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Abstract. We present a tool for the formal verification of ANSI-C pro-
grams using Bounded Model Checking (BMC). The emphasis is on us-
ability: the tool supports almost all ANSI-C language features, including
pointer constructs, dynamic memory allocation, recursion, and the float
and double data types. From the perspective of the user, the verification
is highly automated: the only input required is the BMC bound. The
tool is integrated into a graphical user interface. This is essential for pre-
senting long counterexample traces: the tool allows stepping through the
trace in the same way a debugger allows stepping through a program.

1 Introduction

We present a tool that uses Bounded Model Checking to reason about low-level
ANSI-C programs. There are two applications of the tool: 1) the tool checks
safety properties such as the correctness of pointer constructs, and 2) the tool
can compare an ANSI-C program with another design, such as a circuit given in
Verilog.

Many safety-critical software systems are legacy designs, i.e., written in a low
level language such as ANSI-C or even assembly language, or at least contain
components that are written in this manner. Furthermore, very often perfor-
mance requirements enforce the use of these languages. These systems are a big-
ger security and safety problem than programs written in high level languages.
The high level languages are usually easier to verify, as they enforce type-safety,
for example. The verification of low level ANSI-C code is challenging due to the
extensive use of arithmetic, pointers, pointer arithmetic, and bit-wise operators.

We describe a tool that formally verifies ANSI-C programs. The properties
checked include pointer safety, array bounds, and user-provided assertions. The
tool implements a technique called Bounded Model Checking (BMC) [1]. In
BMC, the transition relation for a complex state machine and its specification
are jointly unwound to obtain a Boolean formula that is satisfiable if there exists
an error trace. The formula is then checked by using a SAT procedure. If the
formula is satisfiable, a counterexample is extracted from the output of the SAT
procedure. The tool checks that sufficient unwinding is done to ensure that no
longer counterexample can exist by means of unwinding assertions.

The tool comes with a graphical user interface (GUI) that hides the imple-
mentation details from the user. It resembles tools already well-known to soft-
ware engineers. If a counterexample is found, the GUI allows stepping through
the trace like a debugger. We hope to make formal verification tools accessible
to non-expert users this way.
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Hardware Verification using ANSI-C as a Reference. A common hardware de-
sign approach employed by many companies is to first write a quick prototype
that behaves like the planned circuit in a language like ANSI-C. This program
is then used for extensive testing and debugging, in particular of any embed-
ded software that will later on be shipped with the circuit. After testing and
debugging the program, the actual hardware design is written using hardware
description languages like Verilog. The Verilog description is then synthesized
into a circuit.

Thus, there are two implementations of the same design: one written in ANSI-
C, which is written for simulation, and one written in register transfer level HDL,
which is the actual product. The ANSI-C implementation is usually thoroughly
tested and debugged.

Due to market constraints, companies aim to sell the chip as soon as possible,
i.e., shortly after the HDL implementation is designed. There is usually little
time for additional debugging and testing of the HDL implementation. Thus, an
automated, or nearly automated way of establishing the consistency of the HDL
implementation with respect to the ANSI-C model is highly desirable.

This motivates the verification problem: we want to verify the consistency
of the HDL implementation, i.e., the product, using the ANSI-C implementa-
tion as a reference [2]. Establishing the consistency does not require a formal
specification. However, formal methods to verify either the hardware or software
design are still desirable.

The previous work focuses on a small subset of ANSI-C that is particularly
close to register transfer language. Thus, the designer is often required to rewrite
the C program manually in order to comply with these constraints. Our tool
supports the full set of ANSI-C language features, which makes it easier to use
software written for simulation and testing as a reference model. Details of the
various programming styles permitted by our tool are described in [3]. A short
version is in [4].

In order to verify the consistency of the two implementations, we unwind
both the C program and the circuit in tandem. The unwinding of the circuit is
done as conventionally done by any Bounded Model Checker.

2 Bounded Model Checking for ANSI-C Programs

2.1 Generating the Formula

We reduce the Model Checking Problem to determining the validity of a bit
vector equation. The full details of the transformation are described in [3]. The
process has five steps:

1. We assume that the ANSI-C program is already preprocessed, e.g., all the
#define directives are expanded. We then replace side effects by equivalent
assignments using auxiliary variables, break and continue by equivalent
goto statements, and for and do while loops by equivalent while loops.

2. The loop constructs are unwound. Loop constructs can be expressed us-
ing while statements, (recursive) function calls, and goto statements. The
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while loops are unwound by duplicating the loop body n times. Each copy
is guarded using an if statement that uses the same condition as the loop
statement. The if statement is added for the case that the loop requires less
than n iterations. After the last copy, an assertion is added that assures that
the program never requires more iterations. The assertion uses the negated
loop condition. We call this assertion an unwinding assertion.
These unwinding assertions are crucial for our approach: they assert that
the unwinding bound is actually large enough. If the unwinding assertion of
a loop fails for any possible execution, then we increase the bound n for that
particular loop until the bound is large enough.

3. Backward goto statements are unwound in a manner similar to while loops.
4. Function calls are expanded. Recursive function calls are handled in a man-

ner similar to while loops: the recursion is unwound up to a bound. It is
then asserted that the recursion never goes deeper. The return statement
is replaced by an assignment (if the function returns a value) and a goto
statement to the end of the function.

5. The program resulting from the preceding steps only consists of (possibly
nested) if instructions, assignments, assertions, labels, and goto instruc-
tions with branch targets that are defined after the goto instruction (for-
ward jumps). This program is then transformed into static single assignment
(SSA) form, which requires a pointer analysis. We omit the full details of
this process. Here is a simple example of the transformation:

x=x+y;

if(x!=1)

x=2;

else

x++;

assert(x<=3);

→

x1=x0+y0;

if(x1!=1)

x2=2;

else

x3=x1+1;

x4=(x1!=1)?x2:x3;

assert(x4<=3);

→

C := x1=x0+y0 ∧
x2=2 ∧
x3=x1+1 ∧
x4=(x1!=1)?x2:x3

P := x4 ≤3

The procedure above produces two bit-vector equations: C (for the con-
straints) and P (for the property). In order to check the property, we convert
C ∧ ¬P into CNF by adding intermediate variables and pass it to a SAT solver
such as Chaff [5]. If the equation is satisfiable, we found a violation of the prop-
erty. If it is unsatisfiable, the property holds.

2.2 Converting the Formula to CNF

The conversion of most operators into CNF is straight-forward, and resembles
the generation of appropriate arithmetic circuits. The tool can also output the
bit-vector equation before it is flattened down to CNF, for the benefit of circuit-
level SAT solvers.

CBMC allows programs that make use of dynamic memory allocation, e.g.,
for dynamically sized arrays or data structures such as lists or graphs. As an
example, the following fragment allocates a variable number of integers using
malloc, writes one value into the last array element, and then deallocates the
array:



A Tool for Checking ANSI-C Programs 171

void f(unsigned int n) {
int *p;

p=malloc(sizeof(int)*n);

p[n-1]=0;

free(p);
}

While the integer n is still bounded, its maximum value requires to reserve
far too many literals in order to build a CNF for the fragment above. Thus, dy-
namically allocated arrays are not translated into CNF by allocating literals for
each potential array element. Instead, arrays with variable size are implemented
by means of uninterpreted functions.

3 A Graphical User Interface

The command line version of the tool cannot be used easily by its intended
users, i.e., system designers, software engineers and programmers. Such users
are not likely to have a deep knowledge of formal verification tools. Therefore,
to increase the usability of our tool, we have designed a user interface meant to
be more familiar.

The tool has two main possible applications: the verification of properties of
C programs and checking consistency of Verilog designs against a C implemen-
tation. The former is mostly addressed to software engineers and programmers,
and the latter is mostly meant for hardware designers.

In order to make the tool appealing to software designers and programmers,
we organized the interface in a way similar to an IDE (Integrated Development
Environment). The main window allows accessing source files. Source files can
be organized into projects, for which a set of options is maintained. The options
allow the user to configure the parameters that are passed to CBMC on the
command line. If CBMC generates an error trace, the “Watches” window, which
contains the current values of the program variables, is opened. At the beginning,
this window will show the initial values of the variables. Then, it is possible
to step forward in the trace: the line that is “executed” is highlighted as the
user steps through the trace, and the values of the variables in the Watches
window are updated. This is done similarly to the way a programmer steps
through a program execution during debugging. The main difference is that
the trace corresponds to an erroneous execution, while during debugging this is
not necessarily the case. Moreover, we allow stepping through a trace not only
forward, in the way a debugger usually does, but also backward, giving the user
the ability to determine more easily the causes of the error.

When trying to verify the consistency of a Verilog design and a C program, it
is still possible to step through the trace generated for the C program as before,
but this is not true for the Verilog design. Moreover, hardware designer are used
to tools like simulators, which display waveform diagrams. In order to make our
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tool more suitable to hardware designers, the interface displays the traces that
have been generated for a Verilog design using a waveform diagram. Therefore,
while stepping through the C program, it is possible to analyze the waveform
corresponding to the signals in the Verilog design.

4 Conclusion and Future Work

We described a tool that formally verifies ANSI-C programs using Bounded
Model Checking (BMC). The tool supports all ANSI-C operators and pointer
constructs allowed by the ANSI-C standard, including dynamic memory alloca-
tion, pointer arithmetic, and pointer type casts. The user interface is meant to
appeal to system designers, software engineers, programmers and hardware de-
signers, offering an interface that resembles the interface of tools that the users
are familiar with.

When a counterexample is generated, the line number reported by CBMC is
usually not pointing to the line that contains the actual bug. A version of CBMC
modified by Alex Groce addresses the problem of error localization [6]: the tool
displays which statements or input values are important for the fact that the
property is violated.
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Appendix

A Availability

The tool is available at:

http://www.cs.cmu.edu/˜modelcheck/cbmc/

The web-page provides binaries for Linux, Windows, and Solaris that are ready
to install. It also offers a detailed manual with an introductory tutorial.
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B ANSI-C Language Features

The tables 1 and 2 summarize the supported ANSI-C language features and
the properties that are checked automatically. A more detailed description with
examples is available in the manual.

Table 1. Supported language features and implicit properties

Supported Language Features Properties checked

Basic Data Types

All scalar data types
float and double using fixed-
point arithmetic. The bit-width
can be adjusted using a com-
mand line option.

Integer Operators

All integer operators, including
division and bit-wise operators
Only the basic floating-point
operators

Division by zero
Overflow for signed data types

Type casts
All type casts, including con-
version between integer and
floating-point types

Overflow for signed data types

Side effects CBMC allows all compound oper-
ators

Side effects are checked not to
affect variables that are evalu-
ated elsewhere, and thus, that
the ordering of evaluation does
not affect the result.

Function calls

Supported by inlining. The lo-
cality of parameters and non-
static local variables is pre-
served.

1. Unwinding bound for recur-
sive functions

2. Functions with a non-void
return type must return a
value by means of the re-
turn statement.

Control flow
statements

goto, return, break, continue,
switch (”fall-through” is not
supported)

Non-Determinism
User-input is modeled by
means of non-deterministic
choice functions

Assumptions and
Assertions

Only standard ANSI-C expres-
sions are allowed as assertions.

Assertions are verified to be
true for all possible non-
deterministic choices given that
any assumption executed prior
to the assertion is true.

Arrays
Multi-dimensional arrays and
dynamically-sized arrays are
supported

Lower and upper bound of ar-
rays, even for arrays with dy-
namic size
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Fig. 1. The tool is able to automatically check the bound selected by the user for the
unwinding of loops. If the given bound is not sufficient, the tool suggests to provide a
larger bound.

Fig. 2. The Watches windows allows keeping track of the current values of the program
variables. In this case, the assertion failed because the variable LOCK has value 0.
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Fig. 3. The Signals window shows the values of the variables in a Verilog design using
a waveform representation.

Fig. 4. The Project Options dialog allows setting up the parameters.
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Table 2. Supported language features and implicit properties

Supported Language Features Properties checked

Structures

Arbitrary, nested structure
types; may be recursive by
means of pointers; incom-
plete arrays as last element of
structure are allowed

Unions
Support for named unions,
anonymous union members are
currently not supported

CBMC checks that unions are not
used for type conversion, i.e.,
that the member used for read-
ing is the same as used for writ-
ing last time.

Pointers Dereferencing

When a pointer is dereferenced,
CBMC checks that the object
pointed to is still alive and of
matching type. If the object is
an array, the array bounds are
checked.

Pointer arithmetic

Relational operators on pointers
CBMC checks that the two
operands point to the same
object.

Pointer Type Casts
Upon dereferencing, the type of
the object and the expression
are checked to match

Pointers to Functions The offset within the object is
checked to be zero

Dynamic Memory

malloc and free are supported.
The argument of malloc may
be a nondeterministically cho-
sen, arbitrarily large value.

Upon dereferencing, the object
pointed to must still be alive.
The pointer passed to free is
checked to point to an object
that is still alive. CBMC can check
that all dynamically allocated
memory is deallocated before
exiting the program (”memory
leaks”).
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