
Software Engineering

JUNBEOM YOOJUNBEOM YOO

Dependable Software Laboratory
KONKUK University

http://dslab.konkuk.ac.kr

Ver. 2.0 (2010.06)

※ This lecture note is based on materials from Ian Sommerville 2006.
※ Anyone can use this material freely without any notification.

IntroductionIntroduction

• This lecture provides
– Part I. Overview
– Part II. Requirements
– Part III. Design
– Part IV. Development
– Part V. Verification and Validation
– Part VI. Managing People

• Practice
SASD : Analysis  Design  Implementation– SASD : Analysis  Design  Implementation

Konkuk University 3

Part I. Overview

Konkuk University 4

Ch t 1Chapter 1.

Introduction to Software Engineering

ObjectivesObjectives

T i d f i i• To introduce software engineering
• To explain software engineering’s importance
• To answer key questions about software engineeringy q g g

6Konkuk University

Software EngineeringSoftware Engineering

S ft i i i thi• Software engineering is something
– concerned with theories, methods and tools for professional software

development.
– concerned with cost-effective software development– concerned with cost-effective software development.

Let’s define software engineering through 11 FAQs as follows• Let s define software engineering through 11 FAQs as follows.

7Konkuk University

FAQs about Software EngineeringFAQs about Software Engineering

1 Wh i f ?1. What is software?
2. What is software engineering?
3. What is the difference between software engineering and computer g g p

science?
4. What is the difference between software engineering and system

engineering?g g
5. What is a software process?
6. What is a software process model?
7 What are the costs of software engineering?7. What are the costs of software engineering?
8. What are software engineering methods?
9. What is CASE (Computer-Aided Software Engineering) ?
10. What are the attributes of good software?
11. What are the key challenges facing software engineering?

8Konkuk University

1 What is Software?1. What is Software?

S ft i t d i t d d t ti h• Software is computer programs and associated documentation such as
requirements, design models and user manuals

• Software products may be developed for a particular customer or for a
general market.

– Generic : developed to be sold to a range of different customers– Generic : developed to be sold to a range of different customers.
e.g. PC software such as Excel or Word

– Bespoke (custom) : developed for a single customer according to their
specification. e.g. Software used in a hospital

9Konkuk University

2 What is Software Engineering?2. What is Software Engineering?

S f i i i• Software engineering is
– An engineering discipline that is concerned with all aspects of software

production.
All thi d ith f l d l t f ft– All things concerned with a successful development of software

• Software engineers should
– adopt a systematic and organised approach
– use

• appropriate tools,
• techniques depending on the problem to be solved,
• development constraints,development constraints,
• resources available.

10Konkuk University

3. What is the Difference between Software
Engineering and Computer Science?

C i i d i h h d f d l• Computer science is concerned with theory and fundamentals.

• Software engineering is concerned with the practicalities of developing g g p p g
and delivering useful software.

• Computer science theories are insufficient to act as a complete
underpinning for software engineering (unlike physics and electrical engineering),
since it is practiced/performed by peoplesince it is practiced/performed by people.

11Konkuk University

4. What is the Difference between Software
Engineering and System Engineering?

S t i i i d ith ll t f t b d• System engineering is concerned with all aspects of computer-based
systems development including hardware, software and process
engineering.

• Software engineering is part of system engineering process concerned
with developing the software infrastructure, control, applications and
databases in the system.databases in the system.

12Konkuk University

5 What is a Software Process?5. What is a Software Process?

S ft i t f ti iti h l i th d l t• Software process is a set of activities whose goal is the development or
evolution of software.

• Generic activities in all software processes
– Specification : what the system should do

D l t d ti f th ft t– Development : production of the software system
– Validation : checking that the software is really what the customer wants
– Evolution : changing the software in response to changing demands

13Konkuk University

6 What is a Software Process Model?6. What is a Software Process Model?

A i lifi d i f f d f• A simplified representation of a software process, presented from a
specific perspective.

• Examples of process perspectives
– Workflow perspective : sequence of activities
– Data-flow perspective : information flowp p
– Role/action perspective : who does what

• Generic process models
– Waterfall

It ti d l t– Iterative development
– Component-based software engineering

14Konkuk University

7 What are the Costs of Software Engineering?7. What are the Costs of Software Engineering?

D l hl• Development costs are roughly
– 60% : development costs
– 40% : testing costs
– For custom (long-lifetime) software, evolution costs often exceed

development costs.

• Costs can vary depending on
– the type of system being developed
– the requirements of system attributes (performance and system reliability)q y p y y

• Therefore, distribution of costs depends on the development model that
is usedis used.

15Konkuk University

Waterfall modelWaterfall model

Specification Design Development Integration and testing

25 50 75 1000

Iterative development

p g p g g

25 50 75 1000

Component-based software engineering

Specification Iterative development Sỳstem testing

Component based software engineering

Specification Development Integration and testing

25 50 75 1000

Development and evolution costs for long-lifetime systems

10 200 30 4000

Specification Development Integration and testing

Activity-cost distribution varying depending on software process models

System evolutionSystem development

Konkuk University 16

Activity cost distribution varying depending on software process models

8 What are Software Engineering Methods?8. What are Software Engineering Methods?

O i d f d i ft di t th• Organized way of producing software according to the process

• Structured approaches to software development which include system
d l t ti l d i d i d idmodels, notations, rules, design advice and process guidance.

– Model descriptions
• Descriptions of graphical models which should be produced

Rules– Rules
• Constraints applied to system models

– Recommendations
• Advice on good design practiceAdvice on good design practice

– Process guidance
• What activities to follow

17Konkuk University

9 What is CASE (Computer Aided Software Engineering) ?9. What is CASE (Computer-Aided Software Engineering) ?

CASE S f h i d d id d• CASEs are Software systems that are intended to provide automated
support for software process activities and software engineering methods.

– Requirements and design
– Programming and debugging
– Testing

18Konkuk University

10 What are the Attributes of Good Software?10. What are the Attributes of Good Software?

Th d ft h ld• The good software should
– deliver the required functionality and performance to the user
– be maintainable, dependable and acceptable.

• Maintainability
S ft t l t t h i d– Software must evolve to meet changing needs.

• Dependability
– Software must be trustworthy.

Effi i• Efficiency
– Software should not make wasteful use of system resources.

• Acceptability
S ft t b t d b th f hi h it d i d– Software must be accepted by the users for which it was designed.

– It must be understandable, usable and compatible with other systems.

19Konkuk University

SummarySummary

S ft i i i i i di i li th t i d ith• Software engineering is an engineering discipline that is concerned with
all aspects of software production.

• Software products consist of developed programs and associated
documentationdocumentation.

• Essential product attributes are maintainability, dependability, efficiency
and usability.

• The software process consists of activities that are involved in developing• The software process consists of activities that are involved in developing
software products. Basic activities are software specification, development,
validation and evolution.

• Methods are organized ways of producing software. They include et ods a e o ga ed ays o p oduc g so t a e. ey c ude
suggestions for the process to be followed, the notations to be used,
rules governing the system descriptions produced, and design guidelines.

• CASE tools are software systems which are designed to support routine
activities in the software process such as editing design diagrams,
checking diagram consistency and keeping track of program tests which
have been run.

20Konkuk University

Konkuk University 21

Ch t 2Chapter 2.

Socio-technical Systems

ObjectivesObjectives

T l i h i h i l i• To explain what a socio-technical system is
• To explain the distinction between a socio-technical system and a

computer-based system
• To introduce the concept of emergent system properties
• To explain about system engineering
• To discuss legacy systems and why they are critical to many businessesTo discuss legacy systems and why they are critical to many businesses

23Konkuk University

What is a System?What is a System?

A f l ll i f i l d ki h• A purposeful collection of inter-related components working together to
achieve some common objective

– May include software, mechanical, electrical and electronic hardware and be
t d b loperated by people.

• Technical computer-based systems
– Include hardware and software, but where the operators and operational

processes are not normally considered to be part of the system.
Th t i t lf– The system is not self-aware. (e.g. Lap-top, MP3 player, cell phones, etc.)

• Socio-technical systems
Systems that include technical systems but also operational processes and– Systems that include technical systems but also operational processes and
people who use and interact with the technical system.

– Socio-technical systems are governed by organisational policies and rules.
(e.g. flight control system, transportation reservation system, etc.)

Konkuk University 24

Characteristics of Socio-technical SystemCharacteristics of Socio-technical System

E i• Emergent properties
– Properties of the system as a whole, depending on the system components

and their relationships
F t– Features :

• non-deterministic
• complex relationship with organizational objectives

– Non-deterministic
• They do not always produce the same output when presented with the

i t b th t ’ b h i i ti ll d d tsame input, because the system’s behaviour is partially dependent on
human operators.

Complex relationships with organisational objectives– Complex relationships with organisational objectives
• The extent to which the system supports organisational objectives does

not just depend on the system itself.

25Konkuk University

Emergent PropertiesEmergent Properties

E i f h l i hi b• Emergent properties are a consequence of the relationships between
system components.

• Therefore, they can only be assessed and measured once the
components have been integrated into a system.

Property Description

Volume
The volume of a system (the total space occupied) varies depending on how the
component assemblies are arranged and connected.

Reliability
System reliability depends on component reliability but unexpected interactions can
cause new types of failure and therefore affect the reliability of the system.

Security
The security of the system (its ability to resist attack) is a complex property that cannot
be easily measured. Attacks may be devised that were not anticipated by the system
designers and so may defeat built-in safeguards.

This property reflects how easy it is to fix a problem with the system once it has been
Repairability

p p y y p y
discovered. It depends on being able to diagnose the problem, access the components
that are faulty and modify or replace these components.

Usability
This property reflects how easy it is to use the system. It depends on the technical
system components, its operators and its operating environment.

26Konkuk University

Types of Emergent PropertiesTypes of Emergent Properties

F i l i• Functional properties
– These appear when all the parts of a system work together to achieve some

objective.
F l bi l h th f ti l t f b i t t ti– For example, a bicycle has the functional property of being a transportation
device once it has been assembled from its components.

• Non-functional properties
– These relate to the behaviour of the system in its operational environment.
– Examples are reliability, performance, safety, and security.

27Konkuk University

Reliability of Systems

W d t id th li bilit f t f t

Reliability of Systems

• We need to consider the reliability from aspect of systems
– Even if we have reliable software components,
– System failures often occur dus to unforeseen interactions between reliable

componentscomponents.
• Therefore, we need system engineering.

• Influences on reliability
– Hardware reliability

• What is the probability of a hardware component failing and how long does it takeWhat is the probability of a hardware component failing and how long does it take
to repair that component?

– Software reliability
• How likely is it that a software component will produce an incorrect output.

O t li bilit– Operator reliability
• How likely is it that the operator of a system will make an error?

28Konkuk University

Systems EngineeringSystems Engineering

S i i i d i h• System engineering is concerned with
– specifying, designing, implementing, validating,
– deploying and maintaining socio-technical systems

• System engineering is also concerned with
– services provided by the system, p y y ,
– constraints on its construction,
– operation and the ways in which it is used

29Konkuk University

Systems Engineering ProcessSystems Engineering Process

S i i• System engineering process
– Usually follows a “Waterfall” model.
– Involves engineers from different disciplines who must work together, and

i d t di hmisunderstanding occurs here.

Requirements System
i i iDefinition

System System

Decommissioning

System
Design

System
Evolution

Sub-System
Development

System
Installation

Konkuk University 30

System
Integration

Example: Inter-Disciplinary Involvement in
System engineering

Software
E i i

Electronic
Engineering

Mechanaical
EngineeringEngineering Engineering Engineering

Structural
Engineering

User Interface
Design

ATC Systems
Engineering

Civil
Engineering

Electrical
Engineering

Architecture

Konkuk University 31

Legacy SystemsLegacy Systems

S i h i l h• Socio-technical systems that
– Developed 10~20 years ago.
– Have been in a stable manner up to now.
– However, new business needs require a new efficient system.

• Crucial to the operation of a business p
• Often too risky to change it with new ones

– Bank customer accounting system
– Aircraft maintenance systemAircraft maintenance system

• Legacy systems constrain new business processes and consume a high
proportion of company budgets to maintain itproportion of company budgets to maintain it..

32Konkuk University

Socio technical Legacy SystemSocio-technical Legacy System

Socio-technical Systemy

Business Processes

Application Software

Support Software

HardwareHardware

Konkuk University 33

Legacy System ComponentsLegacy System Components

H d• Hardware
– may be obsolete mainframe hardware.

• Support software
– may rely on support software from suppliers who are no longer in business.

• Application software
– may be written in obsolete programming languages.y p g g g g

• Application data
– often incomplete and inconsistent.

• Business processes• Business processes
– may be constrained by software structure and functionality.

• Business policies and rules
b i li it d b dd d i th t ft– may be implicit and embedded in the system software.

34Konkuk University

Relationship between Legacy System ComponentsRelationship between Legacy System Components

Embeds
knowledge

Support
Software

Application
Software

Business
Policies & Rules

Uses
knowledge

of

ConstrainsUsesUsesRuns-onRuns-on

System
Hardware

Application
Data

Business
Processes

Konkuk University 35

SummarySummary

S i h i l i l d h d f d• Socio-technical systems include computer hardware, software and
people, and are designed to meet some business goal.

• Emergent properties are properties that are characteristic of the
system as a whole.

• The systems engineering process includes specification, design,
development, integration and testing. System integration is
particularly critical.

• Human and organisational factors have a significant effect on the
operation of socio-technical systems.p y

• A legacy system is an old system that continues to provide essential
services.``

36Konkuk University

Konkuk University 37

Ch t 3Chapter 3.

Critical Systems

ObjectivesObjectives

T l i h i i l i• To explain what a critical system is
• To explain four dimensions of dependability - availability, reliability, safety

and security
• To explain why, for achieving dependability, you need to avoid mistakes,

detect and remove errors and limit damage caused by failure (a mid-term problem)

Konkuk University 39

Critical SystemsCritical Systems

S f i i l• Safety-critical systems
– Failure results in loss of life, injury or damage to environment
– Ex) Chemical plant protection system

• Mission-critical systems
– Failure results in failure of some goal-directed activitiesg
– Ex) Spacecraft navigation system

• Business-critical systems• Business-critical systems
– Failure results in high economic losses
– Ex) Customer accounting system in bank

40Konkuk University

Development Methods for Critical SystemsDevelopment Methods for Critical Systems

Th f i i l f il hi h• The costs of critical system failure are so high.
• Therefore, development methods for critical systems are not cost-

effective for other types of system.

• Examples of development methodsExamples of development methods
– Formal methods (specification and verification)
– Static analysis
– External quality assurance– External quality assurance

Konkuk University 41

System DependabilitySystem Dependability

F i i l i i ll h h h i• For critical systems, it is usually the case that the most important system
property is the dependability of the system.

• It reflects the extent of the user’s confidence that it will operate as users
expect and that it will not ‘fail’ in normal use.

Konkuk University 42

DependabilityDependability

D d bilit f t t t it t t thi• Dependability of system equates to its trustworthiness.
• Dependable system is a system that is trusted by its users.

• Principal dimensions of dependability
– Availability, Reliability, Safety, Security

Dependability

Availability Reliability Safety SecurityAvailability Reliability Safety Security

The ability of the system
to deliver services

The ability of the system
to deliver services

The ability of the system
to operate without

The ability of the system
to protect itself against

43Konkuk University

when requested as specified
p

catastrophic failure
p g

accidental or deliberate
intrusions

Other Dependability PropertiesOther Dependability Properties

R bilit• Reparability
– To which extent the system can be repaired in the event of a failure

Maintainability• Maintainability
– To which extent the system can be adapted to new requirements

• Survivability• Survivability
– To which extent the system can deliver services whilst under hostile attack

• Error tolerance• Error tolerance
– To which extent user input errors can be avoided and tolerated

44Konkuk University

Dependability CostsDependability Costs

D d bili d i i ll i d l l f• Dependability costs tend to increase exponentially as required levels of
dependability increase.

– More expensive development techniques and hardware are required.
– Increased testing and system validation are also required.

Cost

Low Medium High Very High Ultra High

45Konkuk University

Dependability

Dependability EconomicsDependability Economics

B f hi h t f d d bilit hi t• Because of very high costs of dependability achievement
• It may be more cost effective to accept untrustworthy systems and pay

for failure costs.

• However, it depends on
– Social and political factors

P t ti f d t l f t b i• Poor reputation for products may lose future business.
– System type

• For business systems, modest levels of dependability may be adequate.

46Konkuk University

Availability and ReliabilityAvailability and Reliability

A il bilit• Availability
– The probability that a system will be operational and able to deliver the

requested services, at a point in time

• Reliability
– The probability of failure-free system operation over a specified time in a

given environment for a given purposeg e e o e t o a g e pu pose

• Both of these attributes can be expressed quantitatively.
• This class considers them as the sameThis class considers them as the same.

47Konkuk University

Reliability TerminologyReliability Terminology

Term Description

h h h d d l
System failure

An event that occurs at some point in time when the system does not deliver a
service as expected by its users

System error
An erroneous system state that can lead to system behavior that is unexpected by
system users.y

System fault
A characteristic of a software system that can lead to a system error. For example,
failure to initialize a variable could lead to that variable having the wrong value
when it is used.

Human error
or mistake

Human behavior that results in the introduction of faults into a system.

48Konkuk University

Reliability AchievementReliability Achievement

F lt id• Fault avoidance
– Use development technique which either minimize the possibility of mistakes

or trap mistakes before they result in the introduction of system faults

• Fault detection and removal
– Use verification and validation techniques which increase probability of

detecting and correcting errors before system goes into serviceg g y g

• Fault tolerance
– Use run-time techniques to ensure that system faults do not result in system q y y

errors and/or to ensure that system errors do not lead to system failures

49Konkuk University

SafetySafety

S f i h fl h ’ bili• Safety is a system property that reflects the system’s ability to operate,
normally or abnormally, without danger of causing human injury or
death and without damage to the system’s environment.

• Exclusive requirements
– Exclude undesirable situations rather than specify required system services.
– “Should not” property

50Konkuk University

Safety TerminologySafety Terminology

Term Description

Accident
(mishap)

An unplanned event or sequence of events which results in human death or injury,
damage to property or to the environment. A computer-controlled machine injuring
its operator is an example of an accident.

Risk
This is a measure of the probability that the system will cause an accident. The risk
is assessed by considering the hazard probability, the hazard severity and the
probability that a hazard will result in an accident.

A measure of the loss resulting from a mishap Damage can range from many
Damage

A measure of the loss resulting from a mishap. Damage can range from many
people killed as a result of an accident to minor injury or property damage.

Hazard
A condition with the potential for causing or contributing to an accident. A failure
of the sensor that detects an obstacle in front of a machine is an example of a
hazardhazard.

Hazard severity
An assessment of the worst possible damage that could result from a particular
hazard. Hazard severity can range from catastrophic where many people are killed
to minor where only minor damage results.

Hazard
probability

The probability of the events occurring which create a hazard. Probability values
tend to be arbitrary but range from probable (say 1/100 chance of a hazard
occurring) to implausible (no conceivable situations are likely where the hazard
could occur).

51Konkuk University

Safety AchievementSafety Achievement

H d id• Hazard avoidance
– Design the system so that some classes of hazard simply cannot arise

• Hazard detection and removal
– Design the system so that hazards are detected and removed before they

result in an accident

• Damage limitation
– Includes protection features that minimise the damage that may result fromIncludes protection features that minimise the damage that may result from

an accident

52Konkuk University

SecuritySecurity

S it i t t th t fl t th t ’ bilit t t t• Security is a system property that reflects the system’s ability to protect
itself from accidental or deliberate external attack.

S it i b i i i l i t t t t k d• Security is becoming increasingly important as systems are networked so
that external access to the system through the Internet is possible.

Security is an essential pre requisite for availability reliability and safety• Security is an essential pre-requisite for availability, reliability and safety.

53Konkuk University

Security TerminologySecurity Terminology

Term Description

Exposure
Possible loss or harm in a computing system. This can be loss or damage to data or
can be a loss of time and effort if recovery is necessary after a security breach.can be a loss of time and effort if recovery is necessary after a security breach.

Vulnerability
A weakness in a computer-based system that may be exploited to cause loss or
harm.

Attack
An exploitation of a system vulnerability. Generally, this is from outside the system
and is a deliberate attempt to cause some damage.

Threats
Circumstances that have potential to cause loss or harm. You can think of these as a
system vulnerability that is subjected to an attacksystem vulnerability that is subjected to an attack.

Control
A protective measure to reduce a system vulnerability. Encryption would be an
example of a control that reduced a vulnerability of a weak access control system.

54Konkuk University

Security AssuranceSecurity Assurance

V l bilit id• Vulnerability avoidance
– Design the system so that vulnerabilities do not occur
– For example, if there is no external network connection, any external attack is

impossibleimpossible.

• Attack detection and elimination
– Design the system so that attacks on vulnerabilities are detected andDesign the system so that attacks on vulnerabilities are detected and

neutralised before they result in an exposure
– For example, virus checkers find and remove viruses before they infect a

system.

• Exposure limitation
– Design the system so that the adverse consequences of a successful attack

are minimizedare minimized
– For example, a backup policy allows damaged information to be restored.

55Konkuk University

SummarySummary

A iti l t i t h f il l d t hi h i l• A critical system is a system where failure can lead to high economic loss,
physical damage or threats to life.

• Dependability of a system reflects user’s trust in that system.
A il bilit i th b bilit th t it ill b il bl t d li i• Availability is the probability that it will be available to deliver services
when requested.

• Reliability is the probability that system services will be delivered as
specifiedspecified.

• Safety is a system attribute that reflects the system’s ability to operate
without threatening people or the environment.

• Security is a system attribute that reflects the system’s ability to protect• Security is a system attribute that reflects the system s ability to protect
itself from external attack.

56Konkuk University

Konkuk University 57

Ch t 4Chapter 4.

Software Processes

ObjectivesObjectives

T i t d ft d l• To introduce software process models
• To describe three generic process models
• To describe common process activities

f• To explain the Rational Unified Process(RUP) model

59Konkuk University

Software ProcessSoftware Process

A d f i i i i d d l f• A structured set of activities required to develop a software system
– Specification
– Design
– Validation
– Evolution

• A software process model is an abstract representation of a process.
– Waterfall modelWaterfall model
– Evolutionary development
– Component-based software engineering
– Many variantsy

60Konkuk University

Waterfall ModelWaterfall Model

A l i lif l d l• A classic life cycle model
– Suggests a systematic, sequential approach to software development
– The oldest paradigm

Separate and distinct phases of specification and development– Separate and distinct phases of specification and development
– Useful in situations where

• requirements are fixed and work is to proceed to completion in a linear manner

Requirements
Definition

System andSystem and
Software Design

Implementation
and Unit Testingand Unit Testing

Integration and
System Testing

Konkuk University 61

Operation and
Maintenance

Waterfall ModelWaterfall Model

I fl ibl i i i f j i di i k i diffi l• Inflexible partitioning of project into distinct stages makes it difficult to
respond to changing customer requirements.

• Therefore, it is only appropriate when
– Requirements are well-understood.
– Changes will be fairly limited during design process. g y g g p

• Waterfall model is mostly used for large system engineering projects
where a system is developed at several siteswhere a system is developed at several sites.

• However, few business systems have stable requirements.

62Konkuk University

Evolutionary DevelopmentEvolutionary Development

E l d l• Exploratory development
– Evolve a final system from an initial outline specification to work with

customers.
St t ith ll d t d i t d dd f t d– Start with well-understood requirements and add new features as proposed
by the customer.

Specification Initial Version

Current Activities Outputs

Outline
Description Development

Intermediatep Development Versions

63Konkuk University

Validation Final Version

Evolutionary Development

P bl

Evolutionary Development

• Problems
– Lack of process visibility
– Systems are often poorly structured.
– Special skills (e.g. in languages for rapid prototyping) may be required.

• Applicability
– For small or medium-size interactive systems
– For parts of large systems (e g the user interface)For parts of large systems (e.g. the user interface)
– For short-lifetime systems

64Konkuk University

Component Based Software EngineeringComponent-Based Software Engineering

S t i t t d f i ti t COTS• Systems are integrated from existing components or COTS (Commercial-off-the-

shelf) systems.
• Based on systematic reuse

• Process stages

Requirements
Specification

Component
Analysis

Requirements
Modification

System Design
with Reuse

Development
and Integration

System
Validation

65Konkuk University

Process IterationProcess Iteration

S i l l i h f j• System requirements always evolve in the course of a project.
• Process iteration itself is often a part of the process for large systems.

• Iteration can be applied to any of the generic process models.

• Two (related) approaches
– Incremental delivery ( evolutionary development)

i l d l– Spiral development

66Konkuk University

Spiral DevelopmentSpiral Development

R d i l• Represented as a spiral.
• No fixed phases - loops in the spiral are chosen depending on what is

required.
• Risks are explicitly assessed and resolved throughout the process.

• Spiral model sectorsSpiral model sectors
– Objective setting

• Specific objectives for the phase are identified.

– Risk assessment and reduction
• Risks are assessed and activities put in place to reduce the key risks.

– Development and validation
• A development model for the system is chosen which can be any of the generic

modelsmodels.

– Planning
• The project is reviewed and the next phase of the spiral is planned.

67Konkuk University

Spiral Development ModelSpiral Development Model

Risk
analysis

Evaluate alternatives,
identify, resolve risk

Determine objectives,
alternatives and

constraints

Risk
analysis

Risk
analysis Prototype 3

Oper a-
tional

Risk
analysis Proto-

type 1

Prototype 2 protoype

Concept of
Sim ulations , models , benchmarksRequir ements plan

Life cycle plan

REVI EW

Concept of
Oper ation S/W

requir ements

Requir ement
valida tion

Product
design Detailed

design

C d
De velopment

l

Life-cycle plan

valida tion

Design
V&V

Code

Unit test

Integ ration
testAcceptance

testS i Develop verify

Plan next phase

Integ ration
and test plan

plan

68Konkuk University

testService Develop , verify
next-level product

4 Common Process Activities4 Common Process Activities

1 S f ifi i1. Software specification
2. Software design and implementation
3. Software validation
4. Software evolution

69Konkuk University

1 Software Specification1. Software Specification

P f bli hi• Process of establishing
– What services are required and
– Constraints on the system’s operation and development
– Called “Requirements Engineering”

• Requirements engineering processq g g p

Feasibility Study
Requirements
Elicitation and

A l i

Requirements
Specification

Requirements
Validation

Analysis

Feasibility
Report

System Model

Specification

User and System
Requirements

Validation

Report Requirements

Requirements
Document

70Konkuk University

2 Software Design and Implementation2. Software Design and Implementation

P f ti t ifi ti i t t bl t• Process of converting system specification into executable system.

• Software design
i f li h ifi i– Design a software structure to realize the specification

• Implementation
– Translate the design structure into an executable program.

P i i l ti it N i i– Programming is a personal activity. No generic programming process.

• Software design process

Requirements
Specification

Architectural
Design

Abstract
Specification

Interface
Design

Component
Design

Data Structure
Design

Algorithm
Design

71Konkuk University

System
Architecture

Software
Specification

Interface
Specification

Component
Specification

Data Structure
Specification

Algorithm
Specification

3 Software Validation3. Software Validation

V ifi ti d lid ti (V & V) i i t d d t h th t• Verification and validation (V & V) is intended to show that
– System conforms to its specification.
– System meets requirements of the system customer.

Involves– Involves
• Checking (Formal/Informal)
• Review processes
• System testingSystem testing

• System testing involves executing the system with test cases derived
from its specification.from its specification.

72Konkuk University

Testing Stages and PhasesTesting Stages and Phases

• Unit or Component testing• Unit or Component testing
– Individual components are tested independently.

• System testing
– Testing of the system as a wholeTesting of the system as a whole.

• Acceptance testing
– Testing with customer data to check whether the system meets the

customer’s needs.

Requirements System System Detailed q
Specification

y
Specification

y
Design Design

Module andAcceptance
System Sub-system Module and

Unit Code
Test

Acceptance
Test Plan

Integration
Test Plan

Integration
Test Plan

73Konkuk University

Acceptance
Test

System
Integration

Test

Sub-system
Integration

Test
Service

4 Software Evolution4. Software Evolution

S f i i h l fl ibl d h• Software is inherently flexible and can change.
• As requirements change through changing business circumstances, the

software that supports the business must also evolve and change.

Define System
Requirements

Access Existing
System

Propose System
Changes

Modify Systems

Existing
S t

New System
Systems

y

74Konkuk University

The Rational Unified ProcessThe Rational Unified Process

A d d l• A modern process model
– Derived from working groups on the UML

• Normally described from 3 perspectives
– Dynamic perspective : shows phases over time
– Static perspective : shows process activitiesp p p
– Practice perspective : suggests good practice.

75Konkuk University

4 Phases of RUP (Dynamic Perspective)4 Phases of RUP (Dynamic Perspective)

Phase iteration

Inception Elaboration Construction Transition

Konkuk University 76

Workflows(A ti iti) of the RUP (Static Perspective)Workflows(Activities) of the RUP (Static Perspective)

Workflow Description

Business
Modeling

The business processes are modelled using business use cases.

Requirements
Actors who interact with the system are identified and use cases are developed to
model the system requirements.

Analysis and
Design

A design model is created and documented using architectural models, component
models, object models and sequence models.

The components in the system are implemented and structured into
Implementation implementation sub-systems. Automatic code generation from design models helps

accelerate this process.

Test
Testing is an iterative process that is carried out in conjunction with implementation.
System testing follows the completion of the implementation.

Deployment A product release is created, distributed to users and installed in their workplace.

Configuration
and Change This supporting workflow managed changes to the system (see Chapter 29)and Change
Management

This supporting workflow managed changes to the system (see Chapter 29).

Project
Management

This supporting workflow manages the system development (see Chapter 5).

77Konkuk University

Environment
This workflow is concerned with making appropriate software tools available to the
software development team.

RUP Good Practice (Practice Perspective)RUP Good Practice (Practice Perspective)

S i• Suggestions:
– Develop software iteratively
– Manage requirements
– Use component-based architectures
– Model software Visually
– Verify software quality
– Control changes to software

• More than 1,00 best practices.p

78Konkuk University

SummarySummary

S ft th ti iti i l d i d i d l i• Software processes are the activities involved in producing and evolving
a software system.

• Software process models are abstract representations of these processes.
G i d l d ib i ti f ft• Generic process models describe organization of software processes.
Examples include the waterfall model, evolutionary development and
component-based software engineering.

• General software process activities are specification design and• General software process activities are specification, design and
implementation, validation and evolution.

• The Rational Unified Process is a generic process model based on UML.

79Konkuk University

Konkuk University 80

Ch t 5Chapter 5.

Project Management

ObjectivesObjectives

T l i i k d k b j• To explain main tasks undertaken by project managers
• To introduce software project management and to describe its distinctive

characteristics
• To discuss project planning and planning process
• To discuss the notion of risks and risk management process

82Konkuk University

Software Project Management

C d i h i i i i l d i i h f i d li d

Software Project Management

• Concerned with activities involved in ensuring that software is delivered
– on time and
– on schedule and
– in accordance with the requirements of the organizations developing and

procuring the software.

• Needed because software development is always subject to budget and
schedule constraints that are set by the organization developing the
software.

83Konkuk University

Project Management Activities

P l i i

Project Management Activities

• Proposal writing
• Project staffing
• Project planning and schedulingj p g g
• Project costing
• Project monitoring and reviews
• Personnel selection and evaluation• Personnel selection and evaluation
• Report writing and presentations

84Konkuk University

Project StaffingProject Staffing

M b ibl i id l l k j• May not be possible to appoint ideal people to work on a project
– Project budget may not allow for the use of highly-paid staff.
– Staff with appropriate experience may not be available.
– Organization may wish to develop employee skills through performing

software projects.

• Managers have to work within these constraints especially when there
are shortages of trained staff.

85Konkuk University

Project PlanningProject Planning

P b bl h i i j i i• Probably the most time-consuming project management activity
– Continuous activity from initial concept through to system delivery
– Plans must be regularly revised as new information becomes available.

• Various different types of plan may be developed to support main
software project plan.

Plan Description

Quality Plan
Describes the quality procedures and standards that will be used in a project. See
Chapter 27.

Describes the approach resources and schedule used for system validation See
Validation Plan

Describes the approach, resources and schedule used for system validation. See
Chapter 22.

Configuration
Management Plan

Describes the configuration management procedures and structures to be used.
See Chapter 29.

Maintenance Plan
Predicts the maintenance requirements of the system, maintenance costs and
effort required. See Chapter 21.

Staff Development
Plan

Describes how the skills and experience of the project team members will be
developed. See Chapter 25.

86Konkuk University

p p

Project Planning ProcessProject Planning Process

A ti iti d t ibl t t f t t j d• Activities: produce tangible outputs for management to judge progress

• Milestones : end-point of a process activity

• Deliverables : project results delivered to customers

• Waterfall process allows straightforward definition of progress milestones.

Feasibility Requirements Prototype
Design Study

Requirements

Activities

y
Study

q
Analysis

Feasibility
Report

User
Requirements

yp
Development

Evaluation
Report

Design Study

Architectural
Design

q
Specification

System
RequirementsReport Requirements Report Design Requirements

Milestones

87Konkuk University

Project Scheduling ProcessProject Scheduling Process

S li j i k d i i d i d• Split project into tasks and estimate time and resources required to
complete each task.

– Organize tasks concurrently to make optimal use of workforce.
– Minimize task dependencies to avoid delays caused by one task waiting for

another to complete.

• Depend on project manager’s intuition and experience.

Identify
activities

Identify
activity

dependencies

Estimate
resources for

activities

Allocate
people to
activities

Create project
charts

Software Requirements Activity Charts
and Bar Charts

88Konkuk University

Activity NetworkActivity Network

89Konkuk University

Activity TimelineActivity Timeline

90Konkuk University

Staff AllocationStaff Allocation

91Konkuk University

Risk ManagementRisk Management

C d ith id tif i i k d d i l t i i i th i• Concerned with identifying risks and drawing up plans to minimize their
effect on a project.

• A risk is a probability that some adverse circumstance will occur
Project risk affects schedule or resources– Project risk affects schedule or resources.

– Product risk affects quality or performance of the software being developed.
– Business risk affects the organization developing or procuring the software.

• Risk management process

Risk
Identification

Risk Analysis Risk Planning Risk Monitoring

List of potential
risks

Prioritized risk
list

Risk avoidance
and contingency

plans
Risk assessment

92Konkuk University

SummarySummary

G d j i i l f j• Good project management is essential for project success.
• Managers have diverse roles but their most significant activities are

planning, estimating and scheduling.
• Project scheduling involves preparing various graphical representations

showing project activities, their durations and staffing.
• Risk management is concerned with identifying risks which may affect

th j t d l i t th t th i k d t d l i tthe project, and planning to ensure that these risks do not develop into
major threats.

93Konkuk University

Konkuk University 94

Part II. Requirements

Konkuk University 95

Ch t 6Chapter 6.

Software Requirements

ObjectivesObjectives

T i d f d i• To introduce concepts of user and system requirements
• To describe functional and non-functional requirements
• To explain how software requirements may be organized in a p q y g

requirements document

97Konkuk University

Requirements EngineeringRequirements Engineering

R i i i i h f bli hi• Requirements engineering is the process of establishing
– the services that the customer requires from a system
– the constraints under which it operates and is developed

• The requirements are the descriptions of the system services and
constraints that are generated during the requirements engineering g g q g g
process.

98Konkuk University

RequirementsRequirements

R f hi h l l b t t t t t f i t• Range from a high-level abstract statement of service or system
constraint to detailed mathematical functional specification.

• Types of requirements
– User requirements

S i l l di f h i h id d• Statements in natural language, diagrams of the services the system provides and
its operational constraints

• Written for customers
• Defined.

– System requirements
• Structured document setting out detailed descriptions of the system’s functions,

services and operational constraints.
• Define what should be implemented
• May be part of a contract between clients and contractors
• Specified.

99Konkuk University

Requirements Definitions and SpecificationsRequirements Definitions and Specifications

User Requirement Definition

1. The software must provide a means of representing and accessing external files
created by other toolscreated by other tools.

System Requirement Specification

1. The user should be provided with facilities to define the type of external files.
2. Each external file type may have an associated tool which may be applied to the file.
3. Each external file type may be represented as a specific icon on the user’s display.
4. Facilities should be provided for the icon representing an external file type to be4. Facilities should be provided for the icon representing an external file type to be

defined by the user.
5. When a user selects an icon representing an external file, the effect of that selection is

to apply the tool associated with the type of the external file to the file represented by
the selected icon.

100Konkuk University

Functional vs Non Functional RequirementsFunctional vs. Non-Functional Requirements

F ti l i t• Functional requirements
– Statements of services which the system should provide
– How the system should react to particular inputs

How the system should behave in particular situations– How the system should behave in particular situations

• Non-functional requirements
Constraints on the services or functions offered by the system– Constraints on the services or functions offered by the system

• timing constraints
• constraints on the development process
• Standards

• Domain requirements
– Requirements that come from the application domain of the system
– Reflect characteristics of the target domain
– May be functional or non-functional or the both

Konkuk University 101

Example: LIBSYS SystemExample: LIBSYS System

S d i i A LIBSYS lib• System description: A LIBSYS library system
– Provides a single interface to a number of databases of articles in different

libraries
U h f d l d d i t th ti l f l t d– Users can search for, download, and print these articles for personal study.

• Function requirements
– The user shall be able to search either all of the initial set of databases or

select a subset from it.

– The system shall provide appropriate viewers for the user to read documents
in the document store.

– Every order shall be allocated a unique identifier (ORDER_ID) which the user
shall be able to copy to the account’s permanent storage area.

102Konkuk University

Requirements Completeness and ConsistencyRequirements Completeness and Consistency

P bl i h i i l d• Problems arise when requirements are not precisely stated.
– Ambiguous requirements may be interpreted in different ways.

• In principle, requirements should be both complete and consistent.
– Complete

• They should include descriptions of all facilities required.y p q
– Consistent

• There should be no conflicts or contradictions in the descriptions of the
system facilities.y

• In practice it is impossible to produce a complete and consistent• In practice, it is impossible to produce a complete and consistent
requirements document with natural languages.

103Konkuk University

Non Functional RequirementsNon-Functional Requirements

D fi t ti d t i t• Define system properties and constraints
– Reliability
– Response time

Storage requirements– Storage requirements
– Constraints on I/O device capability
– System representations
– EtcEtc.

• Non-functional requirements may be more critical than functional• Non-functional requirements may be more critical than functional
requirements.

– If these are not met, the system is totally useless.

104Konkuk University

Classification of Non Functional RequirementsClassification of Non-Functional Requirements

Th t f f ti l i t• Three types of non-functional requirements

– Product requirements
S if h h d li d d b h i i l• Specify that the delivered product must behave in a particular way

• e.g. execution speed, reliability, etc.

– Organizational requirementsOrganizational requirements
• Requirements which are a consequence of organizational policies and procedures
• e.g. process standards, implementation requirements, etc.

– External requirements
• Requirements which arise from the factors external to the development process
• e.g. interoperability requirements, legislative requirements, etc.

105Konkuk University

Non Functional Requirement TypesNon-Functional Requirement Types

Non-functional
requirements

Product
requirements

Organisational
requirements

External
requirements

Efficiency
requirements

Reliability
requirements

Portability
requirements

Interoperability
requirements

Ethical
requirements

Usability
requirements

Legislative
requirements

Implementation
requirements

Standards
requirements

Delivery
requirements

Performance
i t

Space
i t

Safety
i t

Privacy
i t

106Konkuk University

requirements requirements requirementsrequirements

Examples of Non Functional RequirementsExamples of Non-Functional Requirements

P d i• Product requirement
– 8.1 The user interface for LIBSYS shall be implemented as simple HTML

without frames or Java applets.

• Organisational requirement
– 9.3.2 The system development process and deliverable documents shall

f h d d li bl d fi d i XYZC SP STAN 95conform to the process and deliverables defined in XYZCo-SP-STAN-95.

• External requirement
– 7.6.5 The system shall not disclose any personal information about customers

apart from their name and reference number to the operators of the system.

107Konkuk University

Goals and RequirementsGoals and Requirements

N f i l i b diffi l i l• Non-functional requirements may be very difficult to state precisely.
– Imprecise requirements may be also difficult to verify.
– Write a “goal” first  transform into “ verifiable non-functional requirements”

• Goal
– A general intention of the user, (e.g. ease of use)g , (g)
– “The system should be easy to use by experienced controllers and should be

organized in such a way that user errors are minimized.”

• Verifiable non-functional requirement
– A statement using some measure that can be tested objectively
– “Experienced controllers shall be able to use all the system functions after a– Experienced controllers shall be able to use all the system functions after a

total of two hours training. After this training, the average number of errors
made by experienced users shall not exceed two per day.”

108Konkuk University

Domain RequirementsDomain Requirements

D ib h i i d f f h d i• Describe system characteristics and features of the target domain
– Derived from the application domain

• Domain requirements may be
– new functional requirements
– constraints on existing requirementsg q
– definition of specific computations

• If domain requirements are not satisfied, the system may be unworkable.

109Konkuk University

Domain Requirements Example : LIBSYSDomain Requirements Example : LIBSYS

Th h ll b t d d i t f t ll d t b hi h h ll b• There shall be a standard user interface to all databases which shall be
based on the Z39.50 standard.

• Because of copyright restrictions, some documents must be deleted
i di t l i l D di th ’ i t thimmediately on arrival. Depending on the user’s requirements, these
documents will either be printed locally on the system server for
manually forwarding to the user or routed to a network printer.

110Konkuk University

Problems with Natural Language SpecificationProblems with Natural Language Specification

• Ambiguity• Ambiguity
– Readers and writers of the requirement must interpret the same words in the

same way.
– Natural language is naturally ambiguous.

• Over-flexibility
– The same thing may be said in a number of different ways in the specification.

• Lack of modularisation
– NL structures are inadequate to structure system requirements.

• Alternatives to natural language specifications
– Structural language specification

G hi l t ti– Graphical notations
– Design description language
– Mathematical specifications

111Konkuk University

Structured Language SpecificationsStructured Language Specifications

Th f d f iti i t i li it d b d fi d t l t• The freedom of writing requirements is limited by a predefined template.

• Form-based specifications

Insulin Pump/Control Software/SRS/3.3.2
Function Compute insulin dose: Safe sugar level
Description Computes the dose of insulin to be delivered when the current measured sugar level is in

the safe zone between 3 and 7 unitsthe safe zone between 3 and 7 units.
Inputs Current sugar reading (r2), the previous two readings (r0 and r1)
Source Current sugar reading from sensor. Other readings from memory.
OutputsCompDose Š the dose in insulin to be delivered
Destination Main control loopDestination Main control loop
Action: CompDose is zero if the sugar level is stable or falling or if the level is increasing but the rate of

increase is decreasing. If the level is increasing and the rate of increase is increasing, then CompDose is
computed by dividing the difference between the current sugar level and the previous level by 4 and
rounding the result. If the result, is rounded to zero then CompDose is set to the minimum dose that can
be delivered.

Requires Two previous readings so that the rate of change of sugar level can be computed.
Pre-condition The insulin reservoir contains at least the maximum allowed single dose of insulin..
Post-condition r0 is replaced by r1 then r1 is replaced by r2
Side-effects None

112Konkuk University

Graphical NotationsGraphical Notations

G hi l i i f l• Graphical notation is useful
– when you need to show how state changes
– where you need to describe a sequence of actions.

• Different graphical models are
explained in Chapter 8.

ATM Database

Card
Card number

• Sequence diagram (ATM example) :

Card OK
PIN request

PIN

Option menu

<<exception>>
invalid card

Validate card

invalid card

Withdraw request

Amount request

Amount

Balance request

Balance

Debit (amount)

Handle request

<<exception>>
insufficient cash

Debit (amount)

Debit response

Card

Card removed
Complete

113Konkuk University

Cash

Cash removed

Receipt

Complete
transaction

Interface SpecificationInterface Specification

M t t t t ith th t• Most systems must operate with other systems.
• Operating interfaces must be specified as part of the requirements.

– Procedural interfaces
D t t t th t h d– Data structures that are exchanged

– Data representations

F l t ti ff ti t h i f i t f ifi ti• Formal notations are an effective technique for interface specification.

interface PrintServer {

// defines an abstract printer server// defines an abstract printer server
// requires: interface Printer, interface PrintDoc
// provides: initialize, print, displayPrintQueue, cancelPrintJob, switchPrinter

 void initialize (Printer p) ;
 void print (Printer p, PrintDoc d) ;
 void displayPrintQueue (Printer p) ;
 void cancelPrintJob (Printer p, PrintDoc d) ;
 void switchPrinter (Printer p1, Printer p2, PrintDoc d) ;
} //PrintServer} //PrintServer

114Konkuk University

Requirements DocumentRequirements Document

R i d i ffi i l f h i i d f• Requirements document is an official statement of what is required of
the system developers.

– Should include both user requirements and system requirements
– Should be a set of WHAT the system should do rather than HOW it should do

it

• IEEE standard on requirements document
– Introduction
– General description - Preface
– Specific requirements
– Appendices
– Index

Preface
- Introduction
- Glossary
- User requirements definition
- System architectureSystem architecture
- System requirements specification
- System models
- System evolution
- Appendicesppe d ces
- Index

115Konkuk University

SummarySummary

R i h h h ld d d d fi i• Requirements set out what the system should do and define constraints
on its operation and implementation.

• Functional requirements set out services the system should provide.
• Non-functional requirements constrain the system being developed or

the development process.
• User requirements are high-level statements of what the system should q g y

do.
• System requirements are intended to communicate the functions that the

system should provide.
• A software requirements document is an agreed statement of the system

requirements.
• The IEEE standard is a useful starting point for defining more detailed

specific requirements standards.

116Konkuk University

Konkuk University 117

Ch t 7Chapter 7.

Requirements Engineering Processes

ObjectivesObjectives

T d ib i i l i t i i ti iti d th i• To describe principal requirements engineering activities and their
relationships

• To introduce techniques for requirements elicitation and analysis
T d ib i t lid ti d th l f i t i• To describe requirements validation and the role of requirements reviews

• To discuss the role of requirements management

119Konkuk University

Requirements Engineering ProcessesRequirements Engineering Processes

R i t i i id l d di• Requirement engineering processes vary widely depending on
– Application (target) domain
– people involved

organization developing the requirements– organization developing the requirements

• Generic activities common to all requirements engineering processes

Feasibility
Study

Requirements
Elicitation

and Analysis

Requirements
Specification

Requirements
Validation

and Analysis

Feasibility
Report

System
ModelsModels

User and System
Requirements

Requirement
Document

120Konkuk University

Requirements Engineering ProcessesRequirements Engineering Processes

Requirements
specification

System requirements
specification andspecification and

modeling

User requirements
specification

B i i t

System
requirements
elicitation

User
requirements

Business requirements
specification

Feasibility
study

Requirements

elicitation requirements
elicitation

Prototyping

y

Requirements
validation

q
elicitation Reviews

System requirements
d

121Konkuk University

y q
document

1 Feasibility Study1. Feasibility Study

D id h h h d i h d l• Decides whether or not the proposed system is worth to develop

• A short focused study to checky
– If the system contributes to organizational objectives
– If the system can be engineered using current technology and within budget
– If the system can be integrated with other systems that are usedy g y

• Questions for feasibility:
– What if the system was not implemented?What if the system was not implemented?
– What are the problems in the current process ?
– How will the proposed system help to satisfy customer’s requirements?

What will be the integration problems?– What will be the integration problems?
– Is new technology needed? What skills?
– What facilities must be supported by the proposed system?

122Konkuk University

2 Requirements Elicitation and Analysis2. Requirements Elicitation and Analysis

C ll d l i t di• Called also requirements discovery
• To find out about

– application domain, services that the system should provide
t ’ ti l t i t– system’s operational constraints

• May involve various stakeholders
d i– end-users, managers, engineers

– domain experts, trade unions, etc.

P bl• Problems:
– Stakeholders don’t know what they really want.
– Stakeholders express requirements in their own terms.

Different stakeholders may have conflicting requirements– Different stakeholders may have conflicting requirements.
– Organizational and political factors may influence the system requirements.
– The requirements change during the analysis process.

123Konkuk University

Activities in Requirements Elicitation and AnalysisActivities in Requirements Elicitation and Analysis

R i t di• Requirements discovery
– Interact with stakeholders to discover

their requirements
– Discovery domain requirements also

• Requirements classification and
organization

Group related requirements and

Requirements
Classification and

Organization

Requirements
Prioritization and

Negotiation

– Group related requirements and
organize them into coherent clusters

• Prioritization and negotiation
P i i i h i d

Requirements
Di

Requirements
D t ti– Prioritize the requirements and

resolve conflicts among requirements

• Requirements documentation

Discovery Documentation

q
– Document requirements
– Input it into the next round of the

spiral

Konkuk University 124

Requirements DiscoveryRequirements Discovery

R i di i h f• Requirements discovery is the process of
– gathering information about the proposed and existing systems
– distilling the user and system requirements from this information

• Sources of information
– documentation
– system stakeholders
– specifications of similar systems

125Konkuk University

InterviewingInterviewing

Th i t i i t t ti t t k h ld b t• The requirements engineering team puts questions to stakeholders about
the system to develop.

– An efficient way of requirements discovery

• Two types of interview
– Closed interviews : pre-defined set of questions are answered

Open interviews : no pre defined agenda and a range of issues are explored– Open interviews : no pre-defined agenda and a range of issues are explored
with stakeholders

• A mix of closed and open-ended interviews is normally used.

126Konkuk University

ScenariosScenarios

R l lif l f h h b d• Real-life examples of how the system can be used
• An efficient way of requirements discovery

• Scenarios should include descriptions of
– Starting situation, normal flow of events and finishing situation
– Exception casesp
– Information about other concurrent activities

• Example: LIBSYS ScenarioExample: LIBSYS Scenario

Initial assumption: The user has logged on to the LIBSYS system and has located the journal containing the
copy of the article.

N l Th l t th ti l t b i d H h i th t d b th t t ithNormal: The user selects the article to be copied. He or she is then prompted by the system to either
provide subscriber information for the journal or to indicate how they will pay for the article. Alternative
payment methods are by credit card or by quoting an organisational account number.
The user is then asked to fill in a copyright form that maintains details of the transaction and they then
submit this to the LIBSYS system.
The copyright form is checked and, if OK, the PDF version of the article is downloaded to the LIBSYS

Konkuk University 127

py g
working area on the user’s computer and the user is informed that it is available. The user is asked to select
a printer and a copy of the article is printed. If the article has been flagged as ‘print-only’ it is deleted from
the user’s system once the user has confirmed that printing is complete.

Use CasesUse Cases

A i b d h i i h UML• A scenario based technique in the UML
– Identify actors in an interaction
– Describe interactions between actors and the system

LIBSYS use cases

Article search

Article printingLibrary
User

User administration Library
Staff

128Konkuk University

Supplier Catalogue services

Sequence DiagramSequence Diagram

Add d il b h i h f i i• Add detail to use-cases by showing the sequence of event processing in
the system

User

item: Article
copyrightForm:
Form

myWorkspace:
Workspace

myPrinter:
Printer

request

complete

request

return

copyright OK

deliver

article OK

print send

129Konkuk University

confirminform

delete

3 Requirements Validation3. Requirements Validation

D h h h i d fi d h h• Demonstrate whether the requirements we defined are what the
customer really wants.

– Requirements error costs are high, so validation is very important

• Requirements validation checks:
– Validity : Does the system provide the functions which support the customer’s

needs well?
– Consistency : Are there any requirements conflicts?
– Completeness : Are all functions required by the customer included?
– Realism : Can the requirements be implemented with available budget and

technology?
– Verifiability : Can the requirements be checked?

130Konkuk University

Requirements Validation TechniquesRequirements Validation Techniques

R i t i• Requirements reviews
– Systematic analysis of requirements
– Manual analysis

Focusing on– Focusing on
• Verifiability (Testability), Comprehensibility
• Traceability, Adaptability

• Prototyping
– Develop an executable model of the system to check the requirements

• Test-case generation
– Develop test cases for the requirements to check testabilityp q y

131Konkuk University

4 Requirements Management4. Requirements Management

Th f i i h d i h RE• The process of managing requirements change during the RE process
and system development

• Requirements are inevitably incomplete and inconsistent.
– New requirements emerge during the process, as business needs change and

a better understanding of the system is developed.
– Different viewpoints have different requirements and these are often

contradictory.

Problem Analysis and

Identified
problem

Change Analysis Change

Revised
Requirements

Problem Analysis and
Change Specification

Change Analysis
and Costing

Change
Implementation

132Konkuk University

TraceabilityTraceability

C d i h h l i hi b i h i• Concerned with the relationships between requirements, their sources
and the system design

– Source traceability
i k f i k h ld h d h i• Links from requirements to stakeholders who proposed these requirements

– Requirements traceability
• Links between dependent requirements

D i t bilit– Design traceability
• Links from the requirements to the design

Req. id 1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2Traceability Matrix q

1.1 D R

1.2 D D D

1.3 R R

2.1 R D D

2.2 D

2.3 R D

3.1 R

3.2 R

133Konkuk University

CASE Tool SupportCASE Tool Support

R i• Requirements storage
– Requirements should be managed in a secure and managed data store.

• Change management
– A workflow process whose stages should be clearly definedA workflow process whose stages should be clearly defined
– Information flow between stages are partially automated.

• Traceability management
– Automated retrieval of the links between requirements/sources/designs

134Konkuk University

SummarySummary

Th i t i i i l d f ibilit t d• The requirements engineering process includes a feasibility study,
requirements elicitation and analysis, requirements specification and
requirements management.

• Requirements elicitation and analysis involves domain understanding• Requirements elicitation and analysis involves domain understanding,
requirements collection, classification, structuring, prioritization and
validation.

• Systems have multiple stakeholders with different requirements.Systems have multiple stakeholders with different requirements.
• Social and organization factors influence system requirements.
• Requirements validation is concerned with checks for validity, consistency,

completeness, realism and verifiability.p , y
• Business changes inevitably lead to changing requirements.
• Requirements management includes planning and change management.

135Konkuk University

Konkuk University 136

Ch t 8Chapter 8.

System Models

ObjectivesObjectives

T l i h th t t f t h ld b d ll d t f• To explain why the context of a system should be modelled as a part of
requirements engineering process

• To describe behavioural modelling, data modelling and object modelling
T h h CASE kb h t t d lli• To show how CASE workbenches support system modelling

138Konkuk University

System ModellingSystem Modelling

H l l t t d t d th f ti lit f th t• Helps analysts to understand the functionality of the system.
– System models are used to communicate with customers.

Diff t d l t th t f diff t ti• Different models present the system from different perspectives
– External perspective : showing the system’s context or environment
– Behavioural perspective : showing the behaviour of the system

Structural perspective : showing the system or data architecture– Structural perspective : showing the system or data architecture

• System model types
Data processing model: showing how the data is processed at different stages– Data processing model: showing how the data is processed at different stages

– Composition model: showing how entities are composed of other entities
– Architectural model: showing principal sub-systems
– Classification model: showing how entities have common characteristicsClassification model: showing how entities have common characteristics
– Stimulus/response model: showing the system’s reaction to events
– Many ones

139Konkuk University

System Context ModelSystem Context Model

S C (d l) d ill h i l f• System Context (models) are used to illustrate the operational context of
a system

– Showing what lies outside the system boundaries
– Showing the system and its relationship with other systems
– Social and organizational concerns may affect the decision of system

boundaries.

System Context Model
f

Security
System

B hfor ATM

Auto-Teller
System

Account
Database

Branch
Accounting

System

System

Maintenance
System

Usage
Database

Branch
Counter
System

140Konkuk University

System

Process ModelProcess Model

P d l h h ll d b h• Process models show the overall process supported by the system.

Equipment
Spec

Checked
Spec

Delivery
Note

Delivery
N t

Specify
equipment
required

Validate
specification

Get cost
estimate

Accept
delivery of
equipment

Check
delivery items

Spec. Spec.

Equipment Spec. +
S li

Order

Note

Installation

Supplier
Database

Find supplier

Supplier list

Choose
Supplier

Place
equipment

order

Install
equipment

q p
Spec. Supplier +

estimate

Order
Notification

Installation
Instructions

Equipment procurement process

order

Accept
delivered

Installation
Acceptance

Order Details
and

Blank Order
Form Checked and

Signed Order Form

Equipment procurement process delivered
equipment

i

Equipment
Details

141Konkuk University

Equipment
Database

Behavioural ModelBehavioural Model

B h i l d l d t d ib th ll b h i f th• Behavioural models are used to describe the overall behaviour of the
system.

– Data processing models : showing how data is processed as it moves through
the systemthe system

– State machine models : showing how the system responses to events

– Two models show different perspectives.p p
– Both of them are required to describe the system’s behaviour.

142Konkuk University

Data Processing ModelData Processing Model

D t fl di (DFD) d t d l th t ’ d t• Data flow diagrams(DFDs) are used to model the system’s data
processing.

– Show the processing steps as data flows through a system
– Use simple and intuitive notation that customers can understand– Use simple and intuitive notation that customers can understand
– Show end-to-end processing of data

Order processing DFD
Checked and singed

Order +

Complete

Send to
supplierCompleted

order form
Signed

order form
Order details

+
Blank order form

Signed
order form

Order notification

Complete
order form

Validate order

O d

Equipment
Spec.

Record order

Adjust
available
budget

Signed
order form

Order
details

budget

Order amount
+

Account details

143Konkuk University

Order file Budget file

State Machine ModelState Machine Model

S hi d l d l h b h i f h i• State machine models model the behaviour of the system in response to
external and internal events.

– Show the system’s responses to stimuli
– Often used for modelling real-time systems
– Show system states as nodes and events as arcs between these nodes

Full power
Full

pow er ppo e

F ll
Number

do: set power
= 600

S t ti Operation

Waiting

do: display

Timer

do: operate
oven

Half
power

Half
power

Full
power

Door

Door
closed

Start

Set time

do: get number
exit: set time

Operation

Cancel

p y
time

Timer

State machine mode for

Enabled

open

Door
closed

Door
openHalf power

do: set power
= 300

Disabled

Waiting

do: display
time

do: display
'Ready'

Konkuk University 144

State machine mode for
Microwave model

Disabled

do: display
'Waiting'

Semantic Data ModelSemantic Data Model

S i d d l d d ib h l i l f d• Semantic data models are used to describe the logical structure of data
processed by the system.

– Entity-relation-attribute model : setting out the entities in the system,
l ti hi b t th titi d th tit tt ib trelationships between these entities, and the entity attributes

– Widely used in rational database design

SourceArticle

Library semantic model

Source
title
publisher
issue
date
pages

1

Article
title
authors
pdf file
fee

fee-payable-to

published-in
m n

1

1
1

h li k

1

n

delivers in

1

1

Copyright
Agency
name

Country

copyright form
tax rate

1

Order
order number
total payment

in

has-links

Buyer

places
1

n

address tax ratetotal payment
date
tax status

145Konkuk University

Buyer

name
address
e-mail
billing info

Object ModelObject Model

Obj d l d ib h i f bj l d h i• Object models describe the system in terms of object classes and their
associations.

– An object class is an abstraction over a set of objects with common attributes
d th i (ti)and the services (operations).

– Object classes are reusable across systems.

• Various object models
– Inheritance model
– Aggregation model
– Interaction model

146Konkuk University

Inheritance ModelInheritance Model

I h i d l i d i bj l i hi h• Inheritance models organize domain object classes into a hierarchy.
– Classes at the top of the hierarchy reflect common features of all classes.
– Object classes inherit their attributes and services from one or more super-

lclasses.

Library user

User class hierarchy Name
Address
Phone
Registration #

Register ()
De-register ()

Affiliation

Reader

Items on loan
Max loans

Borrower

Max. loans

Staff Student

147Konkuk University

Department
Department phone

Major subject
Home address

Multiple InheritanceMultiple Inheritance

M l i l i h i ll bj l i h i f l• Multiple inheritance allows object classes to inherit from several super-
classes.

– May lead to semantic conflicts where attributes/services with the same name
i diff t l h diff t tiin different super-classes have different semantics

– Make class hierarchy reorganisation more complex

Author
Edition
Publication date

Book

Speaker
Duration
Recording date

Voice recording

Publication date
ISBN

Recording date

Tape

Talking book

148Konkuk University

p

Object Aggregation ModelObject Aggregation Model

A i d l h h l d f h l• Aggregation models show how classes are composed of other classes.
– Similar to the part-of relationship in semantic data models

Course title
Number
Year
Instructor

Study pack

Instructor

Videotape

Tape ids.

Lecture
notes

Text

OHP slides

Slides

Assignment

Credits

Solutions

Text

Exercises

#Problems

149Konkuk University

DiagramsDescription

Object Behaviour ModelObject Behaviour Model

Obj b h i l d l h h i i b bj• Object behavioural models show the interactions between objects
– To produce some particular system behaviour specified as in use-cases
– Called interaction model
– Sequence diagrams (or collaboration diagrams) in the UML

Ecat:
Catalog

:Library Item
Lib1:
NetServer

:Library User

g

LookupLookup

Issue

Display

Issue licence

Accept licence

Compress

150Konkuk University

Deliver

Structured MethodStructured Method

S d h d i d lli i h f• Structured methods incorporate system modelling as an inherent part of
the method.

• Structured methods define
– a set of models
– a process for deriving these modelsp g
– rules and guidelines that should apply to the models
– CASE tools to support system modelling

• CASE Workbench:
– A coherent set of tools that is designed to support related software process activities

such as analysis, design or testing.
A l i d d i kb h d lli d i b h i– Analysis and design workbenches support system modelling during both requirements
engineering and system design.

– May support a specific design method
– May support to create several different types of system model

151Konkuk University

Analysis and Design Workbench: An exampleAnalysis and Design Workbench: An example

Data
Dictionary

Structural
Diagramming

T l

Report
Generation
F ili iDictionary Tools Facilities

Code
Generator

Query
Language
Facilities

Central
Information
Repository ac t esp y

Form
Creation

Tools

Design, Analysis
and Checking

tools

Import/Export
Facilities

152Konkuk University

SummarySummary

A d l i b t t t i C l t t f d l• A model is an abstract system view. Complementary types of model
provide different system information.

• Context models show the position of a system in its environment with
other systems and processesother systems and processes.

• Data flow models are used to model the data processing in a system.
• State machine models model the system’s behaviour in response to

internal or external eventsinternal or external events.
• Semantic data models describe the logical structure of data which is

imported to or exported by the systems.
• Object models describe logical system entities their classification and• Object models describe logical system entities, their classification and

aggregation.
• Sequence models show the interactions between actors and the system

objects that they use.j y
• Structured methods provide a framework for developing system models.

153Konkuk University

Konkuk University 154

Part III. Design

Konkuk University 155

Ch t 13Chapter 13.

Application Architectures

ObjectivesObjectives

T l i t f d t l d l f b i t b t h• To explain two fundamental models of business systems - batch
processing system and transaction processing system

• To describe abstract architecture of resource management systems
T l i h i dit t i t• To explain how generic editors are event processing systems

• To describe the structure of language processing systems

157Konkuk University

Generic Application ArchitecturesGeneric Application Architectures

A b i h h i• As businesses have much in common,
– their application systems also tend to have a common architecture that

reflects the application requirements.

158Konkuk University

Application TypesApplication Types

A li ti t• Application types
1. Data processing application

• Data driven applications
• Process data in batches without user intervention during the processingProcess data in batches without user intervention during the processing.
• Ex) Billing system, Payroll system

2. Transaction processing application
• Data-centered applications

d d f d b• Process user requests and update information in a system database.
• Ex) E-commerce system, Reservation system

3. Event processing system
• System actions depend on interpreting events from the system’s environment.System actions depend on interpreting events from the system s environment.
• Ex) Word processor, Real-time system

4. Language processing system
• Users’ intentions are specified in a formal language.
• Processed and interpreted by the system.
• Ex) Compiler, Command interpreter

159Konkuk University

1 Data Processing System1. Data Processing System

D t t d t h d t b d ll d f• Data-centered system, where databases used are usually orders of
magnitude larger than the software itself.

– Data is input and output in batches.
Have an input-process-output structure– Have an input-process-output structure

Input-Process-Output modelInput Process Output model
System

Process OutputInput
Printer

Database

160Konkuk University

Data Flow DiagramData-Flow Diagram

DFD h h d i d i h h• DFD shows how data is processed as it moves through a system.
– Round-edged rectangles : transformations
– Arrows : data-flows
– Rectangles : data (input/output)

Salary payment DFD Write tax
transactions

Tax
transactions

Employee
Tax deduction + SS
number + tax office

Read employee

Pension dataWrite pension
data

p y
records

Monthly pay
rates

Decoded
employee Valid

number + tax office

Pension
deduction +p y

record

R d thl

Compute
salary

Validate
employee data Print payslip

PRINTER

record

Pay information

Valid
employee record

deduction +
SS number

Empoyee data
+ deductions

Net payment + bankRead monthly
pay data

Monthly pay

Tax
tables

Write bank
transaction

Bank
transactions

Pay information Net payment + bank
account info.

Konkuk University 161

Monthly pay
data

Write social
security data

Social security
data

Social security
deduction + SS number

2 Transaction Processing System2. Transaction Processing System

T ti i t• Transaction processing systems process
– User requests for information from a database or
– User requests to update the database.

– Users make asynchronous requests for service which are then processed by a
transaction manager.

– Many examplesy p
• Transaction processing middleware
• Information system architecture
• Resource allocation system
• E commerce system architecture• E-commerce system architecture

Application
Logic

I/O Processing
Transaction
Manager

Database

162Konkuk University

Transaction Processing MiddlewareTransaction Processing Middleware

T i iddl l i i• Transaction management middleware or teleprocessing monitors
– Handle communications with different terminal types, serializes data and

sends it for processing
Q i t k l i th t d t b d lt t– Query processing takes place in the system database and results are sent
back through the transaction manager to the user’s terminal.

Account queries
and updates

Teleprocessing
Monitor

Account
Database

Serialized
transaction

…

163Konkuk University

ATM and Terminals

Information System ArchitectureInformation System Architecture

I f i b i d l d hi• Information systems can be organized as a layered architecture.

• LIBSYS example : p

LIBSYS organization

Web browser interfaceUser Interface

LIBSYS
login

Forms and
query manager

Print
manager

User
Communication

Distributed
search AccountingDocument

retrieval
Rights

manager

Communication

Information Retrieval
d M difi ti

Library index

g
and Modification

Transaction
Management

164Konkuk University

DB1 DB2 DB3 DB4 DBn
g

Database

Resource Allocation SystemResource Allocation System

R ll ti t fi d t f d• Resource allocation systems manage fixed amount of resource and
allocate them to users.

– Timetabling system : the resource being allocated is a time period
Library system : the resource being managed is books for loan– Library system : the resource being managed is books for loan

– Air traffic control system : the resource being managed is the airspace

• Layer resource allocation architectureLayer resource allocation architecture

User inter face

User
authentication

Query
management

Resource
delivery

Resource
management

Resource policy
control

Resource
allocation

165Konkuk University
Resource database

Transaction management

E commerce System ArchitectureE-commerce System Architecture

E i b d• E-commerce systems are internet-based resource management systems
– Accept electronic orders for goods or services
– Organized using a multi-tier architecture with application layers associated

ith h tiwith each tier

Web ServerWeb Browser
Application

Server
Database Server

Konkuk University 166

3 Event Processing Systems3. Event Processing Systems

E i d i h ’ i• Event processing systems respond to events in the system’s environment.
– Event timing is unpredictable, so the architecture has to be organized to

handle this.
M t– Many common systems:

• Word processors
• Games

l• Real-time systems
• Etc.

167Konkuk University

Editing SystemEditing System

Edi i h f i• Editing systems are the most common types of event processing system.
– Single user system
– Must provide rapid feedback to user actions

File System

– Organized around long transactions
– May include recovery facilities

File System

Save
Open

Editor data

Editing
commands

Ancillary data

Ancillary
commands

Command

Interpret

Display

Update

Screen

Refresh

Event

Process

Konkuk University 168

Refresh

4 Language Processing System4. Language Processing System

L i l ifi i l l• Language processing systems accept a natural or artificial language as
input and generate some other representation of that language.

– May include an interpreter

• Components of language processing systems
– Lexical analyzer
– Symbol table
– Syntax analyzer
– Syntax tree

S ti l

Translator

Check syntax
Check semantics
Generate

Instructions

– Semantic analyzer
– Code generator

Generate

Abstract m/c
instructions

Interpreter

Fetch
Execute

Data Results

169Konkuk University

Repository Model of CompilerRepository Model of Compiler

Syntax SemanticLexical y
Analyzer AnalyzerAnalyzer

Abstract
Syntax Tree

Grammar
Definition

Optimizer
Pretty-
Printer

Code
Generator

Symbol Table
Output

Definition
Editor

Repository

170Konkuk University

Summary

G i d l f li i hi h l d d d

Summary

• Generic models of application architectures help us understand and
compare applications.

• Important classes of application are data processing systems, transaction
processing systems, event processing systems and language processing
system.

• Data processing systems operate in batch mode and have an input-
process-output structure.

• Transaction processing systems allow information in a database to be
remotely accessed and modified by multiple users.

• Event processing systems include editors and real-time systems.
• In an editor, user interface events are detected and an in-store data

structure is modified.
• Language processing systems translate texts from one language to

another and may interpret the specified instructions.

171Konkuk University

Konkuk University 172

Ch t 14Chapter 14.

Object-Oriented Design

ObjectivesObjectives

T l i h ft d i b t d t f• To explain how a software design may be represented as a set of
interacting objects that manage their own states and operations

• To describe the activities in object-oriented design process
T i t d i d l th t b d t d ib bj t• To introduce various models that can be used to describe an object-
oriented design

• To show how the UML may be used to represent these models

174Konkuk University

Object Oriented DevelopmentObject-Oriented Development

Obj i d l i d i d i l d b• Object-oriented analysis, design and programming are related but
distinct.

– OOA : concerned with developing an object model of the application domain
– OOD : concerned with developing an object-oriented system model to

implement requirements
– OOP : concerned with realizing an OOD using an OO programming language

such as Java or C++such as Java or C++

• Characteristics of OOD
Obj b i f l ld i i– Objects are abstractions of real-world or system entities.

– Objects encapsulate state and representation information.
– System functionality is expressed in terms of object services.
– Shared data areas are eliminated.
– Objects communicate by message passing.
– Objects may be distributed and may execute sequentially or in parallel.

175Konkuk University

Advantages of OODAdvantages of OOD

E i i• Easier maintenance
– Objects may be understood as stand-alone entities.

• Objects are potentially reusable components.

• Easy to implement for some systemsy p y
– There may be an obvious mapping from real world entities to system objects.

176Konkuk University

Objects and Object ClassesObjects and Object Classes

Obj i i i f• Objects are entities in software system
– Represent instances of real-world and system entities

• Object classes are templates for objects
– Used to create objects
– May inherit attributes and services from other object classes

An object is an entity that has a state and a defined set of operations which operate on that state.
The state is represented as a set of object attributes. The operations associated with the object
provide services to other objects (clients) which request these services when some computation is
required.

Objects are created according to some object class definition. An object class definition serves as a
template for objects It includes declarations of all the attributes and services which should betemplate for objects. It includes declarations of all the attributes and services which should be
associated with an object of that class.

177Konkuk University

Unified Modelling LanguageUnified Modelling Language

S l diff i f d ibi bj i d d i• Several different notations for describing object-oriented designs were
proposed in the 1980s and 1990s.

• Unified Modelling Language(UML) is an integration of these.
– Describes notations for a number of different models that may be produced

during OO analysis and design
– A de facto standard for OO modelling

178Konkuk University

Class Example: Employee ObjectClass Example: Employee Object

Employee

name: string
address: string
dateOfBirth: Date
employeeNo: integerp y g
socialSecurityNo: string
department: Dept
manager: Employee
salary: integer
status: {current, left, retired}
taxCode: integer
. . .

join ()join ()
leave ()
retire ()
changeDetails ()

179Konkuk University

Object CommunicationObject Communication

C ll bj i b i• Conceptually, objects communicate by message passing.
• Messages

– Name of service requested by calling object
– Copies of information required to execute the service

• In practice, messages are often implemented by procedure calls.p , g p y p
– Name = procedure name
– Information = parameter list

// Call a method associated with a buffer object that returns the next value in the buffer
v = circularBuffer.Get () ;

// Call the method associated with a thermostat object that sets the temperature
// to be maintained

thermostat.setTemp (20) ;

180Konkuk University

Generalization and InheritanceGeneralization and Inheritance

Cl b d i l hi h h l (• Classes may be arranged in a class hierarchy, where one class (a super-
class) is a generalization of one or more other classes (sub-classes).

– A sub-class inherits the attributes and operations from its super class and
dd th d tt ib t f itmay add new methods or attributes of its own.

– Generalization in the UML is implemented as an inheritance in OO
programming languages.

Employee

Programmer

project
progLanguages

Manager

budgetsControlled

dateAppointed

Project
Manager

Dept.
Manager

Strategic
Manager

Konkuk University 181

g

projects

g g

dept responsibilities

Features of InheritanceFeatures of Inheritance

Ad• Advantages:
– Abstraction mechanism : may be used to classify entities.
– Reuse mechanism at both the design and the programming level.

– Inheritance graph is a source of organizational knowledge about domains and
systems.

• Problems:
– Object classes are not self-contained. They cannot be understood without

reference to their super-classes.
– Designers have a tendency to reuse the inheritance graph created during

l i It l d t i ifi t i ffi ianalysis. It may lead to significant inefficiency.
– Inheritance graphs of analysis, design and implementation have different

functions and should be separately maintained.

182Konkuk University

UML AssociationUML Association

Obj d bj l i i i l i hi i h h bj• Objects and object classes participate in relationships with other objects
and object classes.

• In the UML, a generalized relationship is indicated by an association.
– May be annotated with information that describes the association

• May indicate that an attribute of an object is an associated object
• May indicate that a method relies on an associated object

Employee Department
is-member-of

is-managed-by

Manager

g y

manages

183Konkuk University

Concurrent ObjectConcurrent Object

Th f bj• The nature of objects :
– Self-contained entities are suitable for concurrent implementation.
– Message-passing model of object communication can be implemented

di tl if bj t i t i di t ib t d tdirectly if objects are running on separate processors in a distributed system.

• Servers
– The object is implemented as a parallel process (server) with entry points

corresponding to object operations.
– If no calls are made to it, the object suspends itself and waits for further

f irequests for service.

• Active objectsj
– Objects are implemented as parallel processes and the internal object state

may be changed by the object itself and not simply by external calls.
– Thread in Java is a simple construct for implementing concurrent objects.

184Konkuk University

Java ThreadJava Thread

Th d i J i i l f i l i bj• Thread in Java is a simple construct for implementing concurrent objects.
– Threads must include a method called run() and this is started up by the Java

run-time system.
A ti bj t t i ll i l d i fi it l th t th l– Active objects typically include an infinite loop so that they are always
carrying out the computation.

185Konkuk University

Object Oriented Design ProcessObject-Oriented Design Process

St t d d i i l d l i b f diff t• Structured design processes involve developing a number of different
system models.

– Require a lot of effort for development and maintenance of these models
For small systems it may not be cost-effective– For small systems, it may not be cost-effective.

– However, for large systems developed by different groups, design models are
an essential communication mechanism.

• Common key activities for OOD processes
1 Define the context and modes of use of the system1. Define the context and modes of use of the system
2. Design the system architecture (Architectural design)
3. Identify the principal system objects (Object identification)
4 Develop design models4. Develop design models
5. Specify object interfaces (Object interface specification)

186Konkuk University

Example: Weather Mapping System DescriptionExample: Weather Mapping System Description

A th i t i i d t t th l b iA weather mapping system is required to generate weather maps on a regular basis
using data collected from remote, unattended weather stations and other data
sources such as weather observers, balloons and satellites. Weather stations transmit
their data to the area computer in response to a request from that machine.

The area computer system validates the collected data and integrates it with the data
from different sources. The integrated data is archived and, using data from this
archive and a digitised map database a set of local weather maps is created. Maps

b i t d f di t ib ti i l i t b di l dmay be printed for distribution on a special-purpose map printer or may be displayed
in a number of different formats.

187Konkuk University

1 System Context and Models of System Use1. System Context and Models of System Use

D l d di f h l i hi b h f• Develop an understanding of the relationships between the software
being designed and its external environment

• System context
– A static model that describes other systems in the environmentA static model that describes other systems in the environment
– Use a subsystem model to show other systems

• Model of system use• Model of system use
– A dynamic model that describes how the system interacts with its

environment
– Use use-cases to show interactionsUse use cases to show interactions

188Konkuk University

Subsystem ModelSubsystem Model

Weather mapping systemWeather mapping system

«subsystem»
Data collection «subsystem»

Data display

User
inter face

p y

Satellite

Comms

Observer
User

interface
Map
display

Weather
station

Comms

Balloon
Map

Map
printer

«subsystem»
Data processing

«subsystem»
Data archiving

Data
storage

Map store Data store

Data
storageData

checking
Data

integration

189Konkuk University

Map store Data store

Use Case ModelUse-Case Model

Weather station use-case

System Weather station

Use-case description

St t
Use-case Report

Actors Weather data collection system, Weather station

Data The weather station sends a summary of the weather data that has been

collected from the instruments in the collection period to the weather data

Startup

Shutdown
p

collection system. The data sent are the maximum minimum and average

ground and air temperatures, the maximum, minimum and average air

pressures, the maximum, minimum and average wind speeds, the total rainfall

and the wind direction as sampled at 5 minute intervals.

Report

Stimulus The weather data collection system establishes a modem link with the weather

station and requests transmission of the data.

Response The summarised data is sent to the weather data collection system

Comments Weather stations are usually asked to report once per hour but this frequency

Calibrate

may differ from one station to the other and may be modified in future. Test

190Konkuk University

2 Architectural Design2. Architectural Design

D i h hi i h d di b h• Design the system architecture using the understanding about the
interactions between the system and its environment.

• A layered architecture is appropriate for the weather station
– Interface layer for handling communications
– Data collection layer for managing instrumentsy g g
– Instruments layer for collecting data

Weather station

Manages all
external

communications

«subsystem»
Interface

Collects and
summarises
weather data

«subsystem»
Data collection

191Konkuk University

Package of
instruments for raw

data collections

«subsystem»
Instruments

3 Object Identification3. Object Identification

Id if i bj (bj l) i h diffi l f bj• Identifying objects (or object classes) is the most difficult part of object
oriented design.

– No 'magic formula' for object identification.
– Relies on the skill, experience and domain knowledge of system designers
– An iterative process

• Approaches to object identification:
– Use a grammatical approach based on a natural language description of the

system (used in Hood OOD method)
– Based on the identification on tangible things in the application domain
– Use a behavioural approach and identify objects based on what participates

in what behaviour
– Use a scenario-based analysis. The objects, attributes and methods in each

scenario are identified.

192Konkuk University

Weather Station Object ClassesWeather Station Object Classes

identifier

WeatherStation WeatherData

airTemper aturesidentifier

repor tWeather ()
calibrate (instruments)
test ()
t t (i t t)

airTemper atures
groundTemper atures
windSpeeds
windDirections
pressures

star tup (instruments)
shutdown (instruments)

p
rainf all

collect ()
summarise ()

Gr ound
thermometer

Anemometer

i dS d

Barometer

pressure

test ()
calibrate ()

temper ature
windSpeed
windDirection

test ()

pressure
height

test ()
calibr ate ()

193Konkuk University

4 Developing Design Model4. Developing Design Model

D i d l h h bj bj l d l i hi• Design models show the objects, object classes and relationships
between these entities.

– Static models describe the static structure of the system in terms of object
l d l ti hiclasses and relationships.

– Dynamic models describe the dynamic interactions between objects.

• Examples of design models:
– Sub-system model : shows logical groupings of objects into coherent

bsubsystems
– Sequence model : shows the sequence of object interactions
– State machine model : show how individual objects change their state in

t tresponse to events.
– Other models include use-case models, aggregation models, generalisation

models, etc.

194Konkuk University

Subsystem ModelSubsystem Model

Sh h h d i i i d i l i ll l d f bj• Show how the design is organized into logically related groups of objects.
– A logical model
– The actual organization of objects may be different.
– In the UML, these are shown using packages

«subsystem»
Interface

«subsystem»
Data collectionInterface Data collection

CommsController WeatherData

WeatherStation
Instrument

Status

«subsystem»
Instruments

Air
thermometer RainGauge Anemometer

Konkuk University 195

Ground
thermometer Barometer WindVane

Sequence ModelSequence Model

Sh th f bj t i t ti th t t k l• Show the sequence of object interactions that take place
– Objects are arranged horizontally across the top.
– Time is represented vertically, so models are read top to bottom.

Interactions are represented by labelled arrows– Interactions are represented by labelled arrows.
– Different styles of arrow represent different types of interaction.
– Thin rectangle in an object lifeline represents the time when the object is the

controlling object in the system.g j y

:CommsController :WeatherStation :WeatherData

Data collection request (report)

acknowledge ()
report ()

summarise ()

reply (report)

send (report)

Konkuk University 196

reply (report)

acknowledge ()

State Machine Model: StatechartsState Machine Model: Statecharts

Sh h bj t d t diff t i t d th t t• Show how objects respond to different service requests and the state
transitions triggered by these requests

calibrate ()

calibration OK

Operation
Calibrating

transmission done

test ()startup ()

shutdown () test complete

Shutdown Waiting Testing

clock collection
done reportWeather ()

Transmitting

weather summary
complete

Collecting

Summarising

Konkuk University 197
Weather station

5 Object Interface Specification5. Object Interface Specification

Obj i f ifi i k h d i f bj d h• Object interfaces specification make the design of objects and other
components performed in parallel.

– Objects may have several interfaces (viewpoints).
– The UML uses class diagram for interface specification

interface WeatherStation {{

 public void WeatherStation () ;

 public void startup () ;
 public void startup (Instrument i) ;

p blic oid sh tdo n ()public void shutdown () ;
 public void shutdown (Instrument i) ;

 public void reportWeather () ;

 public void test () ;

public void test (Instrument i) ;public void test (Instrument i) ;

 public void calibrate (Instrument i) ;

 public int getID () ;

} //WeatherStation

198Konkuk University

Summary

OOD i h d i h d i h h i

Summary

• OOD is an approach to design so that design components have their
own private state and operations.

• Objects should have constructor and inspection operations. They provide
services to other objects.

• Objects may be implemented sequentially or concurrently.
• The Unified Modelling Language provides different notations for defining g g g p g

different object models.
• A range of different models may be produced during an object-oriented

design process. These include static and dynamic system models.des g p ocess. ese c ude stat c a d dy a c syste ode s.
• Object interfaces should be defined precisely using a programming

language like Java.

199Konkuk University

Konkuk University 200

Ch t 15Chapter 15.

Real-Time Software Design

ObjectivesObjectives

T l i th t f l ti t d h th t• To explain the concept of a real-time system and why these systems are
usually implemented as concurrent processes

• To describe a design process for real-time systems
T l i th l f l ti ti t• To explain the role of real-time operating systems

• To introduce generic process architectures for monitoring and control
and data acquisition systems

202Konkuk University

Real Time systemsReal-Time systems

S hi h i d l h i i• Systems which monitor and control their environment

• Inevitably associated with hardware devicesy
– Sensors : collect data from the system environment
– Actuators : change the system's environment (in some way)

• Time is critical.
– Real-time systems MUST respond within specified times.

203Konkuk University

DefinitionDefinition

R l ti t i ft t h th t f ti i f th• Real-time system is a software system where the correct functioning of the
system depends on

– the results produced by the system and
– the time at which these results are produced– the time at which these results are produced

• Soft real-time system• Soft real-time system
– Operation is degraded if results are not produced according to the specified

timing requirements.

• Hard real-time system
– Operation is incorrect if results are not produced according to the timing

specification.

204Konkuk University

Stimulus/Response SystemsStimulus/Response Systems

Gi i l h d i hi ifi d• Given a stimulus, the system must produce a response within a specified
time.

• Periodic stimuli
– Stimuli which occur at predictable time intervals
– Example: a temperature sensor may be polled 10 times per second.p p y p p

• Aperiodic stimuli
– Stimuli which occur at unpredictable times– Stimuli which occur at unpredictable times
– Example: a system power failure may trigger an interrupt which must be

processed by the system.

205Konkuk University

Architectural ConsiderationsArchitectural Considerations

B f h d d i i d d d b diff• Because of the need to respond to timing demands made by different
stimuli/responses, the system architecture must allow for fast switching
between stimulus handlers.

• Timing demands of different stimuli are different so a simple sequential
loop is not usually adequate.

• Real-time systems are therefore usually designed as cooperating
processes with a real-time executive controlling these processes.p ocesses t a ea t e e ecut e co t o g t ese p ocesses.

– Cooperating processes
– One real-time executive

206Konkuk University

A Real Time System ModelA Real-Time System Model

Sensor Sensor Sensor Sensor SenseorSensor Sensor Sensor Sensor Senseor

Real-time
Control System

Actuator Actuator Actuator ActuatorActuator Actuator Actuator Actuator

207Konkuk University

Sensor/Actuator ProcessesSensor/Actuator Processes

Sensor Actuator

ResponseStimulus

Sensor Control Data Process Actuator Control

208Konkuk University

System ElementsSystem Elements

S l• Sensor control processes
– Collect information from sensors
– May buffer collected information in response to a sensor stimulus.

• Data processor
– Carries out processing of collected information
– Computes the system response

• Actuator control processesActuator control processes
– Generates control signals for the actuators

209Konkuk University

Real Time ProgrammingReal-Time Programming

H d l i h d i bl l• Hard-real time systems may have to programmed in assembly language
to ensure that deadlines are met.

– Languages such as C allow efficient programs to be written, but do not have
t t t t h d tconstructs to support concurrency or shared resource management.

– Java supports lightweight concurrency (threads and synchronized methods)
and can be used for some soft real-time systems.

• Real-time versions of Java are now available addressing problems like
– Not possible to specify thread execution time
– Different timing in different virtual machinesDifferent timing in different virtual machines
– Uncontrollable garbage collection
– Not possible to discover queue sizes for shared resources
– Not possible to access system hardwarep y
– Not possible to do space or timing analysis

210Konkuk University

System DesignSystem Design

D i b h h h d d h f i d i h• Design both the hardware and the software associated with system
– Partition functions to either hardware or software
– Design decisions should be made on the basis on non-functional system

i trequirements.

– Hardware delivers better performance but potentially longer development and
less scope for changeless scope for change.

211Konkuk University

Real Time Systems Design ProcessReal-Time Systems Design Process

1 Id if h i li b d d h i d h1. Identify the stimuli to be processed and the required responses to these
stimuli.

2. For each stimulus and response, identify the timing constraints.
3. Aggregate the stimulus and response processing into concurrent

processes. A process may be associated with each class of stimulus and
response.

4. Design algorithms to process each class of stimulus and response. These
must meet the given timing requirements.

5. Design a scheduling system which will ensure that processes are started 5. es g a sc edu g syste c e su e t at p ocesses a e sta ted
in time to meet their deadlines.

6. Integrate using a real-time operating system.

212Konkuk University

Timing ConstraintsTiming Constraints

M i t i i l ti d i t t th t th• May require extensive simulation and experiment to ensure that these
are met by the system

M th t t i d i t t i h bj t i t d d i• May mean that certain design strategies such as object-oriented design
cannot be used because of the additional overhead involved

May mean that low level programming language features have to be• May mean that low-level programming language features have to be
used for performance reasons

213Konkuk University

Real Time System ModellingReal-Time System Modelling

Th ff f i l i l i i i i• The effect of a stimulus in a real-time system may trigger a transition
from one state to another.

• Finite State Machines (FSM) can be used for modelling real-time systems.
– However, FSM models lack structure. Even simple systems can have complex

models.
– The UML includes notations for defining state machine models.

• See Chapter 8 for further examples of state machine models.

214Konkuk University

Petrol Pump State ModelPetrol Pump State Model

Card
inserted

into reader Initialising

d i i i li

Reading

Timeout

do: initialise
display

do: get CC
details

Waiting
Card removed

Card OK

Hose out of holster

do: display
welcome

do:
deliver fuel

Ready Delivering

update display
Nozzle

trigger on

do: validate
credit card

Validating

Timeout

Resetting
do: display CC

Stopped

Nozzle trigger off

Nozzle trigger on

Invalid card

p y
error

Paying

do: debit
Payment ack. Hose in

h l tCC account holster

215Konkuk University

Real Time Operating SystemsReal-Time Operating Systems

R l i i i li d i hi h• Real-time operating systems are specialized operating systems which
manage the processes in the RTS.

– Responsible for process management and resource (processor and memory)
ll tiallocation

– May be based on a standard kernel which is used unchanged or modified for
a particular application
Do not normally include facilities such as file management– Do not normally include facilities such as file management

• Real-time operating system components
R l i l k id i f i f h d li– Real-time clock : provides information for process scheduling

– Interrupt handler : manages aperiodic requests for service
– Scheduler : chooses the next process to be run
– Resource manager : allocates memory and processor resources
– Dispatcher : starts process execution

216Konkuk University

Real Time OS ComponentsReal-Time OS Components

Scheduling
information

Scheduler
Real-time

clock
Interrupt
handler

Process resource
requirements

Resource
manager

Processes
awaiting
resources

Available
resource

list

Ready
processes

Released
resources

Despatcher
Ready

list
Processor

list

p

Executing process

217Konkuk University

Non Stop System ComponentsNon-Stop System Components

C fi i• Configuration manager
– Responsible for the dynamic reconfiguration of the system software and

hardware.
H d d l b l d d ft d d ith t t i– Hardware modules may be replaced and software upgraded without stopping
the systems.

F lt• Fault manager
– Responsible for detecting software and hardware faults and taking

appropriate actions (e.g. switching to backup disks)
T th t th t ti i ti– To ensure that the system continues in operation

218Konkuk University

Process PriorityProcess Priority

Th i f f i li i k i i• The processing of some types of stimuli must sometimes take priority.
– Interrupt level priority

• Highest priority
All t d t i i f t• Allocated to processes requiring a very fast response

– Clock level priority
• Allocated to periodic processes

• Within these, further levels of priority may be assigned.

219Konkuk University

Interrupt ServicingInterrupt Servicing

C l i f d i ll d i d• Control is transferred automatically to a pre-determined memory
location.

– This location contains an instruction to jump to an interrupt service routine.
– Further interrupts are disabled, the interrupt serviced and the control returned

to the interrupted process.

• Interrupt service routines MUST be short, simple and fast.

220Konkuk University

Periodic Process ServicingPeriodic Process Servicing

I l i h ill b l l f i di• In most real-time systems, there will be several classes of periodic
process, each with different periods (the time between executions),
execution times and deadlines (the time by which processing must be

l t d)completed).

• The real-time clock ticks periodically and each tick causes an interrupt
which schedules the process manager for periodic processes.

• The process manager selects a process which is ready for execution.

221Konkuk University

Process ManagementProcess Management

C d ith i th t f t• Concerned with managing the set of concurrent processes.
• Periodic processes are executed at pre-specified time intervals.

• The RTOS uses the real-time clock to determine when to execute a
process taking into account

– Process period : time between executions.
P d dli th ti b hi h i t b l t– Process deadline : the time by which processing must be complete.

RTOS Process Management

Scheduler Resource Manager Dispatcher

RTOS Process Management

Choose processes for
execution

Allocate memory and
processor

Start execution on
an available processor

222Konkuk University

Process SwitchingProcess Switching

Th h d l h th t t b t d b th• The scheduler chooses the next process to be executed by the processor.
– Depends on a scheduling strategy.

• The resource manager allocates memory and a processor for the process
to be executedto be executed.

• The dispatcher takes the process from ready list, loads it onto a
processor and starts execution.

• Scheduling strategies
– Non pre-emptive scheduling

• Once a process has been scheduled for execution it runs to completion or until it is• Once a process has been scheduled for execution, it runs to completion or until it is
blocked for some reason (e.g. waiting for I/O).

– Pre-emptive scheduling
• The execution of an executing processes may be stopped if a higher priority process

i irequires service.
– Scheduling algorithms

• Round-robin , Rate monotonic , Shortest deadline first, many others.

223Konkuk University

Monitoring and Control SystemsMonitoring and Control Systems

C i l h k d k i d di l• Continuously check sensors and take actions depending on sensor values.
• Monitoring systems examine sensors and report their results.
• Control systems take sensor values and control hardware actuators.y

Testing
ProcessProcess

S1 P (S1) Monitoring
Process

A1P (A1)

S2

S3

P (S2)

P (S3)

Process

Control

A2

A3

P (A2)

P (A3)
()

Process

Control Panel

A4P (A4)

ATM and Terminals
Processes

224Konkuk University

SummarySummary

R l i d d j h h d• Real-time system correctness depends not just on what the system does
but also on how fast it reacts.

• A general real-time system model involves associating processes with
sensors and actuators.

• Real-time systems architectures are usually designed as a number of
concurrent processes.

• Real-time operating systems are responsible for process and resource
management.

• Monitoring and control systems poll sensors and send control signal to o to g a d co t o syste s po se so s a d se d co t o s g a to
actuators.

225Konkuk University

Konkuk University 226

Part IV. Development

Konkuk University 227

Ch t 17Chapter 17.

Rapid Software Development

ObjectivesObjectives

T l i h it ti d i t l d l t l d t• To explain how an iterative and incremental development process lead to
faster delivery of more useful software

• To discuss the essence of agile development methods
T l i th i i l d ti f t i• To explain the principles and practices of extreme programming

• To explain the roles of prototyping in software process

229Konkuk University

Rapid Software DevelopmentRapid Software Development

R idl h i b i i t• Rapidly changing business environments
– make businesses have to respond to new opportunities and competition
– Require rapid software development

• Businesses may be willing to accept lower quality software if rapid
delivery of essential functionality is possible.

• Because of the changing environment, it is often impossible to arrive at a
stable and consistent set of system requirements.

• Therefore a waterfall model of development is impractical.

• Approach to development based on iterative specification and delivery is pp p p y
the only way to deliver software quickly.

230Konkuk University

Characteristics of Rapid Software
Development Process

S i d l d i i f i• System is developed in a series of increments.
– Specification, design and implementation are performed concurrently.
– End users evaluate each increment and make proposals for later increments.
– No detailed specification and design documentation

Define system
deliverables

Design system
architecture

Specify system
increment

Build system
increment

Validate
increment

Validate system
Integrate
increment

Deliver
final system

System
complete?

Konkuk University 231

Characteristics of Incremental DevelopmentCharacteristics of Incremental Development

Ad• Advantages:
– Accelerated delivery of customer services

• Each increment delivers the highest priority functionality to the customer.

U i h h– User engagement with the system
• Users have to be involved in the development to specify their requirements.

P bl• Problems:
– Management problems

• No document makes the progress hard to be judged and problems hard to be
found.found.

– Contractual problems
• The normal contract may include a specification, but it does not have it.

– Validation problems
• Without a specification, what is the system being tested against?

– Maintenance problems
• Continual change tends to corrupt software structure, and makes it more expensive

to change and evolve to meet new requirements.g q

232Konkuk University

PrototypingPrototyping

F l i l i i d l d d li• For some large systems, incremental iterative development and delivery
may be impractical.

• An experimental system is developed
– as a basis for formulating the requirements, and
– thrown away, when the system specification has been agreed.y y p g

I t l Delivered System

Outline
Requirements

Incremental
Development

Executable Prototype +
System Specification

Throw-away
Prototyping

233Konkuk University

Differences in ObjectivesDifferences in Objectives

I l d l• Incremental development
– To deliver a working system to end-users
– Start with those requirements which are best understood
– Example: Agile, XP

• Throw-away prototyping
– To validate or derive system requirements.
– Starts with those requirements which are poorly understoodStarts with those requirements which are poorly understood
– Example: Prototyping

234Konkuk University

Agile MethodAgile Method

F di i f i i h h h d i l d i d i h d• From dissatisfaction with the overheads involved in design methods
– Focus on the code rather than the design
– Based on an iterative approach to software development
– Intended to deliver working software quickly
– Intended to evolve software quickly to meet changing requirements
– Best suited to small/medium-sized business systems or PC products

Objectives Description

Customer
involvement

The customer should be closely involved throughout the development process. Their role is provide
and prioritise new system requirements and to evaluate the iterations of the systeminvolvement and prioritise new system requirements and to evaluate the iterations of the system.

Incremental
delivery

The software is developed in increments with the customer specifying the requirements to be
included in each increment.

People not
process

The skills of the development team should be recognised and exploited. The team should be left to
develop their own ways of working without prescriptive processesprocess develop their own ways of working without prescriptive processes.

Embrace change Expect the system requirements to change and design the system so that it can accommodate these
changes.

Maintain
simplicity

Focus on simplicity in both the software being developed and in the development process used.
Wherever possible actively work to eliminate complexity from the system

235Konkuk University

simplicity Wherever possible, actively work to eliminate complexity from the system.

Problems with Agile MethodProblems with Agile Method

I b diffi l k h i f h i l d i• It can be difficult to keep the interest of customers who are involved in
the process.

• Team members may be unsuited to the intense involvement that
characterizes agile methods.

• Prioritizing changes can be difficult where there are multiple
stakeholders.

• Maintaining simplicity requires extra work.
• Contracts may be a problem as with other approaches to iterative

development.de e op e t.

236Konkuk University

Extreme ProgrammingExtreme Programming

E t P i (XP) i th b t k il th d• Extreme Programming (XP) is the best-known agile method.
– Takes an ‘extreme’ approach to iterative development
– New versions may be built several times per day.

Increments are delivered to customers every 2 weeks– Increments are delivered to customers every 2 weeks.
– All tests must be run for every build and the build is only accepted if tests

run successfully.

• XP release cycle:

Select user stories
for this release

Break down stories
to tasks

Plan release

Evaluate system Release software
Develop/Integrate/

Test software

237Konkuk University

Testing in XPTesting in XP

XP i fi d l• XP is a test-first development.
– Incremental tests are developed from scenarios.
– Users are involved in test development and validation.
– Automated test harnesses are used to run all component tests each time that

a new release is built.

• Test-first development
– Writing tests before code to clarify the requirements to be implemented.g y q p
– Tests are written as programs rather than data so that they can be executed

automatically.
– Test includes a check that it has executed correctly.

All i d t t t ti ll h f ti lit i– All previous and new tests are automatically run when new functionality is
added in order to check that the new functionality has not introduced errors.

238Konkuk University

Pair Programming in XPPair Programming in XP

I XP k i i itti t th t d l d• In XP, programmers work in pairs, sitting together to develop code.
– Helps develop common ownership of code
– Help spread knowledge across the team

Serves as an informal review process as each line of code is looked at by– Serves as an informal review process as each line of code is looked at by
more than 1 person.

– Encourages refactoring as the whole team can benefit from this

• Development productivity with pair programming is similar to that of two
people working independently.

239Konkuk University

RAD (Rapid Application Development)RAD (Rapid Application Development)

O h RAD h A il h d h b d f• Other RAD approaches except Agile methods have been used for many
years.

– Designed to develop data-intensive business applications
– Rely on programming and presenting information from a database
– RAD environment:

• Database programming language
I t f t• Interface generator

• Links to office applications
• Report generators

240Konkuk University

Interface GenerationInterface Generation

M li i b d l f• Many applications are based on complex forms
– Developing forms manually is a time-consuming activity.

• RAD environments include support for screen generation including
– Interactive form definition using drag and drop techniques
– Form linking where the sequence of forms to be presented is specified
– Form verification where allowed ranges in form fields is defined

• Visual Programming
– Scripting languages such as Visual Basic support visual programming where

the prototype is developed by creating a user interface from standard items p yp p y g
and associating components with these items.

– A large library of components exists to support this type of development.
– May be tailored to suit the specific application requirements.

241Konkuk University

Visual Programming with ReuseVisual Programming with Reuse

Menu component
Date component

File Edit Views Layout Options Help

General
Index

Range checking
script

U t

12th January 2000

3.876

Draw canvas
component

User prompt
component +

script

Tree display

242Konkuk University

component

COTS ReuseCOTS Reuse

A ff i h id d l i fi d• An effective approach to rapid development is to configure and
assemble existing off-the-shelf systems.

• For example, a requirements management system could be built by
using

– A database to store requirements
– A word processor to capture requirements and format reports
– A spreadsheet for traceability management

243Konkuk University

Software PrototypingSoftware Prototyping

A i i i i l i f d d• A prototype is an initial version of a system used to demonstrate
concepts and try out design options. (Throw-away prototyping)

• A prototype can be used
– In the requirements engineering process to help with requirements elicitation

and validation
– In design processes to explore options and develop a UI design
– In the testing process to run back-to-back tests

• Benefits of prototyping

Back-to-back test

Test Data

– Improved system usability
– A closer match to users’ real needs
– Improved design quality

System
Prototype

Application
System

p g q y
– Improved maintainability
– Reduced development effort

Result
Comparator

244Konkuk University

Difference
Report

Prototyping ProcessPrototyping Process

Establish
Prototype
Objectives

Define
Prototype

Functionality

Develop
Prototype

Evaluate
Prototype

Prototyping Plan
Outline

Definition
Executable
Prototype

Evaluation
ReportDefinition Prototype Report

245Konkuk University

SummarySummary

A it ti h t ft d l t l d t f t d li f• An iterative approach to software development leads to faster delivery of
software.

• Agile methods are iterative development methods that aim to reduce
development overhead and so produce software fasterdevelopment overhead and so produce software faster.

• Extreme programming includes practices such as systematic testing,
continuous improvement and customer involvement.

• Testing approach in XP is a particular strength where executable tests are• Testing approach in XP is a particular strength where executable tests are
developed before the code is written.

• Rapid application development (RAD) environments include database
programming languages, form generation tools and links to office p og a g a guages, o ge e at o too s a d s to o ce
applications.

• A throw-away prototype is used to explore requirements and design
options.

246Konkuk University

Konkuk University 247

Ch t 18Chapter 18.

Software Reuse

ObjectivesObjectives

T l i b fit f ft d bl• To explain benefits of software reuse and some reuse problems
• To discuss several different ways to implement software reuse
• To explain how reusable concepts can be represented as patterns or

b dd d i tembedded in program generators
• To discuss COTS reuse
• To describe the development of software product lines

249Konkuk University

Software ReuseSoftware Reuse

I i i di i li d i d b i• In most engineering disciplines, systems are designed by composing
existing components that have been used in other systems.

• To achieve better software, more quickly and at lower cost, we need to
adopt a design process that is based on systematic software reuse.

• Reuse-based software Engineeringg g
– Application system reuse

• The whole of an application system may be reused either by incorporating it
without change into other systems (COTS reuse) or by developing application
familiesfamilies.

– Component reuse
• Components of an application from sub-systems to single objects may be reused.

Covered in Chapter 19.

Obj t d f ti– Object and function reuse
• Software components that implement a single well-defined object or function may

be reused.

250Konkuk University

Benefits of ReuseBenefits of Reuse

Benefits Description

Increased
dependability

Reused software, that has been tried and tested in working systems, should be more
dependable than new software. The initial use of the software reveals any design and
implementation faults. These are then fixed, thus reducing the number of failures when the
software is reused.

Reduced process
risk

If software exists, there is less uncertainty in the costs of reusing that software than in the
costs of development. This is an important factor for project management as it reduces the
margin of error in project cost estimation. This is particularly true when relatively large
software components such as sub systems are reusedsoftware components such as sub-systems are reused.

Effective use of
specialists

Instead of application specialists doing the same work on different projects, these specialists
can develop reusable software that encapsulate their knowledge.

Standards
compliance

Some standards, such as user interface standards, can be implemented as a set of standard
reusable components. For example, if menus in a user interfaces are implemented using
reusable components, all applications present the same menu formats to users. The use of
standard user interfaces improves dependability as users are less likely to make mistakes
when presented with a familiar interface.

Accelerated
development

Bringing a system to market as early as possible is often more important than overall
development costs. Reusing software can speed up system production because both
development and validation time should be reduced.

251Konkuk University

Problems in ReuseProblems in Reuse

Problems Description

Increased
maintenance cost

If the source code of a reused software system or component is not available then
maintenance costs may be increased as the reused elements of the system may become
increasingly incompatible with system changesincreasingly incompatible with system changes.

Lack of tool support
CASE toolsets may not support development with reuse. It may be difficult or impossible to
integrate these tools with a component library system. The software process assumed by
these tools may not take reuse into account.

Not-invented-here
syndrome

Some software engineers sometimes prefer to re-write components as they believe that
they can improve on the reusable component. This is partly to do with trust and partly to
do with the fact that writing original software is seen as more challenging than reusing
other people’s software.

Creating and
maintaining a

component library

Populating a reusable component library and ensuring the software developers can use this
library can be expensive. Our current techniques for classifying, cataloguing and retrieving
software components are immature.

Finding,
understanding and
adapting reusable

components

Software components have to be discovered in a library, understood and, sometimes,
adapted to work in a new environment. Engineers must be reasonably confident of finding
a component in the library before they will make routinely include a component search as
part of their normal development process.

252Konkuk University

Reuse LandscapeReuse Landscape

R i ibl f l l f i l f i l• Reuse is possible at a range of levels from simple functions to complete
application systems.

• The reuse landscape covers the range of possible reuse techniques.

Design
patterns

C b d

Component
frameworks

Application
product lines Aspect-oriented

software development

Component-based
development

COTS
integration

Legacy system
wrapping

Program
generators

Configurable vertical
applications

Service-oriented
systems

Program
libraries

pp

253Konkuk University

Reuse ApproachesReuse Approaches
Reuse Approaches Description

Design patterns Generic abstractions that occur across applications are represented as design patterns that
show abstract and concrete objects and interactions.

Component-based
development

Systems are developed by integrating components (collections of objects) that conform to
component-model standards. This is covered in Chapter 19.

Application
framework

Collections of abstract and concrete classes that can be adapted and extended to create
application systems.

Legacy system
wrapping

Legacy systems (see Chapter 2) that can be ‘wrapped’ by defining a set of interfaces and
providing access to these legacy systems through these interfaces.

Service-oriented
systems

Systems are developed by linking shared services that may be externally provided.

Application product
lines

An application type is generalised around a common architecture so that it can be adapted
in different ways for different customers.

COTS integration Systems are developed by integrating existing application systems.

Configurable
vertical applications

A generic system is designed so that it can be configured to the needs of specific system
customers.

Program libraries Class and function libraries implementing commonly-used abstractions are available for
reuse.

Program generators A generator system embeds knowledge of a particular types of application and can
generate systems or system fragments in that domain.

254Konkuk University

Aspect-oriented
software

development

Shared components are woven into an application at different places when the program is
compiled.

Reuse: Concept ReuseReuse: Concept Reuse

Wh d i t h t f ll th• When reuse program or design components, we have to follow the
design decisions made by the original developer of the component.

– May limit the opportunities for reuse

• Concept reuse is a more abstract form of reuse.
A ti l h i d ib d i i l t ti i d d tl– A particular approach is described in an implementation independently.

– An implementation is then developed.

Two main approaches to concept reuse• Two main approaches to concept reuse
– Design patterns
– Generative programming (Program generator)

255Konkuk University

Design PatternDesign Pattern

D i i f i b k l d b bl• Design pattern is a way of reusing abstract knowledge about a problem
and its solution.

– A pattern is a description of the problem and the essence of its solution.
– Should be sufficiently abstract to be reused in different settings
– Patterns often rely on object characteristics such as inheritance and

polymorphism.

• Elements in design patterns
– Name : Meaningful pattern identifier
– Problem description
– Solution description : Not a concrete design but a template for a design

solution that can be instantiated in different ways
– Consequences : Results and trade-offs of applying the pattern

256Konkuk University

Design Pattern Example: Multiple DisplaysDesign Pattern Example: Multiple Displays

D
50

A

B

C

0

25

A B C D

A: 40
B: 25

Observer 1 Observer 2

Subject

B: 25
C: 15
D: 20

257Konkuk University

Observer PatternObserver Pattern

Name : Obse e• Name : Observer
• Description : Separates the display of object state from the object itself
• Problem description : Used when multiple displays of state are needed
• Solution description : See slide with UML description• Solution description : See slide with UML description
• Consequences : Optimizations to enhance display performance are impractical

Subject Observer

Attach (Observer)
Detach (Observer)

Update ()
for all o in observers

Notify ()
for all o in observers

o -> Update ()

ConcreteSubject

GetState ()

s bjectState

ConcreteObserver

Update ()

obser erState

observerState =
subject -> GetState ()return subjectState

Konkuk University 258

subjectState observerState

Generator Based ReuseGenerator-Based Reuse

P t i l th f t d d tt d• Program generators involve the reuse of standard patterns and
algorithms.

– Embedded in the generator and parameterised by user commands. A
program is then automatically generated.program is then automatically generated.

– Possible when domain abstractions and their mapping to executable code can
be identified.

• A domain specific language is used to compose and control these
abstractions.

Program Generator
Application
Description

Generated
Program

Application Domain
Knowledge

Database

259Konkuk University

Types of Program GeneratorTypes of Program Generator

T f t• Types of program generator
– Application generators : for business data processing
– Parser and lexical analyzer generators : for language processing

Code generators : in CASE tools– Code generators : in CASE tools

• Generator-based reuse is very cost-effective but its applicability is limited• Generator based reuse is very cost effective, but its applicability is limited
to a relatively small number of application domains.

• It is easier for end-users to develop programs using generatorsIt is easier for end users to develop programs using generators
compared to other component-based approaches to reuse.

260Konkuk University

Reuse: Aspect Oriented DevelopmentReuse: Aspect-Oriented Development

A i d d l dd j f i i• Aspect-oriented development addresses a major software engineering
problem - the separation of concerns.

– Concerns are often not simply associated with application functionality but
tti ll t it th i ti llare cross-cutting, e.g. all components may monitor their own operation, all

components may have to maintain security, etc.
– Cross-cutting concerns are implemented as aspects and are dynamically

woven into a program The concern code is reused and the new system iswoven into a program. The concern code is reused and the new system is
generated by the aspect weaver.

A t 1 A t 2

Generated code

Aspect 1 Aspect 2

Input source code

Aspect
Weaver

<statements 1>
Aspect 1

<statements 2>
Aspect 2

<statements 1>
join point 1

<statements 2>
join point 2

261Konkuk University

p
<statements 3>

join point 2
<statements 3>

Reuse: Application FrameworksReuse: Application Frameworks

F k b d i d f ll i f b• Frameworks are a sub-system design made up of a collection of abstract
and concrete classes and the interfaces between them.

– The sub-system is implemented by adding components to fill in parts of the
d i d b i t ti ti th b t t l i th f kdesign and by instantiating the abstract classes in the framework.

• Frameworks are moderately large entities that can be reused.

• Framework classes
– System infrastructure framework

• Support the development of system infrastructures such as communications, user
interfaces and compilersinterfaces and compilers

– Middleware integration framework
• Standards and classes that support component communication and information

exchange

– Enterprise application framework
• Support the development of specific types of application such as

telecommunications or financial systems

262Konkuk University

Reuse: Application System ReuseReuse: Application System Reuse

I l th f ti li ti t• Involves the reuse of entire application systems
– by configuring a system for an environment
– by integrating two or more systems to create a new application

• Two approaches
COTS d t i t ti– COTS product integration

– Product line development

263Konkuk University

COTS Product ReuseCOTS Product Reuse

COTS C i l Off Th Sh lf• COTS : Commercial Off-The-Shelf
• COTS systems are usually complete application systems offering APIs.

– Build large systems by integrating COTS systems
Eff ti d l t t t f t f t h E– Effective development strategy for some types of system such as E-commerce
systems

• Key benefits
– Faster application development
– Usually lower development costsy p

Konkuk University 264

COTS Design ChoicesCOTS Design Choices

Whi h COTS d t ff th t i t f ti lit ?• Which COTS products offer the most appropriate functionality?
– There may be several similar products that may be used.

How will data be exchanged?• How will data be exchanged?
– Individual products use their own data structures and formats.

• What features of the product will actually be used?• What features of the product will actually be used?
– Most products have more functionality than is needed.
– You should try to deny access to unused functionality.

265Konkuk University

COTS System Integration ProblemsCOTS System Integration Problems

L k f l f i li d f• Lack of control over functionality and performance
– COTS systems may be less effective than they appear.

• Problems with inter-operability
– Different COTS systems may make different assumptions that means

integration is difficult.

• No control over system evolution
– COTS vendors do not control system evolution.y

• Support from COTS vendors
– COTS vendors may not offer support over the lifetime of the product.COTS vendors may not offer support over the lifetime of the product.

266Konkuk University

Example: E Procurement SystemExample: E-Procurement System

O h li d d il• On the client, standard e-mail
and web browsing programs are
used.

Client

• On the server, an e-commerce
platform has to be integrated

Client

Web
browser

E-mail
system

with an existing ordering system.
– Involves writing an adaptor so

that they can exchange data.
Server

E
Ordering and

– An e-mail system is also
integrated to generate e-mail for
clients. This also requires an
adaptor to receive data from the

E-commerce
system

O de g a d
invoicing
system

Adaptor

Adaptor
E-mail
system adaptor to receive data from the

ordering and invoicing system.

p
system

267Konkuk University

Software Product LineSoftware Product Line

S f d li li i f ili li i i h• Software product lines or application families are applications with
generic functionality that can be adapted and configured for use in a
specific context.

• Adaptation may involve
– Component and system configuration
– Adding new components to the system
– Selecting from a library of existing components
– Modifying components to meet new requirementsy g p q

268Konkuk University

Product Instance DevelopmentProduct Instance Development

Eli it t k h ld i t• Elicit stakeholder requirements
– Use existing family member as a prototype

• Choose closest-fit family member
Fi d th f il b th t b t t th i t– Find the family member that best meets the requirements

• Re-negotiate requirements
– Adapt requirements as necessary to capabilities of the software

Ad t i ti t• Adapt existing system
– Develop new modules and make changes for family member

• Deliver new family member
D t k f t f f th b d l t– Document key features for further member development

Renegotiate
requirements

Elicit
stakeholder

requirements

Choose closest-
fit family
member

requirements

Adapt existing
system

Deliver new
family member

269Konkuk University

system family member

Summary

Ad t f l t f t ft d l t d

Summary

• Advantages of reuse are lower costs, faster software development and
lower risks.

• Design patterns are high-level abstractions that document successful
design solutionsdesign solutions.

• Program generators are also concerned with software reuse - the
reusable concepts are embedded in a generator system.

• Application frameworks are collections of concrete and abstract objects• Application frameworks are collections of concrete and abstract objects
that are designed for reuse through specialisation.

• COTS product reuse is concerned with the reuse of large, off-the-shelf
systemssystems.

• Problems with COTS reuse include lack of control over functionality,
performance, and evolution and problems with inter-operation.
S ft d t li l t d li ti d l d d• Software product lines are related applications developed around a
common core of shared functionality.

270Konkuk University

Konkuk University 271

Ch t 19Chapter 19.

Component-Based Software Engineering

ObjectivesObjectives

T l i th t CBSE i d ith d l i t d di d• To explain that CBSE is concerned with developing standardized
components and composing them into applications

• To describe components and component models
T h i i l ti iti i CBSE• To show principal activities in CBSE process

• To discuss approaches to component composition and problems that
may arise

273Konkuk University

Component Based DevelopmentComponent-Based Development

C t b d ft i i (CBSE) i h t• Component-based software engineering (CBSE) is an approach to
software development that relies on software reuse.

– Emerged from the failure of object-oriented development to support effective
reusereuse

– Single object classes are too detailed and specific to reuse.

• Components are more abstract than object classes and can beComponents are more abstract than object classes and can be
considered to be stand-alone service providers.

274Konkuk University

CBSE EssentialsCBSE Essentials

CBSE i l• CBSE essentials
– Independent components specified by their interfaces
– Component standards to facilitate component integration
– Middleware that provides support for component inter-operability
– Development process that is geared to reuse

• Apart from the benefits of reuse, CBSE is based on sound software
engineering design principlesg g g p p

– Components are independent so do not interfere with each other.
– Component implementations are hidden.
– Communication is through well-defined interfaces.
– Component platforms are shared and reduce development costs.

275Konkuk University

CBSE ProblemsCBSE Problems

C hi• Component trustworthiness
– How can a component with no available source code be trusted?

• Component certification
– Who will certify quality of the components?

• Emergent property prediction
– How can the emergent properties of component compositions be predicted?

• Requirements trade-offs
– How do we do trade-off analysis between the features of one component and

another?another?

276Konkuk University

ComponentsComponents

C t id i ith t d t h th t i• Components provide a service without regard to where the component is
executing or what its programming language is.
- A component is an independent executable entity that can be made up of

one or more executable objects.one or more executable objects.
- The component interface is published and all interactions are through the

published interface.

Councill and Heinmann:
A software component is a software element that conforms to a co
mponent model and can be independently deployed and composemponent model and can be independently deployed and compose
d without modification according to a composition standard.

Szyperski:
A software component is a unit of composition with contractually sA software component is a unit of composition with contractually s
pecified interfaces and explicit context dependencies only. A softwa
re component can be deployed independently and is subject to co
mposition by third-parties.

277Konkuk University

Characteristics of ComponentsCharacteristics of Components

Characteristics Description

Standardized
Component standardisation means that a component that is used in a CBSE process has to
conform to some standardised component model. This model may define component interfaces,
component meta-data documentation composition and deploymentcomponent meta data, documentation, composition and deployment.

Independent
A component should be independent – it should be possible to compose and deploy it without
having to use other specific components. In situations where the component needs externally
provided services, these should be explicitly set out in a ‘requires’ interface specification.

Composable
For a component to be composable, all external interactions must take place through publicly
defined interfaces. In addition, it must provide external access to information about itself such
as its methods and attributes.

To be deployable a component has to be self-contained and must be able to operate as a

Deployable

To be deployable, a component has to be self contained and must be able to operate as a
stand-alone entity on some component platform that implements the component model. This
usually means that the component is a binary component that does not have to be compiled
before it is deployed.

Components have to be fully documented so that potential users of the component can decide
Documented whether or not they meet their needs. The syntax and, ideally, the semantics of all component

interfaces have to be specified.

278Konkuk University

Component InterfaceComponent Interface

P id i f• Provides interface
– Defines the services that are provided by the component to other

components

i i f• Requires interface
– Defines the services that specifies what services must be made available for

the component to execute as specified.

Provide interfaceRequires interface

Component

Defines the services
from the component’s
environment that it

Defines the services
that are provided
by the component

uses to other components

279Konkuk University

Example: A Data Collector Component InterfaceExample: A Data Collector Component Interface

Provides interfaceRequires interface Provides interfaceRequires interface

addSensor
removeSensorM t

Data collector

e o eSe so
star tSensor

stopSensor

testSensor

sensorManagement

sensorData testSensor

li tAll
report

initialize
sensorData

listAll

280Konkuk University

Component ModelComponent Model

C d l i d fi i i f d d f• Component model is a definition of standards for component
implementation, documentation and deployment.

– EJB model (Enterprise Java Beans)
– COM+ model (.NET model)
– CORBA component Model

• Component model specifies how interfaces should be defined and the
elements that should be included in the interface definition.

Elements of component models Customisation

Composition

Naming
convention

Documentation

I t f
Usage Deployment

Interface
definition

Specific
interfaces

Meta-data
access

Packaging Evolution
support

281Konkuk University
Component model

Interfaces
Usage

information
Deployment

and use

Middleware SupportMiddleware Support

Middl id t f ti t• Middleware provides support for executing components.
– Component models are the basis of middleware.

• Component model implementations provide
Platform services : allow components written according to the model to communicate– Platform services : allow components written according to the model to communicate

– Horizontal services : application-independent services used by different components

• Container
– A set of interfaces used to access the service implementationsA set of interfaces used to access the service implementations
– To use services provided by a model

Horizontal services

S it

Transaction
management

C

Component
management

Resource
management

Platform services

SecurityConcurrency Persistence

Konkuk University 282

Addressing Inter face
definition

Component
communications

Exception
management

Component Development for ReuseComponent Development for Reuse

C t d l d f ifi li ti ll h t b• Components developed for a specific application usually have to be
generalized to make them reusable.

• A component is most likely to be reusable if it associated with a stable
domain abstraction (business object)domain abstraction (business object).

– In a hospital, stable domain abstractions are associated with the fundamental
purpose - nurses, patients, treatments, etc.

• Component reusability
– Should reflect stable domain abstractions
– Should hide state representationp
– Should be as independent as possible
– Should publish exceptions through the component interface

• Trade-off between reusability and usability
– The more general the interface, the greater the reusability.
– But it is then more complex and hence less usable.

283Konkuk University

Cost of Reusable ComponentCost of Reusable Component

Th d l f bl b hi h h h• The development cost of reusable components may be higher than the
cost of specific equivalents.

• Generic components may be less space-efficient and may have longer
execution times than their specific equivalents.

• This extra reusability enhancement cost should be an organization cost
rather than a project cost.

284Konkuk University

Legacy System ComponentsLegacy System Components

E i i l h f lfill f l b i f i b• Existing legacy systems that fulfill a useful business function can be re-
packaged as components for reuse.

– Involve writing a wrapper component that implements provides and requires
i t f t th l tinterfaces to access the legacy system

– Although costly, this can be much less expensive than rewriting the legacy
system.

285Konkuk University

CBSE ProcessCBSE Process

Wh i t it i ti l t k t d ff b t• When reusing components, it is essential to make trade-offs between
ideal requirements and the services actually provided by available
components.

– Developing outline requirementsDeveloping outline requirements
– Searching for components then modifying requirements according to

available functionality
– Searching again to find if there are better components that meet the revised

requirements

Outline system
requirements

Identify candidate
components

Modify requirements
according to
discovered

components

Architectural
design

Identify candidate
components

Compose
components to

286Konkuk University

design components
p

create system

Component Identification IssuesComponent Identification Issues

T t• Trust
– You need to be able to trust the supplier of a component.

• At best, an un-trusted component may not operate as advertised.
• At worst, it can breach your securityAt worst, it can breach your security.

• Requirements
– Different groups of components will satisfy different requirements.g p p y q

• Validation
– Component specification may not be detailed enough to allow p p y g

comprehensive tests to be developed.
– Components may have unwanted functionality. How can you test this will not

interfere with your application?

287Konkuk University

Component CompositionComponent Composition

P f bli• Process of assembling components to create a system
– Involve integrating components with each other and with the component

infrastructure
N ll h t it ‘ l d ’ t i t t t– Normally have to write ‘glue code’ to integrate components

• Types of composition
– Sequential composition

• Where the composed components are executed in sequence
• Involves composing the provides interfaces of each component

Hierarchical composition– Hierarchical composition
• Where one component calls on the services of another.
• The provides interface of one component is composed with the requires interface of

another

– Additive composition
• The interfaces of two components are put together to create a new component

288Konkuk University

Types of CompositionTypes of Composition

289Konkuk University

Interface IncompatibilityInterface Incompatibility

P i ibili• Parameter incompatibility
– Operations have the same name but are of different types.

• Operation incompatibility
– Names of operations in the composed interfaces are different.

• Operation incompleteness
– Provides interface of one component is a subset of the requires interface of another.

phoneDatabase (string command)
string location(string pn)

addressFinder
string owner (string pn)

string propertyType (string pn)

mapper

mapDB (string command)
displayMap (string postCode, scale)

printMap (string postCode, scale)

290Konkuk University

Adaptor ComponentAdaptor Component

Add h bl f i ibili b ili h• Address the problem of component incompatibility by reconciling the
interfaces of the components that are composed.

– Different types of adaptor are required depending on the type of composition.

• An addressFinder and a mapper component may be composed through
an adaptor that strips the postal code from an address and passes this
to the mapper component.

address = addressFinder.location (phonenumber) ;

postCode postCodeStrippergetPostCode (address) ;postCode = postCodeStripper.getPostCode (address) ;

mapper.displayMap(postCode, 10000)

291Konkuk University

Adaptor for Data Collector ComponentAdaptor for Data Collector Component

addSensor
removeSensor

sensorManagement
start

Data collector

startSensor

stopSensor
testSensor

i i i li
sensorData

Adaptersensor

getdata

stop

listAll
report
initialisegetdata

292Konkuk University

Interface SemanticsInterface Semantics

H l d i d id if i ll• Have to rely on component documentation to decide if syntactically
compatible interfaces are actually compatible

• Object Constraint Language (OCL)
– Define constraints that are associated with UML models.
– Based around the notion of pre and post condition specification - similar to p p p

the approach used in Z.

-- The context keyword names the component to which the conditions apply
context addItem

-- The preconditions specify what must be true before execution of addItem
pre: PhotoLibrary.libSize() > 0
 PhotoLibrary.retrieve(pid) = null

-- The postconditions specify what is true after execution
post: libSize () = libSize()@pre + 1p () ()@p
 PhotoLibrary.retrieve(pid) = p
 PhotoLibrary.catEntry(pid) = photodesc

context delete

pre: PhotoLibrary.retrieve(pid) <> null ;

post: PhotoLibrary.retrieve(pid) = null
 PhotoLibrary.catEntry(pid) = PhotoLibrary.catEntry(pid)@pre
 PhotoLibrary.libSize() = libSize()@pre - 1

293Konkuk University

Trade Offs in CompositionTrade-Offs in Composition

Wh i fi d• When composing components, you may find
– Conflicts between functional and non-functional requirements
– Conflicts between the need for rapid delivery and system evolution

• You need to make decisions such as
– What composition of components is effective for delivering the functional p p g

requirements?
– What composition of components allows for future change?
– What will be the emergent properties of the composed system?

(a) Data
collection

Data
management

Repor t
generator Repor tg Repor t

294Konkuk University

(b) Data
collection Data base

Repor t

SummarySummary

CBSE i b d h t d fi i d i l ti l l• CBSE is a reuse-based approach to defining and implementing loosely
coupled components into systems.

• A component is a software unit whose functionality and dependencies
are completely defined by its interfacesare completely defined by its interfaces.

• A component model defines a set of standards that component
providers and composers should follow.

• Component composition is the process of ‘wiring’ components together• Component composition is the process of wiring components together
to create a system.

• When composing reusable components, you normally have to write
adaptors to reconcile different component interfaces.adapto s to eco c e d e e t co po e t te aces.

• When choosing compositions, you have to consider required functionality,
non-functional requirements and system evolution.

295Konkuk University

Konkuk University 296

Part V. Verification & Validation

Konkuk University 297

Ch t 22Chapter 22.

Verification and Validation

ObjectivesObjectives

T i d f ifi i d lid i• To introduce software verification and validation
• To discuss distinction between software verification and validation
• To describe program inspection process and its role in V & Vp g p p
• To explain static analysis as verification technique
• To describe the Cleanroom software development process

299Konkuk University

Verification vs Validation

V ifi i

Verification vs. Validation

• Verification
– “Are we building the product right?”
– The software should conform to its specification.

• Validation
– "Are we building the right product?”g g p
– The software should do what the user really requires.

300Konkuk University

V & V Process

V&V i h l lif l

V & V Process

• V&V is a whole life-cycle process
– Must be applied at each stage in the software process.

• Two principal objectives
– Discovery of defects in a system
– Assessment of whether or not the system is useful and useable in an

operational situation

• Goals of V&V
– V&V should establish confidence that the software is suitable for purpose.
– Does not mean completely free of defectsp y
– Rather, it must be good enough for its intended use.
– The type of use will determine the degree of confidence that is needed.

301Konkuk University

V & V ConfidenceV & V Confidence

V&V fid d d th t ’ t ti• V&V confidence depends on the system’s purpose, user expectations,
and marketing environment.

– Software function
• The level of confidence depends on how critical the software is to an organizationThe level of confidence depends on how critical the software is to an organization.

– User expectations
• Users may have low expectations of certain kinds of software.

– Marketing environment
• Getting a product to market early may be more important than finding defects in

the program.

302Konkuk University

Static and Dynamic VerificationStatic and Dynamic Verification

S f I i• Software Inspection
– Analyze static system representation to discover problems (Static Verification)
– May be supplemented by tool-based document and code analysis

• Software Testing
– Exercising and observing product behaviour (Dynamic Verification)
– System is executed with test data and its operational behaviour is observed.

Software
Inspection

High-Level
Design

Requirements
Specification

Detailed Design
Formal

Specification
Program

Design

P T t

Specification
g

Specification
g

303Konkuk University

Program TestPrototype

Program Testing

C l h f NOT h i b

Program Testing

• Can reveal the presence of errors, NOT their absence
– Can validate non-functional requirements as we can execute the software and

see how it behaves
Sh ld b d i j ti ith t ti ifi ti t id f ll V&V– Should be used in conjunction with static verification to provide full V&V
coverage

f• Types of testing
– Defect testing

• Tests designed to discover system defects
f l d f i hi h l h f d f i• A successful defect test is one which reveals the presence of defects in a system.

• Covered in Chapter 23

– Validation testing
• Intended to show that the software meets its requirements• Intended to show that the software meets its requirements.
• A successful test is one that shows that a requirements has been properly

implemented.

304Konkuk University

Testing and Debugging

D f i d d b i diff

Testing and Debugging

• Defect testing and debugging are different.
– Testing is concerned with establishing the existence of defects in a program.
– Debugging is concerned with locating and repairing these errors.

• Debugging involves formulating a hypothesis about program behaviour
and testing these hypotheses to find the system error.g yp y

• Debugging process:

Locate error
Design error

repair
Repair error

Reset
program

Test Results Specification Test Cases

305Konkuk University

Test Results Specification Test Cases

V & V Planning

V&V Pl i h ld t t l i th d l t

V & V Planning

• V&V Planning should start early in the development process.
– The plan should identify the balance between static verification and testing.
– Test planning is about defining standards for testing process rather than

describing product testsdescribing product tests.

• V-Model for Software Testing

Requirements
Specification

System
Specification

System
Design

Detailed
Design

Module and
Unit Code

Test

Acceptance
Test Plan

System
Integration
Test Plan

Sub-system
Integration
Test Plan

Acceptance
Test

System
Integration

T t

Sub-system
Integration

T t
Service

306Konkuk University

Konkuk University
Test

Test Test

Software Test PlanSoftware Test Plan

Items to Consider Description

Testing process
A description of the major phases of the testing process. These might be as
described earlier in this chapter.p

Requirements
traceability

Users are most interested in the system meeting its requirements and testing
should be planned so that all requirements are individually tested.

Tested items The products of the software process that are to be tested should be specified.

Testing schedule
An overall testing schedule and resource allocation for this schedule. This,
obviously, is linked to the more general project development schedule.

Test recording
procedure

It is not enough simply to run tests. The results of the tests must be systematically
recorded. It must be possible to audit the testing process to check that it been
carried out correctly.

Hardware and software
requirements

section should set out software tools required and estimated hardware utilisation.

Constraints
Constraints affecting the testing process such as staff shortages should be
anticipated in this section.

307Konkuk University

a t c pated t s sect o

Software InspectionSoftware Inspection

S f i i i l l i i h i• Software inspection involves people examining the source representation
with aim of discovering anomalies and defects.

– Does not require execution of system
– May be used before implementation
– May be applied to any representation of the system (requirements, design,

configuration data, test data, etc.)
Eff i h i f di i– Effective technique for discovering program errors

• Advantages:
– Many different defects may be discovered in a single inspection.
– In testing, one defect may mask another so several executions are required.g, y q
– Using domain and programming knowledge, reviewers are likely to have seen

the types of error that commonly arise.

308Konkuk University

Inspection and TestingInspection and Testing

I i d i l d i ifi i• Inspection and testing are complementary and not opposing verification
techniques.

– Both should be used during the V & V process.

• Inspections p
– Can check conformance with a specification but not conformance with the

customer’s real requirements
– Cannot check non-functional characteristics such as performance, usability, etc.p , y,

309Konkuk University

Program InspectionProgram Inspection

F li d h d i• Formalized approach to document reviews
– Intended explicitly for detecting defects (not correction)

• Defects may be
– Logical errors
– Anomalies in the code that might indicate an erroneous condition

(e.g. an uninitialized variable)
– Non-compliance with standards

310Konkuk University

Pre Conditions for InspectionPre-Conditions for Inspection

A i ifi i b il bl• A precise specification must be available.
• Team members must be familiar with the organization standards.
• Syntactically correct code or other system representations must be y y y p

available.
• An error checklist should be prepared.
• Management must accept that inspection will increase costs early in theManagement must accept that inspection will increase costs early in the

software process.
• Management should not use inspections for staff appraisal, i.e. finding

out who makes mistakesout who makes mistakes.

311Konkuk University

Inspection ProcedureInspection Procedure

I ti d• Inspection procedure
– Present system overview to inspection team
– Code and associated documents are distributed to inspection team in

advanceadvance
– Inspection takes place and discovered errors are noted
– Modifications are made to repair discovered errors
– Re-inspection may or may not be requiredp y y q

Planning Overview
Individual

Preparation
Inspection
Meeting

Rework Follow-Up

312Konkuk University

Inspection RolesInspection Roles

Roles Description

Author or Owner
The programmer or designer responsible for producing the program or
document. Responsible for fixing defects discovered during the inspectionp g g p
process.

Inspector
Finds errors, omissions and inconsistencies in programs and documents. May
also identify broader issues that are outside the scope of the inspection team.

Reader Presents the code or document at an inspection meeting

Scribe Records the results of the inspection meetingp g

Chairman or Moderator
Manages the process and facilitates the inspection. Reports process results to
the Chief moderator.

Chief Moderator
Responsible for inspection process improvements, checklist updating, standards
development, etc.

313Konkuk University

Inspection ChecklistInspection Checklist

Ch kli f h ld b d d i i i• Checklist of common errors should be used to drive inspections.
– Depend on the programming languages
– Reflect the characteristic errors that are likely to arise in the language

• In general, the weaker type checking language, the larger the checklist.

• Examples of common errors in checklists
– Data faults

Control faults– Control faults
– Input/Output faults
– Interface faults

Storage management faults– Storage management faults
– Exception management faults

314Konkuk University

Automated Static AnalysisAutomated Static Analysis

S i l f l f i• Static analyzers are software tools for source text processing.
– Parse the program text and try to discover potentially erroneous conditions
– Very effective as an aid to inspections
– A supplement to inspections but not a replacement

Fault Class Static Analysis Check

V i bl d b f i iti li ti

Data fault

Variables used before initialisation
Variables declared but never used
Variables assigned twice but never used between assignments
Possible array bound violations
Undeclared variables

Control faults
Unreachable code
Unconditional branches into loops

Input/output faults Variables output twice with no intervening assignmentput/output au ts a ab es output t ce t o te e g ass g e t

Interface faults

Parameter type mismatches
Parameter number mismatches
Non-usage of the results of functions
Uncalled functions and procedures

315Konkuk University

Uncalled functions and procedures

Storage
management faults

Unassigned pointers
Pointer arithmetic

Stages of Static AnalysisStages of Static Analysis

All f i f i d b d i h• All stages generate vast amounts of information, and must be used with
care.

Stage Description

Control Flow Analysis Checks for loops with multiple exit or entry points, finds unreachable code, etc.

Data Use Analysis
Detects uninitialized variables, variables written twice without an intervening
assignment, variables which are declared but never used, etc.

f l i h k h i f i d d d l i d h iInterface Analysis Checks the consistency of routine and procedure declarations and their use

Information Flow
Analysis

Identifies the dependencies of output variables. Does not detect anomalies
itself but highlights information for code inspection or review

Path Analysis
Identifies paths through the program and sets out the statements executed in
that path. It is potentially useful in the review process.

316Konkuk University

Use of Static AnalysisUse of Static Analysis

P i l l l bl h l h C i d• Particularly valuable when a language such as C is used.
– C has weak typing and many errors are undetected by the C compiler.

• Less cost-effective for languages like Java
– Java has strong type checking and can therefore detect many errors duringJava has strong type checking and can therefore detect many errors during

compilation.

Konkuk University 317

Verification through Formal MethodsVerification through Formal Methods

F l h d b d h h i l ifi i f• Formal methods can be used when a mathematical specification of
system is prepared.

– Ultimate static verification technique : formal verification
– Involve detailed mathematical analysis of the specification
– Develop formal arguments that a program conforms to its mathematical

specification

318Konkuk University

Arguments about Formal MethodsArguments about Formal Methods

Ad• Advantages:
– Produce mathematical specifications which require detailed analysis of the

requirements and this is likely to uncover errors
D t t i l t ti b f t ti h th i l d– Detect implementation errors before testing, when the program is analyzed
alongside the specification

• Disadvantages:
– Require specialized notations that cannot be understood by domain experts
– Very expensive to develop specification and even more expensive to show

that the program meets that specification
– May be possible to reach the same level of confidence more cheaply using

other V & V techniquesother V & V techniques

319Konkuk University

Cleanroom Software Development

Cl

Cleanroom Software Development

• Cleanroom process
– Defect avoidance rather than defect removal
– Based on

• Incremental development
• Formal specification
• Static verification using correctness arguments
• Statistical testing to determine program reliability• Statistical testing to determine program reliability

FormallyFormally
specify
system

Define
software

Construct
structured

Formally
verify code

Integrate
increment

Develop
operational

profile

increments program
verify code increment

Test integrate
system

Design
statistical

320Konkuk University

system
tests

Characteristics of Cleanroom ProcessCharacteristics of Cleanroom Process

Cl• Cleanroom
– Formal specification using a state transition model
– Incremental development where the customer prioritises increments

Structured programming : Limited control and abstraction constructs are used– Structured programming : Limited control and abstraction constructs are used
in the program.

– Static verification using rigorous inspections
– Statistical testing of the systemg y

• Team organization:
– Specification team: Responsible for developing and maintaining the systemSpecification team: Responsible for developing and maintaining the system

specification.
– Development team: Responsible for developing and verifying the software.

The software is NOT executed or even compiled during this process.
– Certification team: Responsible for developing a set of statistical tests to

exercise the software after development. Reliability growth models are used
to determine when reliability is acceptable.

321Konkuk University

Evaluation of Cleamroom Process

Th lt f i th Cl h b i i

Evaluation of Cleamroom Process

• The results of using the Cleanroom process have been very impressive
with few discovered faults in delivered systems.

– Independent assessment shows that the process is no more expensive than
other approaches.other approaches.

– There were fewer errors than in a 'traditional' development process.

• However, the process is not widely used.However, the process is not widely used.
– It is not clear how this approach can be transferred to an environment with

less skilled or less motivated software engineers.

322Konkuk University

SummarySummary

V ifi i d lid i h hi V ifi i h• Verification and validation are not the same thing. Verification shows
conformance with specification; validation shows that the program meets
the customer’s needs.

• Test plans should be drawn up to guide the testing process.
• Static verification techniques involve examination and analysis of the

program for error detection.
• Program inspections are very effective in discovering errors.
• Program code in inspections is systematically checked by a small team to

locate software faults.
• Static analysis tools can discover program anomalies which may be an

indication of faults in the code.
• Cleanroom development process depends on incremental development,

i ifi i d i i l istatic verification and statistical testing.

323Konkuk University

Konkuk University 324

Ch t 23Chapter 23.

Software Testing

ObjectivesObjectives

T di di i i b lid i i d d f i• To discuss distinctions between validation testing and defect testing
• To describe principles of system and component testing
• To describe strategies for generating system test casesg g g y
• To understand essential characteristics of tools used for test automation

326Konkuk University

Software TestingSoftware Testing

C i• Component testing
– Testing of individual program components
– Usually responsibility of developers
– Tests are derived from the developer’s experience.

• System testing
– Testing of groups of components integrated to create a system or sub-system
– Responsibility of independent testing team
– Tests are based on system specification.y p

Component Testing System Testing

Software developer Independent testing team

327Konkuk University

Software developer Independent testing team

Software Testing ProcessSoftware Testing Process

Design test
cases

Prepare test
cases

Run program
with test data

Compare result
to test cases

Test cases Test data Test result Test reportsp

328Konkuk University

Goals of Software TestingGoals of Software Testing

V lid i i• Validation testing
– To demonstrate to developer and system customer that the software meets its

requirements
A f l t t h th t th t t i t d d– A successful test shows that the system operates as intended.

• Defect testing
– To discover faults or defects in the software where its behavior is incorrect or

not in conformance with its specification
– A successful test is a test that makes the system perform incorrectly and so

d f i hexposes a defect in the system.

329Konkuk University

System TestingSystem Testing

S t t ti i l i t ti t t t t• System testing involves integrating components to create a system or
sub-system

T h• Two phases:
– Integration testing

• Test team has access to system source code.
• System is tested as components are integrated.System is tested as components are integrated.

– Release testing
• Test team tests a complete system to be delivered as a black-box.

330Konkuk University

Integration TestingIntegration Testing

I l b ildi t f it t d t ti it f• Involves building a system from its components and testing it for
problems that arise from component interactions.

– Top-down integration
• Develop the skeleton of the system and populate it with components• Develop the skeleton of the system and populate it with components

– Bottom-up integration
• Integrate infrastructure components then add functional components

331Konkuk University

Integration Testing ApproachesIntegration Testing Approaches

A hit t l lid ti• Architectural validation
– Top-down integration testing is better at discovering errors in the system

architecture.

• System demonstration
– Top-down integration testing allows a limited demonstration at an early stage

in the development.t e de e op e t.

• Test implementation
– Often easier with bottom-up integration testingp g g

• Test observation
– Problems with both approachespp
– Extra code may be required to observe tests.

332Konkuk University

Release TestingRelease Testing

P f t ti t l th t ill b di t ib t d t t• Process of testing a system release that will be distributed to customers
– To increase the supplier’s confidence that the system meets its requirements

R l t ti i ll bl k b f ti l t ti• Release testing is usually black-box or functional testing
– Based on the system specification only
– Testers do not have knowledge of the system implementation.

• Release testing may include
– Performance testing

Stress testing
IeInput test data

Inputs causing
anomalous
behaviour

– Stress testing

Black-box testing

System

l

Outputs which reveal
the presence of
d f

333Konkuk University

OeOutput test result defects

Performance TestingPerformance Testing

R l i i l i i f• Release testing may involve testing emergent properties of system.
– Performance
– Reliability

• Performance tests usually involve planning a series of tests where the
load is steadily increased until the system performance becomes

blunacceptable.

334Konkuk University

Stress TestingStress Testing

E i h b d i i d i l d• Exercises the system beyond its maximum design load.
– Stressing the system often causes defects to come to light.

• Stressing the system to test failure behaviour.
– Systems should not fail catastrophically.
– Stress testing checks for unacceptable loss of service or data too.

• Stress testing is particularly relevant to distributed systems that can
exhibit severe degradation as network becomes overloaded.

335Konkuk University

Component TestingComponent Testing

C i i h f i i di id l i• Component testing is the process of testing individual components in
isolation.

– Defect testing process

• Components may be
– Individual functions or methods within an objectj
– Object classes with several attributes and methods
– Composite components with defined interfaces used to access their

functionality

336Konkuk University

Object Class TestingObject Class Testing

C l f l i l• Complete test coverage of a class involves
– Testing all operations associated with an object
– Setting and interrogating all object attributes
– Exercising object in all possible states

• Inheritance makes it more difficult to design object class tests
– Since the information to be tested is not localized.

Need to define test cases for all methods
W h libWeatherStation - reportWeather, calibrate,

- test, startup and shutdown

Using a state model, identify sequences of state
transitions to be tested and the event sequences

identifier

reportWeather ()

WeatherStation

transitions to be tested and the event sequences
to cause these transitions

For example:
Waiting -> Calibrating -> Testing -> Transmitting -> Waiting

calibrate (instruments)
test ()
startup (instruments)
shutdown (instruments) Waiting > Calibrating > Testing > Transmitting > Waiting

337Konkuk University

shutdown (instruments)

Interface Testing

T d f l d i f i lid i b

Interface Testing

• To detect faults due to interface errors or invalid assumptions about
interfaces

– Particularly important for object-oriented development as objects are defined
b th i i t fby their interfaces

• Guidelines for interface testing
– Design tests so that parameters to called procedure are at the extreme ends

of their ranges
– Always test pointer parameters with null pointers
– Design tests which cause the component to fail
– Use stress testing in message passing systems
– In shared memory systems, vary the order in which components are activated

338Konkuk University

Interface TypesInterface Types

I f• Interface types
– Parameter interfaces

• Data passes from one procedure to another.

Sh d i f– Shared memory interfaces
• Block of memory is shared between procedures or functions.

– Procedural interfaces
S b t l t t f d t b ll d b th b t• Sub-system encapsulates a set of procedures to be called by other sub-systems.

– Message passing interfaces
• Sub-systems request services from other sub-systems.

339Konkuk University

Interface ErrorsInterface Errors

I f• Interface errors
– Interface misuse

• Calling component calls another component and makes an error in its use of its
interfaceinterface.

• e.g. parameters in the wrong order

– Interface misunderstanding
• Calling component embeds assumptions about the behaviour of the calledCalling component embeds assumptions about the behaviour of the called

component which are incorrect.

– Timing errors
• Called and calling component operate at different speeds and out-of-date

finformation is accessed.

340Konkuk University

Test Case DesignTest Case Design

I l d i i th t t (i t d t t) d t t t th• Involves designing the test cases (inputs and outputs) used to test the
system

– To create a set of tests that are effective in validation and defect testing

• Test case design approaches
– Requirements-based testing

Partition testing– Partition testing
– Structural testing

341Konkuk University

Requirements based TestingRequirements based Testing

A l i i l f i i i i h i• A general principle of requirements engineering is that requirements
should be testable.

• Requirements-based testing is a validation testing technique where you
consider each requirement and derive a set of tests for that requirement.

342Konkuk University

Partition TestingPartition Testing

I d d l f f ll i diff l h ll• Input data and output results often fall into different classes where all
members of a class are related.

• Each of these classes is an equivalence partition or domain where the
program behaves in an equivalent way for each class member.

– Test cases should be chosen from each partition.

Equivalence partitioning 3
4 7

11
10

9999 100000

Between 4 and 10Less than 4 More than 10

Number of input values

Between 10000 and 99999Less than 10000 More than 99999

9999

10000 50000
100000

99999

343Konkuk University

Between 10000 and 99999Less than 10000 More than 99999

Input values

Structural Testing

S i ll d hi b i

Structural Testing

• Sometime called white-box testing.
– Derives test cases according to program structure.
– Knowledge of the program is used to identify additional test cases.

• Objective is to exercise all program statements.
– A number of structural testing techniques exist, i.e. path testingg q , p g
– A number of testing coverage exist.

Test data

DrivesTests

Test outputs
Component

code

DrivesTests

344Konkuk University

Path TestingPath Testing

T th t ll th th i th t d• To ensure that all the paths in the programs are executed
– Starting point for path testing is a program flow graph that shows nodes

representing program decisions and arcs representing the flow of control.
– Statements with conditions become nodes in the flow graphStatements with conditions become nodes in the flow graph.

Flow-graph for
1

Flow graph for
binary search Independent test paths:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14
1, 2, 3, 4, 5, 14
1, 2, 3, 4, 5, 6, 7, 11, 12, 5, …
1 2 3 4 6 7 2 11 13 5

2

3

4 1, 2, 3, 4, 6, 7, 2, 11, 13, 5, …

Test cases should be derived so that
all of these paths are executed.

5

6

bottom > top while bottom <= topbottom > top

A dynamic program analyzer may be
used to check that paths have been
Executed.

elemArray [mid] != key

elemArray [mid] > key elemArray [mid] < key

7

8

9

11

12 13

elemArray
[mid] = key

345Konkuk University

14 10

Test AutomationTest Automation

T i kb h id f l d h i• Testing workbenches provide a range of tools to reduce the time
required and total testing costs.

– Most are open systems, because testing needs are organization-specific.
– Sometimes difficult to integrate with closed design and analysis workbenches.

Test workbench Test Data
Generator

Specification

OracleTest DataTest ManagerSource Code

Test
Predictions

Test Results
Program

being Tested
Dynamic
Analyzer

Simulator
Execution
Report

File
Comparator

346Konkuk University

Report
Generator

Test Result
Report

SummarySummary

T i h h f f l i b i• Testing can show the presence of faults in a system, but it cannot prove
there are no remaining faults.

• Component developers are responsible for component testing. System
ftesting is the responsibility of a separate team.

• Integration testing is testing increments of the system. Release testing
involves testing a system to be released to a customer.

• Interface testing is designed to discover defects in the interfaces of
composite components.

• Equivalence partitioning is a way of discovering test cases - all cases in a qu a e ce pa t t o g s a ay o d sco e g test cases a cases a
partition should behave in the same way.

• Structural analysis relies on analysing a program and deriving tests from
this analysis.this analysis.

• Test automation reduces testing costs by supporting the test process
with a range of software tools.

347Konkuk University

Konkuk University 348

Part VI. Managing People

Konkuk University 349

Ch t 27Chapter 27.

Quality Management

ObjectivesObjectives

T i d h li d k li• To introduce the quality management process and key quality
management activities

• To explain the role of standards in quality management
• To explain the concept of a software metric, predictor metrics and control

metrics
• To explain how measurement may be used in assessing software quality p y g q y

and the limitations of software measurement

351Konkuk University

Software Quality ManagementSoftware Quality Management

C d i h i h h i d l l f li i hi d i• Concerned with ensuring that the required level of quality is achieved in
a software product.

– Involves defining appropriate quality standards and procedures, and ensuring
th t th f ll dthat these are followed.

– Should aim to develop a ‘quality culture’ where quality is seen as everyone’s
responsibility.

• Quality ?
– Means a product should meet its specification.

• Quality problems in software systems
– There is a tension between customer quality requirements (efficiency,

li bili d d l li i i i bili bilireliability, ...) and developer quality requirements (maintainability, reusability, ...)
– Some quality requirements are difficult to specify in an unambiguous way.
– Software specifications are usually incomplete and often inconsistent.

352Konkuk University

Quality CompromiseQuality Compromise

C i f ifi i b i d b f i i• Cannot wait for specifications to be improved before paying attention to
quality management.

• We must put quality management procedures into place to improve
f f fquality in spite of imperfect specification.

• Scope of quality Managementp q y g
– Quality management is particularly important for large complex systems. The

quality documentation is a record of progress and supports continuity of
development as the development team changes.

– For smaller systems, quality management needs less documentation and
should focus on establishing a quality culture.

353Konkuk University

Quality Management ActivitiesQuality Management Activities

Q lit• Quality assurance
– Establish organisational procedures and standards for quality.

Quality planning• Quality planning
– Select applicable procedures and standards for a particular project and

modify these as required.

• Quality control
– Ensure that procedures and standards are followed by the software

development team.

• Quality management should be separate from project management to
ensure independence.

354Konkuk University

Quality Management and Software DevelopmentQuality Management and Software Development

Software development
process D1 D2 D3 D4 D5

Quality management
process

Standards and
d

Quality Plan Quality review reports
procedures

Q y p

355Konkuk University

Process and Product Quality

Th li f d l d d i i fl d b h li f h

Process and Product Quality

• The quality of a developed product is influenced by the quality of the
production process.

– Important in software development as some product quality attributes are
h d thard to assess.

• However, there is a very complex and poorly understood relationship
between software processes and product quality.

356Konkuk University

Process based QualityProcess-based Quality

Th i t i htf d li k b t d d t i• There is a straightforward link between process and product in
manufactured goods, but more complex for software.

– Application of individual skills and experience is particularly imporant in
software development.software development.

– External factors such as the novelty of an application or the need for an
accelerated development schedule may impair product quality.

• Must be careful not to impose inappropriate process standards.

Define
process

Develop
product

Assess product
quality

Improve
process

Quality
OK ?

Standardize
porcess

357Konkuk University

Quality Assurance and Standards

St d d th k t ff ti lit t

Quality Assurance and Standards

• Standards are the key to effective quality management.
– May be international, national, organizational or project standards.
– Encapsulations of best practice

• Product standards
define characteristics that all components should exhibit e g a common– define characteristics that all components should exhibit, e.g. a common
programming style.

• Process standards
– define how the software process should be enacteddefine how the software process should be enacted.

358Konkuk University

Product and Process StandardsProduct and Process Standards

Product standards Process standards

Design review form Design review conduct

Requirements document structure Submission of documents to CM

Method header format Version release process

Java programming style Project plan approval processp g g y j p pp p

Project plan format Change control process

Change request form Test recording process

359Konkuk University

Problems with StandardsProblems with Standards

Th t b l t d t d t b ft i• They may not be seen as relevant and up-to-date by software engineers.
• They often involve too much bureaucratic form filling.
• If they are unsupported by software tools, tedious manual work is often

i l d t i t i th d t ti i t d ith th t d dinvolved to maintain the documentation associated with the standards.

360Konkuk University

Standards DevelopmentStandards Development

St d d d l t i l titi i d l t• Standard development involves practitioners in development.
– Engineers should understand the rationale underlying the standard.

St d d h ld b i d l l• Standard should be reviewed regularly.
– Standards can quickly become outdated and this reduces their credibility

amongst practitioners.

• Detailed standards should have associated tool support.
– Excessive clerical work is the most significant complaint against standards.

Konkuk University 361

ISO 9000ISO 9000

A i i l f d d f li• An international set of standards for quality management.
– Applicable to a range of organizations from manufacturing to service

industries.

• ISO 9001
– Applicable to organisations which design, develop and maintain products.
– A generic model of the quality process that must be instantiated for each

organization using the standard.

362Konkuk University

ISO 9001ISO 9001

Management responsibility Quality system

Control of non-conforming products Design control

Handling, storage, packaging and delivery Purchasing

Purchaser-supplied products Product identification and traceability

Process control Inspection and testing

Inspection and test equipment Inspection and test status

Contract review Corrective action

Document control Quality records

Internal quality audits Training

Servicing Statistical techniques

363Konkuk University

ISO 9000 CertificationISO 9000 Certification

Q li d d d d h ld b d d i• Quality standards and procedures should be documented in an
organizational quality manual.

• An external body may certify that an organization’s quality manual
fconforms to ISO 9000 standards.

• Some customers require suppliers to be ISO 9000 certified.q pp

ISO 9000
Quality Models

Organization
Quality Process

Organizational
Quality Manual

instantiated as

documents

Project Quality
Management

Project 2
Quality Plan

Project 3
Quality Plan

Project 1
Quality Plan

is used to develop instantiated as

Konkuk University 364

supports

Documentation StandardsDocumentation Standards

P ti l l i t t d t th t ibl if t ti f th• Particularly important - documents are the tangible manifestation of the
software.

D t ti t d d• Documentation process standards
– Concerned with how documents should be developed, validated and

maintained.

• Document standards
– Concerned with document contents, structure, and appearance.

• Document interchange standards
– Concerned with the compatibility of electronic documents.

365Konkuk University

Documentation ProcessDocumentation Process

Incorporate
Create initial

draft

Approved document

Review draft
Incorporate

review
comments

Re-draft
document

Stage 1:
Creation

Produce final
draft

Proofread text
Check final

draft
Stage 2:
Polishing

Layout text Review layout
Produce print

Print copiesStage 3:
d i

Approved document

Layout text Review layout
masters

Print copiesProduction

366Konkuk University

Document StandardsDocument Standards

D t id tifi ti t d d• Document identification standards
– How documents are uniquely identified.

Document structure standards• Document structure standards
– Standard structure for project documents

• Document presentation standards• Document presentation standards
– Define fonts and styles, use of logos, etc.

• Document update standards• Document update standards
– Define how changes from previous versions are reflected in a document.

367Konkuk University

Document Interchange StandardsDocument Interchange Standards

D t i t h t d d ll l t i d t t b• Document interchange standards allow electronic documents to be
exchanged, mailed, etc.

– Needed to define conventions for their use e.g. use of style sheets and
macros.macros.

• Need for archiving.
– The lifetime of word processing systems may be much less than the lifetimeThe lifetime of word processing systems may be much less than the lifetime

of the software being documented.
– An archiving standard may be defined to ensure that the document can be

accessed in future.

368Konkuk University

Quality PlanningQuality Planning

Q lit l• Quality plans
– Set out the desired product qualities and how these are assessed.
– Defines the most significant quality attributes.

Should define the quality assessment process– Should define the quality assessment process.
– Set out which, where and when organizational standards be applied.

Q alit plan str ct re• Quality plan structure
– Product introduction
– Product plans

P d i i– Process descriptions
– Quality goals
– Risks and risk management

• Quality plans should be short, succinct documents
– If they are too long, no-one will read them.

369Konkuk University

Software Quality AttributesSoftware Quality Attributes

Safety Understandability Portability

Security Testability Usability

Reliability Adaptability Reusability

Resilience Modularity Efficiency

Robustness Complexity Learnability

370Konkuk University

Quality ControlQuality Control

Q li l i l h ki h f d l• Quality control involves checking the software development process to
ensure that procedures and standards are being followed.

• Two approaches to quality control
– Quality reviews
– Automated software assessment and software measurement

371Konkuk University

Quality ReviewsQuality Reviews

Q lit i th i i l th d f lid ti th lit f• Quality reviews are the principal method of validating the quality of a
process or of a product.

• A group examines part or all of a process or system and its
documentation to find potential problemsdocumentation to find potential problems.

• Different types of review with different objectives
Inspections : for defect removal (product)– Inspections : for defect removal (product)

– Reviews : for progress assessment (product and process)
– Quality reviews (product and standards).

372Konkuk University

Types of ReviewTypes of Review

Property Principal Purpose

D iDesign or
Program

Inspections

To detect detailed errors in the requirements, design or code. A checklist of possible
errors should drive the review.

Progress
To provide information for management about the overall progress of the project.
h b h d d d d h l d

Progress
Reviews

This is both a process and a product review and is concerned with costs, plans and
schedules.

Quality
Reviews

To carry out a technical analysis of product components or documentation to find
mismatches between the specification and the component design, code or

Reviews
p p g

documentation and to ensure that defined quality standards have been followed.

373Konkuk University

Quality Reviews

Q lit i f ll i t ll f ft t d it

Quality Reviews

• Quality reviews carefully examine part or all of a software system and its
associated documentation.

– Code, designs, specifications, test plans, standards, etc. can all be reviewed.
– Software or documents may be 'signed off' at a review which signifies that– Software or documents may be signed off at a review which signifies that

progress to the next development stage has been approved by management.

• Any documents produced in the process may be reviewed.Any documents produced in the process may be reviewed.
• Review teams should be relatively small and reviews should be fairly

short.
• Records should always be maintained of quality reviews.Records should always be maintained of quality reviews.

374Konkuk University

Review functionsReview functions

Q lit f ti• Quality function
– Part of the general quality management process

P j t t f ti• Project management function
– Provide information for project managers.

T i i d i i f i• Training and communication function
– Product knowledge is passed between development team members.

375Konkuk University

Review Results

C t d d i th i h ld b l ifi d

Review Results

• Comments made during the review should be classified
– No action : No change to the software or documentation is required.
– Refer for repair : Designer or programmer should correct an identified fault.

Reconsider overall design : The problem identified in the review impacts other– Reconsider overall design : The problem identified in the review impacts other
parts of the design. Some overall judgement must be made about the most
cost-effective way of solving the problem.

• Requirements and specification errors may have to be referred to the
client.

376Konkuk University

Software Measurement and MetricsSoftware Measurement and Metrics

S ft t i d ith d i i i l f• Software measurement is concerned with deriving a numeric value for an
attribute of a software product or process.

– Allows for objective comparisons between techniques and processes.

• Although some companies have introduced measurement programs,
most organizations still don’t make systematic use of software
measurementmeasurement.

• Few established standards in this area.

377Konkuk University

Software Metric

A t f t hi h l t t ft t

Software Metric

• Any type of measurement which relates to a software system, process or
related documentation

– Lines of code in a program
– The Fog index– The Fog index
– Number of person-days required to develop a component
– etc.

• Allow the software and the software process to be quantified.
– May be used to predict product attributes– May be used to predict product attributes
– May be used to control the software process.
– Can be used for general predictions.
– Can be used to identify anomalous components.Can be used to identify anomalous components.

378Konkuk University

Predictor and Control MetricsPredictor and Control Metrics

Software
Process

Software
Product

Control
Measurements

Predictor
Measurements

Measurement
Decisions

379Konkuk University

Metrics Assumptions

A ft t b d

Metrics Assumptions

• A software property can be measured.
• The relationship exists between what we can measure and what we want

to know. We can only measure internal attributes but are often more
interested in external software attributesinterested in external software attributes.

• This relationship has been formalized and validated.
• It may be difficult to relate what can be measured to desirable external

quality attributesquality attributes.

380Konkuk University

Internal and External AttributesInternal and External Attributes

Maintainability

Number of procedure
parameters

Maintainability

Reliability

Cyclomatic complexity

Reliability

Portability

Program size
in lines of code

Portability

Usability

Number of error messages

Usability

Length of use manual

381Konkuk University

Measurement ProcessMeasurement Process

A ft t b t f lit t l• A software measurement process may be a part of a quality control
process.

– Data collected during this process should be maintained as an organizational
resource.resource.

– Once a measurement database has been established, comparisons across
projects become possible.

Choose
measurements to

be made

Analyze
anomalous
components

Select
components to

be assessed

Identify
anomalous

measurementsbe assessed

Measure
component

measurements

382Konkuk University

component
characteristics

Data CollectionData Collection

A i h ld b b d f d d• A metrics programme should be based on a set of product and process
data.

• Data should be collected immediately (not in retrospect) and, if possible,
automatically.

• Three types of automatic data collectionyp
– Static product analysis
– Dynamic product analysis
– Process data collationProcess data collation

383Konkuk University

Data AccuracyData Accuracy

D ’t ll t d t• Don’t collect unnecessary data
– The questions to be answered should be decided in advance and the required

data identified.

• Tell people why the data is being collected.
– It should not be part of personnel evaluation.

• Don’t rely on memory
– Collect data when it is generated not after a project has finished.

384Konkuk University

Product Metrics

A lit t i h ld b di t f d t lit

Product Metrics

• A quality metric should be a predictor of product quality.

• Classes of product metric
i i C ll d b d f i– Dynamic metrics : Collected by measurements made of a program in

execution.
– Static metrics : Collected by measurements made of the system

representationsep ese a o s

– Dynamic metrics help assess efficiency and reliability.
– Static metrics help assess complexity, understandability and maintainability.

385Konkuk University

Dynamic and Static MetricsDynamic and Static Metrics

D i t i l l l t d t ft lit tt ib t• Dynamic metrics are closely related to software quality attributes
– Relatively easy to measure the response time of a system (performance

attribute) or the number of failures (reliability attribute).

• Static metrics have an indirect relationship with quality attributes
– Need to try and derive a relationship between these metrics and properties

such as complexity, understandability and maintainability.suc as co p e y, u de s a dab y a d a a ab y

386Konkuk University

Software Product MetricsSoftware Product Metrics

Software
M t i

Description
Metric

p

Fan-in / Fan-
out

Fan-in is a measure of the number of functions or methods that call some other
function or method (say X). Fan-out is the number of functions that are called by
function X. A high value for fan-in means that X is tightly coupled to the rest of the
design and changes to X will have extensive knock-on effects A high value for fan-out design and changes to X will have extensive knock-on effects. A high value for fan-
out suggests that the overall complexity of X may be high because of the
complexity of the control logic needed to coordinate the called components.

L h f d

This is a measure of the size of a program. Generally, the larger the size of the code
of a component, the more complex and error-prone that component is likely to be.

Length of code
of a component, the more complex and error prone that component is likely to be.
Length of code has been shown to be one of the most reliable metrics for
predicting error-proneness in components.

Cyclomatic
This is a measure of the control complexity of a program. This control complexity
may be related to program understandability I discuss how to compute cyclomatic

complexity
may be related to program understandability. I discuss how to compute cyclomatic
complexity in Chapter 22.

Length of
identifiers

This is a measure of the average length of distinct identifiers in a program. The
longer the identifiers, the more likely they are to be meaningful and hence the more
understandable the programunderstandable the program.

Depth of
conditional

nesting

This is a measure of the depth of nesting of if-statements in a program. Deeply
nested if statements are hard to understand and are potentially error-prone.

Thi i f th l th f d d t i d t Th

387Konkuk University

Fog index
This is a measure of the average length of words and sentences in documents. The
higher the value for the Fog index, the more difficult the document is to understand.

Object Oriented MetricsObject-Oriented Metrics

Object-Oriented
Metric

Description

Depth of
This represents the number of discrete levels in the inheritance tree where sub-classes
inherit attributes and operations (methods) from super-classes. The deeper the inheritance

inheritance tree tree, the more complex the design. Many different object classes may have to be
understood to understand the object classes at the leaves of the tree.

Method fan-
in/fan-out

This is directly related to fan-in and fan-out as described above and means essentially the
same thing. However, it may be appropriate to make a distinction between calls from

in/fan-out
other methods within the object and calls from external methods.

Weighted
methods per

This is the number of methods that are included in a class weighted by the complexity of
each method. Therefore, a simple method may have a complexity of 1 and a large and
complex method a much higher value. The larger the value for this metric, the more

methods per
class

complex the object class. Complex objects are more likely to be more difficult to
understand. They may not be logically cohesive so cannot be reused effectively as super-
classes in an inheritance tree.

Number of
idi

This is the number of operations in a super-class that are over-ridden in a sub-class. A
hi h l f thi t i i di t th t th l d t b i toverriding

operations
high value for this metric indicates that the super-class used may not be an appropriate
parent for the sub-class.

388Konkuk University

Measurement AnalysisMeasurement Analysis

It i t l b i h t d t• It is not always obvious what data means
– Analysing collected data is very difficult.

P f i l t ti ti i h ld b lt d if il bl• Professional statisticians should be consulted if available.
• Data analysis must take local circumstances into account.

389Konkuk University

SummarySummary

S ft lit t i d ith i th t ft• Software quality management is concerned with ensuring that software
meets its required standards.

• Quality assurance procedures should be documented in an organizational
quality manualquality manual.

• Software standards are an encapsulation of best practice.
Reviews are the most widely used approach for assessing software quality• Reviews are the most widely used approach for assessing software quality.

• Software measurement gathers information about both the software
process and the software product.

• Product quality metrics should be used to identify potentially
problematical components.

• There are no standardized and universally applicable software metrics.

390Konkuk University

Konkuk University 391

Ch t 28Chapter 28.

Process Improvement

392Konkuk University

ObjectivesObjectives

T l i h i i l f f i• To explain the principles of software process improvement
• To explain how software process factors influence software quality and

productivity
• To explain how to develop simple models of software processes
• To explain the notion of process capability and the CMMI process

improvement modelp

393Konkuk University

Process Improvement

U d t di i ti d i t d i h t

Process Improvement

• Understanding existing processes and introducing process changes to
improve product quality, reduce costs or accelerate schedules.

M t i t k f h f d d f t d ti• Most process improvement work so far has focused on defect reduction.
This reflects the increasing attention paid by industry to quality.

• However, other process attributes can also be the focus of improvement.

394Konkuk University

Process AttributesProcess Attributes

Process
Attributes

Description

Understandability
To what extent is the process explicitly defined and how easy is it to understand the
process definition?process definition?

Visibility
Do the process activities culminate in clear results so that the progress of the process is
externally visible?

Supportability To what extent can CASE tools be used to support the process activities?Supportability To what extent can CASE tools be used to support the process activities?

Acceptability
Is the defined process acceptable to and usable by the engineers responsible for
producing the software product?

Is the process designed in such a way that process errors are avoided or trapped before
Reliability

Is the process designed in such a way that process errors are avoided or trapped before
they result in product errors?

Robustness Can the process continue in spite of unexpected problems?

C th l t fl t h i i ti l i t id tifi d
Maintainability

Can the process evolve to reflect changing organisational requirements or identified
process improvements?

Rapidity How fast can the process of delivering a system from a given specification be completed?

395Konkuk University

Process Improvement Cycle

P t

Process Improvement Cycle

• Process measurement
– Attributes of the current process are measured. These are a baseline

for assessing improvements.
• Process analysis• Process analysis

– The current process is assessed and bottlenecks and weaknesses are
identified.

• Process changeg
– Changes to the process that have been identified during the analysis

are introduced.

Measure

Analysis

Change

396Konkuk University

Change

Process and Product Quality

P li d d li l l l d

Process and Product Quality

• Process quality and product quality are closely related.
– The quality of the product depends on its development process.

• A good process is usually required to produce a good product.
– For manufactured goods, process is the principal quality determinant.
– For design-based activity, other factors are also involved especially the g y, p y

capabilities of the designers.

397Konkuk University

Principal Product Quality FactorsPrincipal Product Quality Factors

Development
TechnologyTechnology

Product
Quality

People
Quality

Process
Quality

C t Ti dCost, Time and
Schedule

398Konkuk University

Quality FactorsQuality Factors

F l j t ith ‘ ’ biliti th d l t• For large projects with ‘average’ capabilities, the development process
determines product quality.

F ll j t th biliti f th d l i th i• For small projects, the capabilities of the developers is the main
determinant.

• The development technology is particularly significant for small projects.

• In all cases, if an unrealistic schedule is imposed then product quality will
suffer.

399Konkuk University

Process Classification

I f l

Process Classification

• Informal
– No detailed process model.
– Development team chose their own way of working.

• Managed
– Defined process model which drives the development process.

• Methodical
– Processes supported by some development method such as the RUP.

• Supported
– Processes supported by automated CASE tools.

400Konkuk University

Process Choice

P d h ld d d t f d t b i d l d

Process Choice

• Process used should depend on type of product being developed
– For large systems, management is usually the principal problem so we need a

strictly managed process.
– For smaller systems more informality is possibleFor smaller systems, more informality is possible.

• No uniformly applicable process which should be standardized within an
organisationg

– High costs may be incurred if you force an inappropriate process on a
development team.

– Inappropriate methods can also increase costs and lead to reduced quality.

401Konkuk University

Process Tool SupportProcess Tool Support

Informal
Process

Managed
Process

Methodical
Process

Improving
Process

Configuration Project Analysis and
Generic
Tools

Configuration
Management

Tools

Project
Management

Tools

Analysis and
Design

Workbenches

Specialized
Tool

402Konkuk University

Process Measurement

Wh ibl tit ti d t h ld b ll t d

Process Measurement

• Wherever possible, quantitative process data should be collected
– However, where organizations do not have clearly defined process standards,

this is very difficult as you don’t know what to measure.
– A process may have to be defined before any measurement is possibleA process may have to be defined before any measurement is possible.

• Process measurements should be used to assess process improvements
– But, this does not mean that measurements should drive the improvements.But, this does not mean that measurements should drive the improvements.
– The improvement driver should be the organizational objectives.

403Konkuk University

Classes of Process Measurement

Ti t k f ti iti t b l t d

Classes of Process Measurement

• Time taken for process activities to be completed
– E.g. Calendar time or effort to complete an activity or process

• Resources required for processes or activities• Resources required for processes or activities
– E.g. Total effort in person-days

• Number of occurrences of a particular event• Number of occurrences of a particular event
– E.g. Number of defects discovered

404Konkuk University

Goal Question Metric Paradigm

G l

Goal-Question-Metric Paradigm

• Goals
– What is the organisation trying to achieve?
– The objective of process improvement is to satisfy these goals.

• Questions
– Questions about areas of uncertainty related to the goals.
– You need process knowledge to derive these.

• Metrics
– Measurements to be collected to answer the questions

405Konkuk University

Process Analysis and ModellingProcess Analysis and Modelling

P l i• Process analysis
– Study existing processes to understand the relationships between parts of the

process and to compare them with other processes.

• Process modelling
– Documentation of a process which records the tasks, the roles and the

entities used
– May be presented from different perspectives.

• Study an existing process to understand its activities.
• Produce an abstract model of the process.

– Normally represent the model graphically.
– Several different views (e.g. activities, deliverables, etc.) may be required.

• Analyse the model to discover process problems.
– Involves discussing process activities with stakeholders and discovering

problems and possible process changes.

406Konkuk University

Process Analysis Techniques

P bli h d d l d t d d

Process Analysis Techniques

• Published process models and process standards
– It is always best to start process analysis with an existing model.
– People then may extend and change it.

• Questionnaires and interviews
– Must be carefully designed.

Participants may tell you what they think you want to hear– Participants may tell you what they think you want to hear.

• Ethnographic analysis
Involves assimilating process knowledge by observation– Involves assimilating process knowledge by observation.

– Best for in-depth analysis of process fragments rather than for whole-process
understanding.

407Konkuk University

Process Model Elements 1Process Model Elements 1
Process
Model

Elements

Graphical
Notation

Description

Activity
A round-edged
rectangle with
no drop shadow

An activity has a clearly defined objective, entry and exit conditions. Examples of
activities are preparing a set of test data to test a module, coding a function or a module,
proof-reading a document, etc. Generally, an activity is atomic i.e. it is the responsibility
of one person or group. It is not decomposed into sub-activities.

Process A round-edged
rectangle with
drop shadow

A process is a set of activities which have some coherence and whose objective is
generally agreed within an organisation. Examples of processes are requirements analysis,
architectural design, test planning, etc.

Deliverable A rectangle with
drop shadow

A deliverable is a tangible output of an activity that is predicted in a project plan.

Condition A parallelogram
A condition is either a pre-condition that must hold before a process or activity can start
or a post-condition that holds after a process or activity has finished.

Role A circle with
drop

A role is a bounded area of responsibility. Examples of roles might be configuration
manager, test engineer, software designer, etc. One person may have several different
roles and a single role may be associated with several different people.

May be
Exception

May be
represented as a
double edged
box

An exception is a description of how to modify the process if some anticipated or
unanticipated event occurs. Exceptions are often undefined and it is left to the ingenuity
of the project managers and engineers to handle the exception.

A i t h f i f ti b t l b t l d ti

408Konkuk University

Communication An arrow

An interchange of information between people or between people and supporting
computer systems. Communications may be informal or formal. Formal communications
might be the approval of a deliverable by a project manager; informal communications
might be the interchange of electronic mail to resolve ambiguities in a document.

Process ExceptionsProcess Exceptions

S ft l d d l t ff ti l• Software processes are complex and process models cannot effectively
represent how to handle exceptions

– Several key people becoming ill just before a critical review.
– A breach of security that means all external communications are out of action– A breach of security that means all external communications are out of action

for several days.
– Organizational reorganization
– A need to respond to an unanticipated request for new proposals.p p q p p

• Under these circumstances, the model is suspended and managers use
their initiative to deal with the exception.

• We have to avoid the exceptions or change the process itself.

409Konkuk University

Process ChangeProcess Change

P h i l ki difi i i i• Process changes involve making modifications to existing processes.
– Introduce new practices, methods or processes.
– Change the ordering of process activities.
– Introduce or remove deliverables.
– Introduce new roles or responsibilities.

• Change should be driven by measurable goals.

• Process change stages• Process change stages
– Improvement identification
– Improvement prioritization
– Process change introductionProcess change introduction
– Process change training
– Change tuning

410Konkuk University

Process Change ProcessProcess Change Process

Identify
improvements

Prioritize
improvements

Introduce
process change

Tune process
changesimprovements improvements

Train engineers

changes

Process Model Process Model Process Model Process Model Process Model

411Konkuk University

The CMMI FrameworkThe CMMI Framework

Th CMMI f k i th t t f k t• The CMMI framework is the current stage of work on process assessment
and improvement.

– Started at the SEI(Software Engineering Institute) in the 1980s.
– The SEI’s mission is to promote software technology transfer particularly to US– The SEI s mission is to promote software technology transfer particularly to US

defence contractors.

• It has had a profound influence on process improvementIt has had a profound influence on process improvement
– Capability Maturity Model introduced in the early 1990s.
– Revised maturity framework (CMMI) introduced in 2001.

412Konkuk University

Process Capability AssessmentProcess Capability Assessment

I d d h hi h i i ’• Intended as a means to assess the extent to which an organization’s
processes follow best practice.

– It is possible to identify areas of weakness for process improvement.
– There have been various process assessment and improvement models but

the SEI work has been most influential.

413Konkuk University

The SEI Capability Maturity Model

I iti l

The SEI Capability Maturity Model

• Initial
– Essentially uncontrolled.

• Repeatable• Repeatable
– Product management procedures defined and used.

• Defined• Defined
– Process management procedures and strategies defined and used.

• Managed• Managed
– Quality management strategies defined and used.

• Optimizing• Optimizing
– Process improvement strategies defined and used.

414Konkuk University

Problems with the CMMProblems with the CMM

P ti i t d ith d l l l• Practices associated with model levels
– Companies could be using practices from different levels at the same time,

but if all practices from a lower level were not used, it was not possible to
move beyond that level.y

• Discrete rather than continuous
– Did not recognize distinctions between the top and the bottom of levels.g p

• Practice-oriented
– Concerned with how things were done (the practices) rather than the goals to

be achieved.

415Konkuk University

The CMMI ModelThe CMMI Model

A i t t d bilit d l th t i l d ft d t• An integrated capability model that includes software and systems
engineering capability assessment.

T i t ti ti• Two instantiations
– Staged where the model is expressed in terms of capability levels.
– Continuous where a capability rating is computed.

416Konkuk University

CMMI model componentsCMMI model components

P• Process areas
– 24 process areas that are relevant to process capability and improvement are

identified.
– Organized into 4 groupsOrganized into 4 groups.

• Goals
– Goals are descriptions of desirable organizational states.Goals are descriptions of desirable organizational states.
– Each process area has associated goals.

• PracticesPractices
– Practices are ways of achieving a goal.
– They are just advisory and other approaches to achieve the goal may be used.

417Konkuk University

CMMI Process AreasCMMI Process Areas
CMMI Process Area Description

Process Management

Organisational process definition
Organisational process focus
Organisational training
Organisational process performance
Organisational innovation and deploymentOrganisational innovation and deployment

Project Management

Project planning
Project monitoring and control
Supplier agreement management
Integrated project managementg p j g
Risk management
Integrated teaming
Quantitative project management

Requirements management

Engineering

Requirements development
Technical solution
Product integration
Verification
ValidationValidation

Support

Configuration management
Process and product quality management
Measurement and analysis
Decision analysis and resolution

418Konkuk University

y
Organisational environment for integration
Causal analysis and resolution

CMMI GoalsCMMI Goals

CMMI Goals Process Area

Corrective actions are managed to closure when the project’s
Project Monitoring and control

g p j
performance or results deviate significantly from the plan.

Project Monitoring and control

Actual performance and progress of the project is monitored
against the project plan.

Project monitoring and control
g p j p

The requirements are analysed and validated and a definition
of the required functionality is developed.

Requirements development

f fRoot causes of defects and other problems are systematically
determined.

Causal analysis and resolution

The process is institutionalised as a defined process. Generic goal

419Konkuk University

CMMI PracticesCMMI Practices

Practice Associated Goal

Analyse derived requirements to ensure that they are necessary
and sufficient

The requirements are analysed and
validated and a definition of the

and sufficient
required functionality is developed.

Validate requirements to ensure that the resulting product will
perform as intended in the user’s environment using multiple
techniques as appropriate.techniques as appropriate.

Select the defects and other problems for analysis.
Root causes of defects and other
problems are systematically
determined.

P f l l i f l t d d f t d th blPerform causal analysis of selected defects and other problems
and propose actions to address them.

Establish and maintain an organisational policy for planning
and performing the requirements development process.

The process is institutionalised as a
defined process.

Assign responsibility and authority for performing the process,
developing the work products and providing the services of
the requirements development process.

420Konkuk University

CMMI AssessmentCMMI Assessment

E i th d i i ti d th i• Examines the processes used in an organization and assesses their
maturity in each process area.

B d 6 i t l (6 l l)• Based on a 6-point scale (6 levels)
– Not performed
– Performed

Managed– Managed
– Defined
– Quantitatively managed
– OptimizingOptimizing

421Konkuk University

The Staged CMMI ModelThe Staged CMMI Model

C bl i h h f CMM• Comparable with the software CMM.
• Each maturity level has process areas and goals.

Level 5
Optimizing

Level 4
Quantitatively

Managed

Level 2

Level 3
Defined

Level 1
Initial

Managed

422Konkuk University

Institutional PracticesInstitutional Practices

I i i i h d l l h ld h i i i li d• Institutions operating at the managed level should have institutionalized
practices that are geared to standardization. (Level 2  Level 3)

– Establish and maintain policy for performing the project management
process.

– Provide adequate resources for performing the project management process.
– Monitor and control the project planning process.

R i th ti iti t t d lt f th j t l i– Review the activities, status and results of the project planning process.

423Konkuk University

The Continuous CMMI ModelThe Continuous CMMI Model

A fi i d l th t id i di id l f ti d• A finer-grain model that considers individual or groups of practices and
assesses their use.

– The maturity assessment is not a single value but is a set of values showing
the organisations maturity in each area.the organisations maturity in each area.

– The CMMI rates each process area from levels 1 to 5.
– The advantage of a continuous approach is that organizations can pick and

choose process areas to improve according to their local needs.

424Konkuk University

A Process Capability ProfileA Process Capability Profile

Project monitoring
and control

Supplier agreementpp g
management

Risk management

Configuration
management

RequirementsRequirements
management

Verification

Validation

1 2 3 4 5

425Konkuk University

SummarySummary

P i t i l l i t d di ti• Process improvement involves process analysis, standardisation,
measurement and change.

• Processes can be classified as informal, managed, methodical and
improving This classification can be used to identify process tool supportimproving. This classification can be used to identify process tool support.

• The process improvement cycle involves process measurement, process
analysis and process change.

• Process measurement should be used to answer specific process• Process measurement should be used to answer specific process
questions, based on organisational improvement goals.

• The three types of process metrics used in the measurement process are
time metrics, resource utilisation metrics and event metrics. ,

• Process models include descriptions of tasks, activities, roles, exceptions,
communications, deliverables and other processes.

• The CMMI process maturity model integrates software and systems p y g y
engineering process improvement.

• Process improvement in the CMMI model is based on reaching a set of
goals related to good software engineering practice.

426Konkuk University

Konkuk University 427

Ch t 29Chapter 29.

Configuration Management

428Konkuk University

ObjectivesObjectives

T l i h i f f fi i (CM)• To explain the importance of software configuration management (CM)
• To describe key CM activities namely CM planning, change management,

version management and system building
• To discuss the use of CASE tools to support configuration management

processes

429Konkuk University

Configuration Management

N i f ft t t d th h

Configuration Management

• New versions of software systems are created as they change
– For different machines/OS
– Offering different functionality

Tailored for particular user requirements– Tailored for particular user requirements

• Configuration management(CM) is concerned with managing evolving• Configuration management(CM) is concerned with managing evolving
software systems

– System change is a team activity.
– Aims to control the costs and effort involved in making changes.g g
– Involves the development and application of procedures and standards to

manage an evolving software product.
– May be seen as part of a more general quality management process.y p g q y g p
– When released to CM, software systems are sometimes called baselines.

430Konkuk University

CM StandardsCM Standards

CM h ld l b b d t f t d d hi h li d• CM should always be based on a set of standards which are applied
within an organization.

– Standards should define how items are identified, how changes are controlled
and how new versions are managed.and how new versions are managed.

– Standards may be based on external CM standards
(e.g. IEEE standard for CM).

– Some existing standards are based on a waterfall process model.
– New CM standards are needed for evolutionary development.

431Konkuk University

Frequent System BuildingFrequent System Building

F b ildi• Frequent system building
– A new version of a system is built from components by compiling and linking

them.
Thi i i d li d f t ti i d fi d t t– This new version is delivered for testing using pre-defined tests.

– Faults that are discovered during testing are documented and returned to the
system developers.

• It is easier to find problems that stem from component interactions early
in the process.

– This encourages thorough unit testing - developers are under pressure not to
‘break the build’.

– A stringent change management process is required to keep track of
problems that have been discovered and repaired.

432Konkuk University

Configuration Management Planning

All d t f th ft h t b d

Configuration Management Planning

• All products of the software process may have to be managed
– Specifications
– Designs

Programs– Programs
– Test data
– User manuals

• Thousands of separate documents may be generated for a large,
complex software system.p y

433Konkuk University

The Configuration Management Plan

D fi h f d b d d d i

The Configuration Management Plan

• Defines the types of documents to be managed and a document naming
scheme.

• Defines who takes responsibility for the CM procedures and creation of
baselines.

• Defines policies for change control and version management.
• Defines the CM records which must be maintained.
• Describes the tools which should be used to assist the CM process and

any limitations on their use.
• Defines the process of tool use.p
• Defines the CM database used to record configuration information.
• May include information such as the CM of external software, process

auditing, etc.g

434Konkuk University

Configuration Item Identification

L j t t i ll d th d f d t hi h t b

Configuration Item Identification

• Large projects typically produce thousands of documents which must be
uniquely identified.

• Some of these documents must be maintained for the lifetime of the
softwaresoftware.

• Document naming scheme should be defined so that related documents
have related nameshave related names.

• A hierarchical scheme with multi-level names is probably the most
flexible approach.

– PCL-TOOLS/EDIT/FORMS/DISPLAY/AST-INTERFACE/CODEPCL TOOLS/EDIT/FORMS/DISPLAY/AST INTERFACE/CODE

435Konkuk University

Configuration HierarchyConfiguration Hierarchy

PCL -TOOLS

EDIT

STRUCTURES

B IND

FORM

COM P ILE MAKE-GEN

H ELPSTRUCTURESFORM H ELP

DI SP LAY QUERY

AST-INTER FA CEFOR M-SP E CS FOR M-IO

CODEOB JECTS TES TS

Konkuk University 436

Configuration DatabaseConfiguration Database

All CM i f ti h ld b i t i d i fi ti d t b• All CM information should be maintained in a configuration database.

• This should allow queries about configurations to be answered
h h i l i ?– Who has a particular system version?

– What platform is required for a particular version?
– What versions are affected by a change to component X?

How many reported faults in version T?– How many reported faults in version T?

• The CM database should preferably be linked to the software being
managedmanaged.

Konkuk University 437

CM Database ImplementationCM Database Implementation

M b t f i t t d i t t t ft• May be part of an integrated environment to support software
development.

– The CM database and the managed documents are all maintained on the
same system.same system.

• CASE tools may be integrated.
– A close relationship between the CASE tools and the CM tools.p

• More commonly, the CM database is maintained separately as this is
cheaper and more flexible.p

438Konkuk University

Change Management

S f bj i l h

Change Management

• Software systems are subject to continual change requests
– from users
– from developers
– from market forces

• Change management is concerned with
– Keeping track of these changes
– Ensuring that they are implemented in the most cost-effective way.

439Konkuk University

Change Management ProcessChange Management Process

Request change by completing a change request form
Analyze change request
if change is valid then

A h h i h b i l dAssess how change might be implemented
Assess change cost

Submit request to change control board
if change is acceptedthenif change is accepted then

repeat
make changes to software
submit changed software for quality approval

until software quality is adequate
create new system version

else
reject change requestreject change request

else
reject change request

440Konkuk University

Change Request Form

A h t f d

Change Request Form

• A change request form records
– The change proposed
– Requestor of change

The reason why change was suggested– The reason why change was suggested
– The urgency of change (from requestor of the change)

• It also records• It also records
– Change evaluation
– Impact analysis
– Change costChange cost
– Recommendations from system maintenance staff

441Konkuk University

Change Request FormChange Request Form

Change Request Form

Project: Proteus/PCL-T ools Number: 23/02
Change r equester: I. Sommerville Date: 1/12/02
Requested change: When a component is selected from the structure, display
the name of the file where it is storedthe name of the file where it is stored.

Change analyser: G. Dean Analysis date: 10/12/02
Components affected: Display-Icon.Select, Display-Icon.Display

Associated components: FileT able

Change assessment: Relatively simple to implement as a file name table is
available. Requires the design and implementation of a display field. No changes
to associated components are required.

Change priority: Lowg p y

Change implementation:
Estimated effort: 0.5 days

Date to CCB: 15/12/02 CCB decision date: 1/2/03
CCB decision: Accept change Change to be implemented in Release 2 1CCB decision: Accept change. Change to be implemented in Release 2.1.
Change implementor: Date of change:
Date submitted to QA: QA decision:
Date submitted to CM:
Comments

442Konkuk University

Change Tracking Tools

A j bl i h t i t ki h t t

Change Tracking Tools

• A major problem in change management is tracking change status.

• Change tracking tools
k h f h h– Keep track the status of each change request .

– Ensure automatically that change requests are sent to the right people at the
right time.

– Integrated with E-mail systems allowing electronic change request distribution– Integrated with E mail systems allowing electronic change request distribution.

443Konkuk University

Change Control Board

Ch h ld b i d b t l h d id h th

Change Control Board

• Changes should be reviewed by an external group who decide whether
or not they are cost-effective from a strategic and organizational
viewpoint rather than a technical viewpoint.

• The group is called a change control board(CCB).
– May include representatives from client and contractor staff.

444Konkuk University

Derivation History

D i i hi i d f h li d d d

Derivation History

• Derivation history is a record of changes applied to a document or code
component.

– Should record, in outline,
• The change made
• The rationale for the change
• Who made the change
• When it was implemented.

– May be included as a comment in code.

445Konkuk University

Component Header InformationComponent Header Information

// BANKSEC project (IST 6087)
////
// BANKSEC-TOOLS/AUTH/RBAC/USER_ROLE
//
// Object: currentRole
// Author: N. Perwaiz//
// Creation date: 10th November 2002
//
// © Lancaster University 2002
//
// Modification history
// Version Modifier Date Change Reason
// 1.0 J. Jones 1/12/2002 Add header Submitted to CM
// 1.1 N. Perwaiz 9/4/2003 New field Change req. R07/02g q

446Konkuk University

Version and Release Management

V i d l

Version and Release Management

• Version and release management
– Invent an identification scheme for system versions.
– Plan when a new system version is to be produced.
– Ensure that version management procedures and tools are properly applied.
– Plan and distribute new system releases.

• Version
– An instance of a system which is functionally distinct in some way from other

system instances.

• Variant
– An instance of a system which is functionally identical but non-functionally

distinct from other instances of a system.

• Release
– An instance of a system which is distributed to users outside of the

development team.

447Konkuk University

Version IdentificationVersion Identification

V i id ifi i h ld d fi bi f id if i• Version identification should define an unambiguous way of identifying
component versions.

• Three basic techniques for component identification
– Version numbering
– Attribute-based identification
– Change-oriented identification

448Konkuk University

Version Numbering

Si l i h li d i i

Version Numbering

• Simple naming scheme uses a linear derivation.
– V1, V1.1, V1.2, V2.1, V2.2 etc.

• The actual derivation structure is a tree or a network rather than a
sequence.

– Version names are not meaningful.
– A hierarchical naming scheme leads to fewer errors in version identification.

V 1 0 V 1 1

V 1.1b V 1.1.1

V 1 2 V 2 0 V 2 1 V 2 2V 1.0 V 1.1 V 1.2 V 2.0 V 2.1 V 2.2

V 1.1a

449Konkuk University

Attribute Based Identification

Att ib t b i t d ith i ith th bi ti f

Attribute-Based Identification

• Attributes can be associated with a version with the combination of
attributes identifying that version

– Examples of attributes are Date, Creator, Programming Language, Customer,
Status etc.Status etc.

• More flexible than an explicit naming scheme for version retrieval.
– May cause problems with uniqueness. y p q
– The set of attributes have to be chosen so that all versions can be uniquely

identified.

• In practice, a version also needs an associated name for easy reference.
• Example: AC3D (language =Java, platform = XP, date = Jan 2003)

450Konkuk University

Change Oriented IdentificationChange-Oriented Identification

Ch i d id ifi i i i d h h d• Change-oriented identification integrates versions and the changes made
to create these versions.

– Used for systems rather than components.
– Each proposed change has a change set that describes changes made to

implement that change.
– Change sets are applied in sequence so that, in principle, a version of the

system that incorporates an arbitrary set of changes may be createdsystem that incorporates an arbitrary set of changes may be created.

451Konkuk University

Release Management

R l i h f d h b

Release Management

• Releases must incorporate changes forced on the system by errors
discovered by users and by hardware changes.

– Must also incorporate new system functionality.

• Release planning is concerned with when to issue a system version as a
release.

452Konkuk University

System ReleasesSystem Releases

S t l i t j t t f t bl• System release is not just a set of executable programs
• May also include

– Configuration files defining how the release is configured for a particular
installationinstallation

– Data files needed for system operation
– An installation program or shell script to install the system on target hardware
– Electronic and paper documentationElectronic and paper documentation
– Packaging and associated publicity

453Konkuk University

Release Decision MakingRelease Decision Making

All fil i d f l h ld b d h l i• All files required for a release should be re-created when a new release is
installed.

• Preparing and distributing a system release is an expensive process.
• Factors such as the technical quality of the system, competition,

marketing requirements and customer change requests should all g q g q
influence the decision of when to issue a new system release.

454Konkuk University

System Release StrategySystem Release Strategy

F t D i tiFactor Description

Technical quality of the
system

If serious system faults are reported which affect the way in which many
customers use the system, it may be necessary to issue a fault repair release.
However, minor system faults may be repaired by issuing patches (often
di ib d h I) h b li d h l f h

system
distributed over the Internet) that can be applied to the current release of the
system.

Platform changes
You may have to create a new release of a software application when a new
version of the operating system platform is released.p g y p

Lehman’s fifth law
(See chapter 21)

This suggests that the increment of functionality that is included in each release
is approximately constant. Therefore, if there has been a system release with
significant new functionality, then it may have to be followed by a repair release.

Competition
A new system release may be necessary because a competing product is
available.

Marketing The marketing department of an organisation may have made a commitment g
requirements

g p g y
for releases to be available at a particular date.

Customer change
proposals

For customised systems, customers may have made and paid for a specific set
of system change proposals and they expect a system release as soon as these
have been implemented

455Konkuk University

have been implemented.

Release CreationRelease Creation

R l i i l ll i ll fil d d i i d• Release creation involves collecting all files and documentation required
to create a system release.

– Configuration descriptions have to be written for different hardware.
– Installation scripts have to be written.
– The specific release must be documented to record exactly what files were

used to create it. This allows it to be re-created if necessary.

456Konkuk University

System Building

Th f ili d li ki f i

System Building

• The process of compiling and linking software components into an
executable system

– Different systems are built from different combinations of components.
– Now always supported by automated tools that are driven by ‘build scripts’.

System Builder
Version

Management Compiler LinkerSystem Builder Management
System

Compiler Linker

Build Script
Source Code
Component

Versions

Object Code
Components

Executable
System

457Konkuk University

System Building ProblemsSystem Building Problems

D th b ild i t ti i l d ll i d t ?• Do the build instructions include all required components?
– When there are many hundreds of components making up a system, it is easy

to miss one out. This should normally be detected by the linker.

• Is the appropriate component version specified?
– A more significant problem. A system built with the wrong version may work

initially but fail after delivery.y y

• Are all data files available?
– The build should not rely on 'standard' data files. Standards vary from place y y p

to place.

Konkuk University 458

System Building Problems

A d t fil f ithi t t?

System Building Problems

• Are data file references within components correct?
– Embedding absolute names in code almost always causes problems as naming

conventions differ from place to place.

• Is the system being built for the right platform
– Sometimes you must build for a specific OS version or hardware configuration.

• Is the right version of the compiler and other software tools specified?
– Different compiler versions may actually generate different code and the

compiled component will exhibit different behaviour.

459Konkuk University

CASE Tools for Configuration ManagementCASE Tools for Configuration Management

CASE t l t f CM i ti l b• CASE tool support for CM is essential, because
– CM processes are standardized and involve applying pre-defined procedures.
– Large amounts of data must be managed.

• Mature CASE tools to support configuration management are available
ranging from stand-alone tools to integrated CM workbenches.

Konkuk University 460

CM WorkbenchesCM Workbenches

O kb h• Open workbenches
– Tools for each stage in the CM process are integrated through organizational

procedures and scripts.
Gi fl ibilit i t l l ti– Gives flexibility in tool selection.

• Integrated workbenches
– Provide whole-process, integrated support for configuration management.
– More tightly integrated tools so easier to use.
– However, the cost is less flexibility in the tools used.

461Konkuk University

Change Management ToolsChange Management Tools

Ch t i d l it b d ll d d• Change management is a procedural process so it can be modelled and
integrated with a version management system.

Ch t t l• Change management tools
– Form editor to support processing the change request forms
– Workflow system to define who does what and to automate information

transfertransfer
– Change database that manages change proposals and is linked to a VM

system
– Change reporting system that generates management reports on the status

f hof change requests

462Konkuk University

Version Management ToolsVersion Management Tools

V i d l id tifi ti• Version and release identification
– Systems assign identifiers automatically when a new version is submitted to

the system.
• Storage management• Storage management.

– System stores the differences between versions rather than all the version
code.

• Change history recordingg y g
– Record reasons for version creation.

• Independent development
– Only one version at a time may be checked out for change. Parallel working y y g g

on different versions.
• Project support

– Can manage groups of files associated with a project rather than just single
filfiles.

463Konkuk University

System BuildingSystem Building

B ildi l i i ll i d k• Building a large system is computationally expensive and may take
several hours.

• Hundreds of files may be involved.

• System building tools may provide
– A dependency specification language and interpreterA dependency specification language and interpreter
– Tool selection and instantiation support
– Distributed compilation
– Derived object managementDerived object management

464Konkuk University

Summary

C fi ti t i th t f t h t

Summary

• Configuration management is the management of system change to
software products.

• A formal document naming scheme should be
established and documents should be managed in a databaseestablished and documents should be managed in a database.

• The configuration data base should record information about changes
and change requests.

• A consistent scheme of version identification should be established using• A consistent scheme of version identification should be established using
version numbers, attributes or change sets.

• System releases include executable code, data, configuration files and
documentationdocumentation.

• System building involves assembling components into a system.
• CASE tools are available to support all CM activities.
• CASE tools may be stand-alone tools or may be integrated systems

which integrate support for version management, system building and
change management.

465Konkuk University

