IEEE Software, June/August, 2009.

Worst Practices for Domain-Specific Modeling

Steven Kelly and Risto Pohjonen, MetaCase

JUNBEOM YOO

Dependable Software Laboratory
KONKUK University

http://dslab.konkuk.ac.kr

2010.08.06

3
5

-F NMAAalinA)
11 vioae Iy

C NA " Cnn
Ivio \LVUIITId ain o

« Software productivity increased by a factor of 5-10 with the introduction
of DSM.

e There are a few good guides to creating a DSM language, but not
sufficient.

» This paper outlines the common pitfalls, focusing on language creation
and use.

+h

I\ AA n\l
V CLIIVUU U

Verview

76 DSM cases

Spanning 15 years

100 language creators

Projects having 3 ~ 300 modelers

Domains: automotive, avionics, mobile, medical, consumer electronics, enterprise systems,
system integration, and server configuration

Languages: assembler, Basic, C, C++, C#, Java, JavaScript, shell scripts, Python, Prolog,
Matlab, SQL, and various XML schemas

Presentation order

— Initial conditions

— The source for language concepts
— The resulting language

— Language notation

— Language use

11Lidl \COUOITIUTLUIUL TS

d

« Even before language creation begins, wrong attitudes and decisions can
have a serious effect on later success.
— Only Gurus Allowed
— Lack of Domain Understanding
— Analysis Paralysis

\AIJ

nlf'\l\l 1Li1vi 1~ AIIA AA
Uy uluos AIHVUVVCEU

)

Believing that only gurus can build languages (4 percent) or that “I'm smart
and don't need help” (12 percent)

e Such a background is important, but they require in-depth
understanding and experience with the problem domain. So, appropriate
domain expertise is more important than knowledge of language theory.

Konkuk University

| |,

LACLKN 1 U

U

7\ o~ A
Oomadain un Ul

erstan |g

O

Insufficiently understanding the problem domain (17 percent) or the solution
domain (5 percent)

* Occasionally companies make the mistake of delegating the task to a
summer intern, or seasoned developers take it on and fail to lift their
noses above the level of the code.

» Although creating a DSM language should focus on the problem domain,
inexperience in the solution domain can cause problems later.

« The best DSM language creator is an experienced developer who focuses
only on the problem domain, but lets his solution domain experience
inform his choices among otherwise equally viable solutions.

Konkuk University 6

——
-
™

<

EJ
A
N
Q)
Q)
A
N

Wanting the language to be theoretically complete, with its implementation
assured (8 percent)

« DSM isn't about achieving perfection, just something that works in
practice.

« To avoid analysis paralysis, concentrate on the core cases and build a
prototype language for them.

Konkuk University

If'\/\ Ct‘\
11T OV

'Ff\lf' I "\ 7~ 1 I ﬂf\ F
10U1 11 y VU

I\If'\'l't"
C[JLD

rce

* The first step in building a DSM language is identifying its concepts.

* The problem domain is the ideal source; relying too much on secondary
sources is a recipe for trouble.
— UML: New Wine in Old Wineskins
— 3GL: Visual Programming
— Code: The Library Is the Language
— Tool: If You have a Hammer ...

1IN/ Nlaw, \AM/ina

UIVIL. INCVV VVII] T \JIiu

vvViNnesKin

Extending a large, general-purpose modeling language (5 percent)

« It's obviously good to reuse the basic ideas and concepts of established
« languages, such as states, data flow, control flow, and inheritance.

« Stripping off parts of the original language and adding new concepts
and semantics is often more work than simply starting from scratch.

Konkuk University

2292 aN!

ogramming

I \/iciial Dr
vioudl Il

G\

P,
®)

Duplicating the concepts and semantics of traditional programming
languages (7 percent)

« Although incorporating programming language concepts such as choices
or loops in DSM languages can be useful, you shouldn't let them
become the core concepts at the expense of those in the problem
domain.

» The peril in this case is to end up with generic visual programming
instead of DSM, leading to a language with a poor level of abstraction.

Konkuk University 10

~ Th
U I

P Ihrary, +hpn |
11T LIVI

y Is the Lai"lg'uayc

Solution domain

A ol
“OUUC.

Problem domain

Focusing the language on the current
code’s technical details (32 percent)

TabForm
cmd
filter

inc.object.filter

If the language overemphasizes
the target framework or
component library, it can drag the
abstraction level down toward the
code level, preventing retargeting
to other platforms.

[
inc.object. table

[[
/page/objekiires
p-select-provider
.ajax.xml

— s
ftest01 jspx

This was the most common worst
practice in our sample.

magefobjekﬂa}
-objects-page js
px

« A framework often represents the
solution domain’s best existing

abstraction, not the problem

d oma | N Figure 1. Focusing on framework code. Overemphasizing the target
framework or component library can result in low-level details and
unnecessary duplication.

Konkuk University 11

\7

l- T¥ VA1 LlAavia A
1. 11 idavc d

Ll
1V Il

Tool:

Letting the tools technical
limitations dictate language
development (14 percent)

« Ensuring good tool support for a
language is an important aspect
of its development.

« But focusing on tool issues or
getting trapped into seeing the
world through the tool’s
limitations is a mistake.

Konkuk University

22 8e)

aimn

e

il [E Hotel TV Info System N\

T Dear Mrs/Ms/Mr N.N_,
T Welcome to our hotel. We hope you enjoy your stay with us...

Y
([FFeedback | [5 Movies)
~ Restaurant Prices i Stﬂ?r;ngN;;vO:ope
[Inexpensive i
[] Average
[] Expensive T Notting Hill
[0 My company pays T Romantic comedy
_.

T Animal House
 Staff T Comedy
[Excellent

[l Goed
[] Average T The Good, The Bad and The Ugly

[Bad T Westem

:)

Er -

T Drear Mrs/Ms/Mr LN,
T Welcome to our hotel, We hope you enjoy your stay with

+ Restaurant Prices
[Inexpensive
] Average

EHotel TV Irfo Systern | EFeedback| __—| E E:me e

.

6

T Star Wars: A New Hope
T Science Fiction

T Motting Hill
T Romantic comedy
T Animal House
T Comedy

T The Good, The Bad and The Ugly
T Westem

(b)

Figure 2. Tool choice and outcomes. (a) A tool focused on strong
containment leads to an odd, labor-intensive model structure.
(b) Replacing the visual containment with relationships makes
the menu structure clearer.

Tha DRAa
| NE RE

"\ 7~ 1 I

|g Nguage

« Building a language is a balancing act between a number of forces, both
technical and psychological.
— Too Generic / Too Specific
— Misplaced Emphasis
— Sacred at Birth

100 C/ 100 p

jener

)

Creating a language with a few
generic concepts (21 percent) or too
many specitic concepts (8 percent),
or a language that can create only a
few models (7 percent)

« Finding the proper generic-
specific balance is a key success
factor in DSM development -
and is thus a rather common
place to make mistakes.

* The other extreme is a language
with too many concepts, which
are probably too narrow
semantically or overlap.

55
O

Person leaves - Person leaves
turn lights off e turn heating off

turn heating off

person| enters
turn lights on

turn he]tlng on

energy save ode selected
dim ljghts
lower temperafure 2 degrees

energy saving night mode selected
mode turn lights off
increase temperature 2 degrees

normal room | night mode selected)
mode turn Nights off night mode

Figure 3. Insufficient concepts. This language has too few concepts,

and they're too generic for this domain. Adding explicit concepts for
“lights” and “heating” would improve the language considerably.

Konkuk University

14

v\

A I: Ir'\lf'\"\f‘lt"
ed cin IiMidolo

NMicnl
IV |J

Joo strongly emphasizing a particular domain feature (12 percent)

* Language developers can stretch this good practice (domain concepts)
too far by focusing on a particular feature or concept at the expense of

others.

« Similarly, some developers might be tempted to put every domain
element into the language, forgetting the importance of deciding what
not to incorporate.

Konkuk University

15

SAdllICTU dl DIl Ul

Viewing the initial language version as unalterable (12 percent)

« People often view language creation as a waterfall process, neglecting its
iterative nature and the need for prototyping.

« Language creators often invest too much effort into a development step
without testing the language in real life, which makes it difficult to step
back if needed.

« Language evolution is inevitable.

Konkuk University 16

I "\ 7~ 1 I I\

N g Notati

IoN

* A poorly chosen concrete syntax will drive users away, stopping them
from using even the most wonderful language.
— Predetermined Paradigm
— Simplistic Symbols

v\

glll

v'v\

reageterminead ra

Choosing the wrong representational paradigm on the basis of a blinkered
view (7 percent)

« Choosing either representation purely on the basis of prejudice is bad, as
is ignoring other possibilities such as matrices, tables, forms, or trees.

» The correct representational paradigm depends on the audience, the
data’s structure, and how users will work with the data.

« Metakdit+ supports the widest variety of representational paradigms.

Konkuk University 18

v\

|||p

\lmlf'\
M

SYM |S

OIS

C
® L

Using symbols that are too simple

or similar (25 percent) or downright c

ugly (5 percent) ?
incoming
Location Log Mail

e One of the most common failure sijones@phone sxampe ¢ isdcats . Slones@ematoxamplec
areas is in the language’s T ”
notation—its symbols or icons. pmyl I cress

Timeout:8 noanswer - on
.- 4 /"E:

« Alan Blackwell has shown that the s e
best symbols are pictograms, not Call rediecied o totoroarors
simpler geometric shapes or more e
complex bitmap or photographic .
representations. =mre

. . . Figure 4. Inadequate symbol differentiation. Symbols differing in only
° Fin d someone W|th d ecent g ra p h IC color and label are insufficient. Research shows that the best symbols

d esig N skills to im prove your are pictograms rather than simple geometric shapes or photorealistic
bitmaps.
symbols.

Konkuk University 19

a.g'

g€

« All too often, language creators forget that languages are made to be
used and to serve their users.
— Ignoring the Use Process
— No Training
— Post-adoption Stagnation

gy uic uUot

T”Iﬂf\lﬁ nlﬁf\ﬁf\(‘f‘
1TVl rITULCOS

Failing to consider the language’s
real-life usage (42 percent)

e Five areas of concern » I . » I
— Multiple people / reuse ; ‘w . g-}
— Semiautomatic model transformation - l " e J‘, -
— Strongly enforced rules ==]
— Involving processes for supporting 3 - E) o
source-code-based development g L) | e
— debugging w E__m%m;«dm R S
e 7
e e
< :';"‘“_ﬂ) < ﬂ"“ﬂ)

Figure 5. Poor planning for reuse of models. The modeler in this case had to copy the entire diagram to account for a
minor variation: the small time-out object on the left.

Konkuk University 21

NI

INU 1]

allliﬂg

Assuming everyone understands the language like its creator (21 percent)

« As with any project, it's worthwhile to involve users early, both to get
practical feedback and to achieve smooth acceptance.

Konkuk University

22

5

D
>

-

Sldyliduiv

ost- p

Letting the language stagnate after successtul adoption (37 percent)

« The greater the number of models and modelers, the harder changing
the language is.

» Fortunately, our experience indicates that the problem domain changes
that affect a deployed language tend to be additive—that is, they involve
new concepts or concept extensions that both modelers and tools adopt
with relative ease.

« To avoid language stagnation, you should make such changes promptly
rather than postpone them.

Konkuk University 23

e 76 cases

« The single largest factor that led to a language not being used was when
organizations gave the language design task to someone with
insufficient experience in the problem domain (26 percent).

D
>

e
|

S

Vv

[’ Y

||ai’y ANa

Multiple factors are as following:

Basing the language on code led developers to try to take everything into consideration
(33 percent).

Desire for theoretical completeness was often accompanied by ascetic symbols (28
percent).

Using code as a basis also led to stagnation (37percent).

If the language developer didn't accept help initially, the language was likely to become
sacred (24 percent).

Sacred languages were likely to stagnate (31 percent).

However, sacred languages were also more likely to be used in practice (35 percent) -
perhaps because their developers loved them and pushed for their use.

Using a poor tool required extra effort, so developers were less willing to change their
languages and those languages thus became sacred (31 percent).

Poor tools also led to languages whose abstraction level was no higher than
programming languages (34 percent).

Poor facilities for defining symbols led to ugly notation (41 percent).

A lack of attention to symbols correlated with insufficient training (47 percent), showing a
consistent disregard for users.

