
IEEE Software, June/August, 2009.

Worst Practices for Domain-Specific Modeling
Steven Kelly and Risto Pohjonen, MetaCase

JUNBEOM YOOJUNBEOM YOO

Dependable Software Laboratory
KONKUK University

http://dslab.konkuk.ac.kr

2010.08.06



DMS (Domain Specific Modeling)DMS (Domain Specific Modeling)

S f d i i i d b f f 5 10 i h h i d i• Software productivity increased by a factor of 5-10 with the introduction 
of DSM.

• There are a few good guides to creating a DSM language, but not 
sufficient.

• This paper outlines the common pitfalls, focusing on language creation 
and useand use.

Konkuk University 2



Method OverviewMethod Overview

76 DSM• 76 DSM cases
• Spanning 15 years
• 100 language creatorsg g
• Projects having 3 ~ 300 modelers
• Domains: automotive, avionics, mobile, medical, consumer electronics, enterprise systems, 

system integration, and server configurationy g , g

• Languages: assembler, Basic, C, C++, C#, Java, JavaScript, shell scripts, Python, Prolog, 
Matlab, SQL, and various XML schemas

• Presentation order
– Initial conditions
– The source for language conceptsg g p
– The resulting language
– Language notation
– Language use

Konkuk University 3



Initial ConditionsInitial Conditions

E b f l i b i i d d d i i• Even before language creation begins, wrong attitudes and decisions can 
have a serious effect on later success.

– Only Gurus Allowed
L k f D i U d t di– Lack of Domain Understanding

– Analysis Paralysis

Konkuk University 4



Only Gurus AllowedOnly Gurus Allowed

B li i th t l b ild l (4 t) th t “I’ tBelieving that only gurus can build languages (4 percent) or that “I’m smart 
and don’t need help” (12 percent)

• Such a background is important, but they require in-depth 
understanding and experience with the problem domain. So, appropriate 
domain expertise is more important than knowledge of language theory.

Konkuk University 5



Lack of Domain UnderstandingLack of Domain Understanding

I ffi i tl d t di th bl d i (17 t) th l tiInsufficiently understanding the problem domain (17 percent) or the solution 
domain (5 percent)

• Occasionally companies make the mistake of delegating the task to a 
summer intern, or seasoned developers take it on and fail to lift their 
noses above the level of the code.

• Although creating a DSM language should focus on the problem domain, 
inexperience in the solution domain can cause problems later.

• The best DSM language creator is an experienced developer who focuses 
only on the problem domain, but lets his solution domain experienceonly on the problem domain, but lets his solution domain experience 
inform his choices among otherwise equally viable solutions.

Konkuk University 6



Analysis ParalysisAnalysis Paralysis

W ti th l t b th ti ll l t ith it i l t tiWanting the language to be theoretically complete, with its implementation 
assured (8 percent)

• DSM isn’t about achieving perfection, just something that works in 
practice.

• To avoid analysis paralysis, concentrate on the core cases and build a 
prototype language for them.

Konkuk University 7



The Source for Language ConceptsThe Source for Language Concepts

Th fi i b ildi DSM l i id if i i• The first step in building a DSM language is identifying its concepts. 
• The problem domain is the ideal source; relying too much on secondary 

sources is a recipe for trouble.
– UML: New Wine in Old Wineskins
– 3GL: Visual Programming
– Code: The Library Is the Language

Tool: If You have a Hammer– Tool: If You have a Hammer …

Konkuk University 8



UML: New Wine in Old WineskinsUML: New Wine in Old Wineskins

E t di l l d li l (5 t)Extending a large, general-purpose modeling language (5 percent)

• It’s obviously good to reuse the basic ideas and concepts of established
• languages, such as states, data flow, control flow, and inheritance.

• Stripping off parts of the original language and adding new concepts• Stripping off parts of the original language and adding new concepts 
and semantics is often more work than simply starting from scratch.

Konkuk University 9



3GL: Visual Programming3GL: Visual Programming

D li ti th t d ti f t diti l iDuplicating the concepts and semantics of traditional programming 
languages (7 percent)

• Although incorporating programming language concepts such as choices 
or loops in DSM languages can be useful, you shouldn’t let them 
become the core concepts at the expense of those in the problem 
d idomain. 

• The peril in this case is to end up with generic visual programming 
instead of DSM, leading to a language with a poor level of abstraction.

Konkuk University 10



Code: The Library Is the LanguageCode: The Library Is the Language

Foc sing the lang age on the c ent

Solution domain

Focusing the language on the current 
code’s technical details (32 percent)

• If the language overemphasizes

Problem domain

If the language overemphasizes 
the target framework or 
component library, it can drag the 
abstraction level down toward the 
code le el pre enting retargetingcode level, preventing retargeting 
to other platforms.

• This was the most common worst• This was the most common worst 
practice in our sample.

• A framework often represents theA framework often represents the 
solution domain’s best existing 
abstraction, not the problem 
domain

Konkuk University 11



Tool: If You Have a HammerTool: If You Have a Hammer …

L tti th t l’ t h i lLetting the tool’s technical 
limitations dictate language 
development (14 percent)

• Ensuring good tool support for a 
language is an important aspect 
of its developmentof its development. 

• But focusing on tool issues or 
getting trapped into seeing the 

ld th h th t l’world through the tool’s 
limitations is a mistake.

Konkuk University 12



The Resulting LanguageThe Resulting Language

B ildi l i b l i b b f f b h• Building a language is a balancing act between a number of forces, both 
technical and psychological.

– Too Generic / Too Specific
Mi l d E h i– Misplaced Emphasis

– Sacred at Birth

Konkuk University 13



Too Generic / Too SpecificToo Generic / Too Specific

C ti l ith fCreating a language with a few 
generic concepts (21 percent) or too 
many specific concepts (8 percent), 
or a language that can create only aor a language that can create only a 
few models (7 percent)

• Finding the proper generic-Finding the proper generic
specific balance is a key success 
factor in DSM development -
and is thus a rather common 
l t k i t kplace to make mistakes.

• The other extreme is a language 
ith t t hi hwith too many concepts, which 

are probably too narrow 
semantically or overlap.

Konkuk University 14



Misplaced EmphasisMisplaced Emphasis

T t l h i i ti l d i f t (12 t)Too strongly emphasizing a particular domain feature (12 percent)

• Language developers can stretch this good practice (domain concepts) 
too far by focusing on a particular feature or concept at the expense of 
others.

• Similarly, some developers might be tempted to put every domain 
element into the language, forgetting the importance of deciding what 
not to incorporate.p

Konkuk University 15



Sacred at BirthSacred at Birth

Vi i th i iti l l i lt bl (12 t)Viewing the initial language version as unalterable (12 percent)

• People often view language creation as a waterfall process, neglecting its 
iterative nature and the need for prototyping.

• Language creators often invest too much effort into a development stepLanguage creators often invest too much effort into a development step 
without testing the language in real life, which makes it difficult to step 
back if needed.

• Language evolution is inevitable.

Konkuk University 16



Language NotationLanguage Notation

A l h ill d i i h• A poorly chosen concrete syntax will drive users away, stopping them 
from using even the most wonderful language.

– Predetermined Paradigm
Si li ti S b l– Simplistic Symbols

Konkuk University 17



Predetermined ParadigmPredetermined Paradigm

Ch i th t ti l di th b i f bli k dChoosing the wrong representational paradigm on the basis of a blinkered 
view (7 percent)

• Choosing either representation purely on the basis of prejudice is bad, as 
is ignoring other possibilities such as matrices, tables, forms, or trees. 

• The correct representational paradigm depends on the audience, the 
data’s structure, and how users will work with the data.

• MetaEdit+ supports the widest variety of representational paradigms.

Konkuk University 18



Simplistic SymbolsSimplistic Symbols

U i b l th t t i lUsing symbols that are too simple 
or similar (25 percent) or downright 
ugly (5 percent)

• One of the most common failure 
areas is in the language’s 
notation—its symbols or icons.

• Alan Blackwell has shown that the 
best symbols are pictograms, not 
i l t i hsimpler geometric shapes or more 

complex bitmap or photographic 
representations.

• Find someone with decent graphic 
design skills to improve your 
symbols. 

Konkuk University 19



Language UseLanguage Use

All f l f h l d b• All too often, language creators forget that languages are made to be 
used and to serve their users.

– Ignoring the Use Process
N T i i– No Training

– Post-adoption Stagnation

Konkuk University 20



Ignoring the Use ProcessIgnoring the Use Process

F ili id h l ’Failing to consider the language’s 
real-life usage (42 percent)

• Five areas of concern
– Multiple people / reuse
– Semiautomatic model transformation
– Strongly enforced rules
– Involving processes for supporting 

source-code-based development
– debuggingdebugging

Konkuk University 21



No TrainingNo Training

A i d d h l lik i (21 )Assuming everyone understands the language like its creator (21 percent)

• As with any project, it’s worthwhile to involve users early, both to get y p j y g
practical feedback and to achieve smooth acceptance.

Konkuk University 22



Post adoption StagnationPost-adoption Stagnation

L i h l f f l d i (37 )Letting the language stagnate after successful adoption (37 percent)

• The greater the number of models and modelers, the harder changing g g g
the language is.

• Fortunately our experience indicates that the problem domain changesFortunately, our experience indicates that the problem domain changes 
that affect a deployed language tend to be additive—that is, they involve 
new concepts or concept extensions that both modelers and tools adopt 
with relative ease.t e at e ease.

• To avoid language stagnation, you should make such changes promptly 
rather than postpone themrather than postpone them.

Konkuk University 23



Preliminary Analysis (1/2)Preliminary Analysis (1/2)

76• 76 cases

• The single largest factor that led to a language not being used was when g g g g g
organizations gave the language design task to someone with 
insufficient experience in the problem domain (26 percent).

Konkuk University 24



Preliminary Analysis (2/2)Preliminary Analysis (2/2)

M lti l f t f ll i• Multiple factors are as following:
– Basing the language on code led developers to try to take everything into consideration 

(33 percent).
– Desire for theoretical completeness was often accompanied by ascetic symbols (28 

percent).
– Using code as a basis also led to stagnation (37percent).

– If the language developer didn’t accept help initially, the language was likely to become g g p p p y, g g y
sacred (24 percent). 

– Sacred languages were likely to stagnate (31 percent).
– However, sacred languages were also more likely to be used in practice (35 percent) -

perhaps because their developers loved them and pushed for their use.p p p p

– Using a poor tool required extra effort, so developers were less willing to change their 
languages and those languages thus became sacred (31 percent).

– Poor tools also led to languages whose abstraction level was no higher thanPoor tools also led to languages whose abstraction level was no higher than 
programming languages (34 percent). 

– Poor facilities for defining symbols led to ugly notation (41 percent). 
– A lack of attention to symbols correlated with insufficient training (47 percent), showing a 

consistent disregard for users.consistent disregard for users.

Konkuk University 25


