development method such as the RUP.

Supported

— Processes supported by automated CASE tools.

D
>

e

ULCOS LUITVUILC

Process used should depend on type of product being developed
— For large systems, management is usually the principal problem so we need a
strictly managed process.
— For smaller systems, more informality is possible.

No uniformly applicable process which should be standardized within an
organisation
— High costs may be incurred if you force an inappropriate process on a

development team.
— Inappropriate methods can also increase costs and lead to reduced quality.

Y,
-
@
0
M
W
W
C
o
%
-5
—

©
©
O

Informal Managed Methodical Improving
Process Process Process Process

- confiqurati - Analvsis and

eneric
Tools

Specialized

Management Management Design
9 9 '9 Tool

Tools Tools Workbenches

Konkuk University 402

nlf't'\f'f\t"t" “A/\"\f‘l IIFI\M/\V'\'I'
FIOUOCCOOS IVICASUICITICITIL

« Wherever possible, quantitative process data should be collected

— However, where organizations do not have clearly defined process standards,
this is very difficult as you don't know what to measure.

— A process may have to be defined before any measurement is possible.

* Process measurements should be used to assess process improvements
— But, this does not mean that measurements should drive the improvements.
— The improvement driver should be the organizational objectives.

r.lf'\t"t"f\t" I\'F nlﬁf\f‘hf‘f‘ “AA"\(“I IIFI\MI\V'\'I'
IdooSCTOS Ul FTULCOO IVICASUICITITIIL

« Time taken for process activities to be completed
— E.g. Calendar time or effort to complete an activity or process

« Resources required for processes or activities
— E.g. Total effort in person-days

* Number of occurrences of a particular event
— E.g. Number of defects discovered

-
<
(@]

§

1 1A~

Odi-JUeEsSt ol

Y,
Q)
o

0
—
.
0
Q)
S

* Goals
— What is the organisation trying to achieve?
— The objective of process improvement is to satisfy these goals.

e Questions
— Questions about areas of uncertainty related to the goals.
— You need process knowledge to derive these.

* Metrics
— Measurements to be collected to answer the questions

D
>

e

<
)

)

Q

|’

'aVYalfaYel @ A N
ULCOS A\lld

I\lt":t" "\If'\IJ
lyslo dlilu

Q.
D

Process analysis
— Study existing processes to understand the relationships between parts of the
process and to compare them with other processes.

Process modelling
— Documentation of a process which records the tasks, the roles and the
entities used
— May be presented from different perspectives.

Study an existing process to understand its activities.

Produce an abstract model of the process.
— Normally represent the model graphically.
— Several different views (e.g. activities, deliverables, etc.) may be required.

Analyse the model to discover process problems.
— Involves discussing process activities with stakeholders and discovering
problems and possible process changes.

c ~lhn
S cnn

7N 1 I

yu

n ' aVarfaYel @ A ~~N
rrocess ANad

I\I
l

y

S

« Published process models and process standards
— It is always best to start process analysis with an existing model.

— People then may extend and change it.

* Questionnaires and interviews

— Must be carefully designed.
— Participants may tell you what they think you want to hear.

« Ethnographic analysis
— Involves assimilating process knowledge
— Best for in-depth analysis of process fragments rather than for whole-process
understanding.

Process
Model
Elements

Activity

Process

Deliverable

Condition

Role

Exception

Communication

Graphical
Notation

A round-edged
rectangle with
no drop shadow

A round-edged
rectangle with
drop shadow

A rectangle with
drop shadow

A parallelogram

A circle with
drop

May be
represented as a
double edged
box

An arrow

Description

An activity has a clearly defined objective, entry and exit conditions. Examples of
activities are preparing a set of test data to test a module, coding a function or a module,
proof-reading a document, etc. Generally, an activity is atomic i.e. it is the responsibility
of one person or group. It is not decomposed into sub-activities.

A process is a set of activities which have some coherence and whose objective is
generally agreed within an organisation. Examples of processes are requirements analysis,
architectural design, test planning, etc.

A deliverable is a tangible output of an activity that is predicted in a project plan.

A condition is either a pre-condition that must hold before a process or activity can start
or a post-condition that holds after a process or activity has finished.

A role is a bounded area of responsibility. Examples of roles might be configuration
manager, test engineer, software designer, etc. One person may have several different
roles and a single role may be associated with several different people.

An exception is a description of how to modify the process if some anticipated or
unanticipated event occurs. Exceptions are often undefined and it is left to the ingenuity
of the project managers and engineers to handle the exception.

An interchange of information between people or between people and supporting
computer systems. Communications may be informal or formal. Formal communications
might be the approval of a deliverable by a project manager; informal communications
might be the interchange of electronic mail to resolve ambiguities in a document.

D
>

e

'aVYalfaYel @ E\If‘f\lr'\'l‘:f\lf'\t"
ULCOSS LALCPLUUILID

Software processes are complex and process models cannot effectively
represent how to handle exceptions
— Several key people becoming ill just before a critical review.

— A breach of security that means all external communications are out of action
for several days.

— Organizational reorganization
— A need to respond to an unanticipated request for new proposals.

Under these circumstances, the model is suspended and managers use
their initiative to deal with the exception.

We have to avoid the exceptions or change the process itself.

n ' aVarfaYel @ If'\ 2a2Ve Fa
FTULCOS lidIyc

« Process changes involve making modifications to existing processes.
— Introduce new practices, methods or processes.
— Change the ordering of process activities.
— Introduce or remove deliverables.
— Introduce new roles or responsibilities.

« Change should be driven by measurable goals.

Process change stages

— Improvement identification
— Improvement prioritization
— Process change introduction
— Process change training

— Change tuning

)

O
-5
§)
Q
M

M)
=
O

o
)
M
n
wn
@
)
M
n
n

Introduce
process change
Prioritize Tune process

improvements changes

Identify
improvements

Train engineers

Process Model Process Model Process Model Process Model

Process Model

Konkuk University 411

IIC CIVIIVIL Framework

« The CMMI framework is the current stage of work on process assessment
and improvement.
— Started at the SEI(Software Engineering Institute) in the 1980s.

— The SEI's mission is to promote software technology transfer particularly to US
defence contractors.

« It has had a profound influence on process improvement
— Capability Maturity Model introduced in the early 1990s.
— Revised maturity framework (CMMI) introduced in 2001.

Dy
Pl

7\

roce

)

I \7 v\

Af‘f'f\f't" 7\ 'I'
Ly MOOTOOITITIHIL

Capab

Intended as a means to assess the extent to which an organization’s
processes follow best practice.

— It is possible to identify areas of weakness for process improvement.

— There have been various process assessment and improvement models but
the SEI work has been most influential.

Ir'\

A CLCT AN
IC OLl dpd
Initial

— Essentially uncontrolled.

Repeatable
— Product management procedures defined and used.

Defined
— Process management procedures and strategies defined and used.

Viar ‘lageo
— Quality management strategies defined and used.

Optimizing

— Process improvement strategies defined and used.

I\ +hh +a NANA
I L

el e\ 7\ ~ 1 7\ r-
IUVICIHTIS VVILIT LTHIC CIVIIVI

e Practices associated with model levels

— Companies could be using practices from different levels at the same time,
but if all practices from a lower level were not used, it was not possible to

move beyond that level.

» Discrete rather than continuous
— Did not recognize distinctions between the top and the bottom of levels.

» Practice-oriented
— Concerned with how things were done (the practices) rather than the goals to
be achieved.

Th I\/II\/II

111C CIVIIVI V UUC|

* An integrated capability model that includes software and systems
engineering capability assessment.

« Two instantiations
— Staged where the model is expressed in terms of capability levels.
— Continuous where a capability rating is computed.

I ﬁf\mr\t\v‘\hv\-l-
1 CUII IIJUI ICIIL

C NANT c
(& 1 S

~A
IVIIVIL 1T1TOU

S

e Process areas

— 24 process areas that are relevant to process capability and improvement are
identified.

— Organized into 4 groups.

« @Goals
— Goals are descriptions of desirable organizational states.
— Each process area has associated goals.

» Practices
— Practices are ways of achieving a goal.
— They are just advisory and other approaches to achieve the goal may be used.

Organisational process definition
Organisational process focus

Process Management Organisational training
Organisational process performance
Organisational innovation and deployment

Project planning

Project monitoring and control
Supplier agreement management
Integrated project management
Risk management

Integrated teaming

Quantitative project management

Project Management

Requirements management
Requirements development
Technical solution

Product integration
Verification

Validation

Engineering

Configuration management

Process and product quality management
Measurement and analysis

Decision analysis and resolution
Organisational environment for integration
Causal analysis and resolution

Konkuk University 418

Support

Corrective actions are managed to closure when the project’s
performance or results deviate significantly from the plan.

Actual performance and progress of the project is monitored
against the project plan.

The requirements are analysed and validated and a definition
of the required functionality is developed.

Root causes of defects and other problems are systematically
determined.

The process is institutionalised as a defined process.

Konkuk University

Project Monitoring and control

Project monitoring and control

Requirements development

Causal analysis and resolution

Generic goal

419

The requirements are analysed and
validated and a definition of the
required functionality is developed.

Analyse derived requirements to ensure that they are necessary
and sufficient

Validate requirements to ensure that the resulting product will
perform as intended in the user’s environment using multiple
techniques as appropriate.

Root causes of defects and other
Select the defects and other problems for analysis. problems are systematically
determined.

Perform causai analysis of seiected defects and other probiems
and propose actions to address them.

Establish and maintain an organisational policy for planning The process is institutionalised as a
and performing the requirements development process. defined process.

Assign responsibility and authority for performing the process,
developing the work products and providing the services of
the requirements development process.

Konkuk University 420

C NANAT
CIVIIVIL

v\ If'\'l'
L

At“t“/\t“t" 7\
MAOOCOSIITICII

« Examines the processes used in an organization and assesses their
maturity in each process area.

« Based on a 6-point scale (6 levels)
— Not performed
— Performed
— Managed
— Defined
— Quantitatively managed
— Optimizing

Ir\

C+annnn
T oldyc

‘G
-

NANAT
1

NAaAAal
IVIIVI V UUCI

Comparable with the software CMM.
Each maturity level has process areas and goals.

f

I Defined

D

.

Quantitatively
Managed

D

. Optimizing]

J

J

| Managed J

[Initial

]

Konkuk University

422

« Institutions operating at the managed level should have institutionalized
practices that are geared to standardization. (Level 2 - Level 3)

— Establish and maintain policy for performing the project management
process.

— Provide adequate resources for performing the project management process.
— Monitor and control the project planning process.
— Review the activities, status and results of the project planning process.

Iﬂf\ rt‘\
1 Ne Lon

-|- a2 Yl
L

~ NANAT
1IUvV 1

> CUIVIIVI V UUCi

« A finer-grain model that considers individual or groups of practices and
assesses their use.

— The maturity assessment is not a single value but is a set of values showing
the organisations maturity in each area.

— The CMMI rates each process area from levels 1 to 5.

— The advantage of a continuous approach is that organizations can pick and
choose process areas to improve according to their local needs.

'U
o
0

(‘D
v
'CS

T oo .
and control ' '
Supplier agreement - ' ' ' '
management ' ' ' .
Risk management I ' ' ' '
Configuration
management T :
Requirements ' ' '
management — 1 , \
Verficaton [N

vlcaton |

Konkuk University 425

C
®

N2 a's)

MiMa

"2l W 4
l

y

Process improvement involves process analysis, standardisation,
measurement and change.

Processes can be classified as informal, managed, methodical and
improving. This classification can be used to identify process tool support.

The process improvement cycle involves process measurement, process
analysis and process change.

Process measurement should be used to answer specific process
questions, based on organisational improvement goals.

The three types of process metrics used in the measurement process are
time metrics, resource utilisation metrics and event metrics.

Process models include descriptions of tasks, activities, roles, exceptions,
communications, deliverables and other processes.

The CMMI process maturity model integrates software and systems
engineering process improvement.

Process improvement in the CMMI model is based on reaching a set of
goals related to good software engineering practice.

Konkuk University 427

Chapter 29.
Configuration Management

N A
UV

\ 7

I\f"l'l 'laY@
CLLIVEDOS

To explain the importance of software configuration management (CM)

To describe key CM activities namely CM planning, change management,
version management and system building

To discuss the use of CASE tools to support configuration management
processes

C A
LV

I ‘I' If'\ “A a2Ve VFalYa aVa
ation iviana y emen

r-'l-

nfigur

New versions of software systems are created as they change

For different machines/OS
Offering different functionality
Tailored for particular user requirements

Configuration management(CM) is concerned with managing evolving

software systems

System change is a team activity.
Aims to control the costs and effort involved in making changes.

Involves the development and application of procedures and standards to
manage an evolving software product.

May be seen as part of a more general quality management process.
When released to CM, software systems are sometimes called baselines.

r

C N\ ~
- dal

vl oldli U Uuo

(M should always be based on a set of standards which are applied
within an organization.

— Standards should define how items are identified, how changes are controlled
and how new versions are managed.

— Standards may be based on external CM standards
(e.g. IEEE standard for CM).

— Some existing standards are based on a waterfall process model.
— New CM standards are needed for evolutionary development.

Ilf\lf'\'l' \7

I:Iﬁf\ﬂ C t'“l'f\m DI I:IA.V'\
FICTQUCTIIL OyoSlLTill DUliU

INg

Frequent system building

— A new version of a system is built from components by compiling and linking
them.

— This new version is delivered for testing using pre-defined tests.

— Faults that are discovered during testing are documented and returned to the
system developers.

It is easier to find problems that stem from component interactions early
in the process.

— This encourages thorough unit testing - developers are under pressure not to
‘break the build',

— A stringent change management process is required to keep track of
problems that have been discovered and repaired.

Configuration Management Planning

« All products of the software process may have to be managed
— Specifications
— Designs
— Programs
— Test data
— User manuals

« Thousands of separate documents may be generated for a large,
complex software system.

Iﬂf\r ﬂ
111C UV I y

r-'l'
_5
"
}
r-'l-
ET

Defines the types of documents to be managed and a document naming
scheme.

Defines who takes responsibility for the CM procedures and creation of
baselines.

Defines policies for change control and version management.

Defines the CM records which must be maintained.

Describes the tools which should be used to assist the CM process and
any limitations on their use.

Defines the process of tool use.
Defines the CM database used to record configuration information.

May include information such as the CM of external software, process
auditing, etc.

C A
LV

+1fi -~

.-|-nT-|-anIn .
adllUIll 1L UCIILCI

A 4+,
Clll 1 L

IoON

ntigut

Large projects typically produce thousands of documents which must be
uniquely identified.

Some of these documents must be maintained for the lifetime of the
software.

Document naming scheme should be defined so that related documents

have related names.

A hierarchical scheme with multi-level names is probably the most
flexible approach.

— PCL-TOOLS/EDIT/FORMS/DISPLAY/AST-INTERFACE/CODE

@)
D)
—h

7N 1 Ilf"'\+:f\h I—I:AV'"\I/','L\\I
9 IdLIVUI I |_||C|d|L||_y
PCL -TOOLS
COMPILE BIND EDIT MAKE- GEN
— - T
FORM STRUCTURES HELP
DISP LAY QUERY
FOR M-SP E CS AST-INTER FA CE FOR M-IO

OB JECTS CODE TES TS

1 UdldidoT

All CM information should be maintained in a configuration database.

This should allow queries about configurations to be answered
— Who has a particular system version?
— What platform is required for a particular version?
— What versions are affected by a change to component X?
— How many reported faults in version T?

The CM database should preferably be linked to the software being
managed.

v\ Amnv‘\-l- m

dotC lITpPICihhichitatioll

May be part of an integrated environment to support software
development.

— The CM database and the managed documents are all maintained on the
same system.

CASE tools may be integrated.
— A close relationship between the CASE tools and the CM tools.

More commonly, the CM database is maintained separately as this is
cheaper and more flexible.

A nge NMAa

LNange Ivianage

3

« Software systems are subject to continual change requests
— from users
— from developers
— from market forces

« (Change management is concerned with
— Keeping track of these changes
— Ensuring that they are implemented in the most cost-effective way.

I,-\

L i

dange ivianagemen

rOCESS

Request change by completing a change request form
Analyze change request
if change is validthen
Assess how change might be implemented
Assess change cost
Submit request to change control board
if change is acceptedthen
repeat
make changes to software
submit changed software for quality approval
until software quality is adequate
create new system version
else
reject change request
else
reject change request

hlg

7\ sl &'

ye -I- CAr
OUL TVl

DA
Requ

« A change request form records
— The change proposed
— Requestor of change
— The reason why change was suggested
— The urgency of change (from requestor of the change)

e It also records
— Change evaluation
— Impact analysis
— Change cost
— Recommendations from system maintenance staff

_T

"aVea FVa 'aYa B! I 'I' I:f\ sl ‘&' Y

Nge Reqguest rorm

Change Request Form

Project: Proteus/PCL-T ools Number: 23/02
Change r equester: 1. Sommerville Date: 1/12/02

Requested chan?e When a component is selected from the structure, display
the name of the file where it is stored.

Change analyser: G. Dean Analysis date: 10/12/02
Components affected: Display-Icon.Select, Display-Icon.Display

Associated components: FileT able

Change assessment: Relatively simple to implement as a file name table is
available. Requires the design and implementation of a display field. No changes
to associated components are required.

Change priority: Low

Change implementation:
Estimated effort: 0.5 days

Date to CCB: 15/12/02 CCB decision date: 1/2/03
CCB decision: Accept change. Change to be implemented in Release 2.1.

Change implementor: Date of change:

Date submitted to QA: QA decision:

Date submitted to CM:
Comments

I,

acking Tools

T
)

1 1>

LE

* A major problem in change management is tracking change status.

« Change tracking tools
— Keep track the status of each change request .
— Ensure automatically that change requests are sent to the right people at the
right time.
— Integrated with E-mail systems allowing electronic change request distribution.

I,-\

COonNtrolr boara

LnNange

Changes should be reviewed by an external group who decide whether
or not they are cost-effective from a strategic and organizational
viewpoint rather than a technical viewpoint.

The group is called a change control board(CCB).
— May include representatives from client and contractor staff.

\\W 4

eva

\7

" Llict+A
Derivat tory

ION MliS

« Derivation history is a record of changes applied to a document or code
component.

— Should record, in outline,
» The change made
« The rationale for the change
 Who made the change
* When it was implemented.

— May be included as a comment in code.

Ul IlJUI ICIIL T1ICAUCI] 1111OI111
// BANKSEC project (IST 6087)

//

// BANKSEC-TOOLS/AUTH/RBAC/USER_ROLE

//

// Object: currentRole

// Author: N. Perwaiz

// Creation date: 10th November 2002

//

// © Lancaster University 2002

//

// Modification history

// Version Modifier Date Change

// 1.0 J. Jones 1/12/2002 Add header
// 1.1 N. Perwaiz 9/4/2003 New field

Q)

cr

O

)

Reason
Submitted to CM
Change req. R07/02

\In

VCIOS U 1€asSe Viadhnd y

§

7N\ -~ N DI\
Ull dll N\C

« Version and release management
— Invent an identification scheme for system versions.
— Plan when a new system version is to be produced.
— Ensure that version management procedures and tools are properly applied.
— Plan and distribute new system releases.

e \ersion

— An instance of a system which is functionally distinct in some way from other
system instances.

e Variant

— An instance of a system which is functionally identical but non-functionally
distinct from other instances of a system.

e Release

— An instance of a system which is distributed to users outside of the
development team.

\/o N TA
1U

VCIOoIVUII L

Cll ICalliVUl |

« \Version identification should define an unambiguous way of identifying
component versions.

* Three basic techniques for component identification
— Version numbering
— Attribute-based identification
— Change-oriented identification

\II\ f‘f\lf'\ kllMI"\
VCIOoIVUII 111IUC

ring

e Simple naming scheme uses a linear derivation.
— V1,V11, V12 V21, V2.2 etc.
e The actual derivation structure is a tree or a network rather than a
sequence.
— Version names are not meaningful.
— A hierarchical naming scheme leads to fewer errors in version identification.

.- ‘

Konkuk University 449

C~DdoCU 1UCITILITICAUIVUI

o Attributes can be associated with a version with the combination of
attributes identifying that version

— Examples of attributes are Date, Creator, Programming Language, Customer,
Status etc.

* More flexible than an explicit naming scheme for version retrieval.
— May cause problems with uniqueness.

— The set of attributes have to be chosen so that all versions can be uniquely
identified.

« In practice, a version also needs an associated name for easy reference.
« Example: AC3D (language =Java, platform = XP, date = Jan 2003)

ChAa

v\ ;f‘
Clid Iy

I\n 'aY a -~
—\Ul C'IILd

ntad TA +1AN
Ntea 1d LIOUI I

» Change-oriented identification integrates versions and the changes made
to create these versions.

— Used for systems rather than components.

— Each proposed change has a change set that describes changes made to
implement that change.

— Change sets are applied in sequence so that, in principle, a version of the
system that incorporates an arbitrary set of changes may be created.

NA A

If\"\t“/\ Ve Fa
1ease 1vidinad dytcilitc N

r-'l-

Re

» Releases must incorporate changes forced on the system by errors
discovered by users and by hardware changes.

— Must also incorporate new system functionality.

« Release planning is concerned with when to issue a system version as a
release.

7\ I\II\"\("/\("
Clll CICCIDCD

« System release is not just a set of executable programs

« May also include

— Configuration files defining how the release is configured for a particular
installation

— Data files needed for system operation

— An installation program or shell script to install the system on target hardware
— Electronic and paper documentation

— Packaging and associated publicity

~ci~nn NMA |/

C'IC'CIDC L/CUCISIVIT 1Vid Iy

All files required for a release should be re-created when a new release is
installed.

Preparing and distributing a system release is an expensive process.

Factors such as the technical quality of the system, competition,
marketing requirements and customer change requests should all
influence the decision of when to issue a new system release.

T T

If serious system faults are reported which affect the way in which many
customers use the system, it may be necessary to issue a fault repair release.
However, minor system faults may be repaired by issuing patches (often
distributed over the Internet) that can be applied to the current release of the
system.

Technical quality of the
system

You may have to create a new release of a software application when a new

Platform changes version of the operating system platform is released.

This suggests that the increment of functionality that is included in each release
is approximately constant. Therefore, if there has been a system release with
significant new functionality, then it may have to be followed by a repair release.

Lehman'’s fifth law
(See chapter 21)

Competition A new system release may be necessary because a competing product is

available.
Marketing The marketing department of an organisation may have made a commitment
requirements for releases to be available at a particular date.

For customised systems, customers may have made and paid for a specific set
of system change proposals and they expect a system release as soon as these
have been implemented.

Customer change
proposals

Konkuk University 455

| +iAN
I LIVII

f\ 'aleYala r‘lf‘f\"\
NCICTdoCT ICTd

Release creation involves collecting all files and documentation required
to create a system release.

— Configuration descriptions have to be written for different hardware.
— Installation scripts have to be written.

— The specific release must be documented to record exactly what files were
used to create it. This allows it to be re-created if necessary.

§

A
11U

W

<
v
(D

ng

« The process of compiling and linking software components into an
executable system
— Different systems are built from different combinations of components.
— Now always supported by automated tools that are driven by ‘build scripts’.

Version
System Builder Management Compiler Linker
System

Source Code
Build Script Component
Versions

Object Code Executable
Components System

Konkuk University 457

v\

" U A ~hlarmc
1HHUI UMICII1ID

ng P

e Do the build instructions include all required components?

— When there are many hundreds of components making up a system, it is easy
to miss one out. This should normally be detected by the linker.

« Is the appropriate component version specified?

— A more significant problem. A system built with the wrong version may work
initially but fail after delivery.

e Are all data files available?

— The build should not rely on 'standard' data files. Standards vary from place
to place.

v\

" U A ~hlarmc
1HHUI UMICII1ID

ng P

« Are data file references within components correct?

— Embedding absolute names in code almost always causes problems as naming
conventions differ from place to place.

o Is the system being built for the right platform
— Sometimes you must build for a specific OS version or hardware configuration.

« Is the right version of the compiler and other software tools specified?

— Different compiler versions may actually generate different code and the
compiled component will exhibit different behaviour.

C ACE TAn
CAOL 1VUVID

5
)
>
~

)

<
Q
Q)
Q
M
D

:

)
—

|~ -ﬂ mr . -|-°
15 U1 all

ntigur

CASE tool support for CM is essential, because

— CM processes are standardized and involve applying pre-defined procedures.
— Large amounts of data must be managed.

Mature CASE tools to support configuration management are available
ranging from stand-alone tools to integrated CM workbenches.

‘G
-

N \A/

VI VVUI KUVCTICIICO

Open workbenches

— Tools for each stage in the CM process are integrated through organizational
procedures and scripts.

— Gives flexibility in tool selection.

Integrated workbenches
— Provide whole-process, integrated support for configuration management.
— More tightly integrated tools so easier to use.
— However, the cost is less flexibility in the tools used.

L 1>

Cha Nnge ivianagemen

Tools

« Change management is a procedural process so it can be modelled and
integrated with a version management system.

e Change management tools
— Form editor to support processing the change request forms

— Workflow system to define who does what and to automate information
transfer

— Change database that manages change proposals and is linked to a VM
system

— Change reporting system that generates management reports on the status
of change requests

version ividna y ement UUI

Version and release identification

— Systems assign identifiers automatically when a new version is submitted to
the system.

« Storage management.

— System stores the differences between versions rather than all the version
code.

« Change history recording
— Record reasons for version creation.

« Independent development

— Only one version at a time may be checked out for change. Parallel working
on different versions.

* Project support

— Can manage groups of files associated with a project rather than just single
files.

" U A
1HHUI

Ng

Building a large system is computationally expensive and may take
several hours.

Hundreds of files may be involved.

System building tools may provide

— A dependency specification language and interpreter
— Tool selection and instantiation support

— Distributed compilation

— Derived object management

C
®

N2 a's)

MiMa

"2l W 4
l

y

Configuration management is the management of system change to
software products.

A formal document naming scheme should be
established and documents should be managed in a database.

The configuration data base should record information about changes
and change requests.

A consistent scheme of version identification should be established using
version numbers, attributes or change sets.

System releases include executable code, data, configuration files and
documentation.

System building involves assembling components into a system.
CASE tools are available to support all CM activities.

CASE tools may be stand-alone tools or may be integrated systems
which integrate support for version management, system building and
change management.

