
STTT, 1998.

The Code Validation Tool (CVT) –The Code Validation Tool (CVT)
Automatic Verification of Code Generated from

Synchronous Languages
A. Pnueli,
O. Shtrichman,
M. Siegel The Weizman Institute of Science

JUNBEOM YOO

Dependable Software Laboratory
KONKUK University

g

http://dslab.konkuk.ac.kr

2010.11.23

AbstractAbstract

W d ib CVT f ll i l f C d V lid i i if iWe describe CVT - a fully automatic tool for Code-Validation, i.e. verifying
that the target code produced by a code-generator (equivalently, a compiler
or a translator) is a correct implementation of the source specification. This

h i i bl lt ti t f ll f l ifi ti f th dapproach is a viable alternative to a full formal verification of the code-
generator program, and has the advantage of not ’freezing’ the code
generator design after verification.

The CVT tool has been developed in the context of the ESPRIT project
SACRES, and validates the translation from StateMate/Sildex mixed

ifi i i C Th f l h i b d i dspecification into C. The use of novel techniques based on uninterpreted
functions and their analysis over a BDD-represented small model enables us
to validate source specifications of several thousands lines, which represents

t i l i d t i l i f t iti l li tia typical industrial size safety-critical application.

Konkuk University 2

ContentsContents

1 I d i1. Introduction
2. Code Validation in the Context of the SACRES Project
3. The Verification Condition
4. The CVT - Architecture
5. A Case Study

Konkuk University 3

1 Introduction1. Introduction

Th i i i i d i l f h f h h• There is an increasing industrial awareness of the fact that the
application of formal specification languages and their corresponding
verification/validation techniques may significantly reduce the risk of
d i i th d l t f h tdesign errors in the development of such systems.

• However, if the validation efforts are focused on the specification level,
the question arises how can we ensure that the quality and integrity
achieved at the specification level is safely transferred to the
implementation level.

– Today’s process of the development of such systems consists of hand-coding
followed by extensive unit and integration-testing.

Konkuk University 4

1 Introduction1. Introduction

Th hi hl d i bl l i i ll d f• The highly desirable alternative : automatically generate code from
verified/validated specifications, has failed in the past due to the lack of
technology which could convincingly demonstrate to certification

th iti th t f th t d dauthorities the correctness of the generated code.
– Although there are many examples of compiler verification, the formal

verification of industrial code-generators is generally prohibitive due to their
sizesize.

– Another problem with compiler verification is that the formal verification
freezes their designs, as each change to the code generators nullifies their
previous correctness proof.p p

Konkuk University 5

1 Introduction1. Introduction

Al l d lid i f ll i l• Alternately, code-validation suggests to construct a fully automatic tool
which establishes the correctness of the generated code individually for
each run of the code generator.

• The combination of automatic code generation and validation improves
the design flow of embedded systems in both safety and productivity by
eliminating the need for hand-coding of the target code (and
consequently coding-errors are less probable) and by considerably
reducing unit/integration test efforts.

• The work carried out in the SACRES project proves the feasibility of
code-validation for the industrial code generators used in the project, g p j
and demonstrates that industrial-size programs can be verified fully
automatically in a reasonable amount of time.

Konkuk University 6

2. Code Validation in the Context of the
SACRES Project

Th C d V lid i T l (CVT) i d l d f h ESPRIT• The Code Validation Tool (CVT) is developed as part of the ESPRIT-
supported project SACRES (which stands for Safety Critical Real-time
Embedded Systems)[7].

• The emphasis on formal development of systems, providing
– formal specification,
– model checking technology and
– validated code-generation.

Konkuk University 7

2. Code Validation in the Context of the
SACRES Project

Af h d i i ifi d h i k h d• After the design is verified, the user invokes the code generator
(produced by the SACRES partner TNI) to automatically generate
executable code (C or ADA).

• This is where the code validation tool is invoked: The validation of the
generated code via CVT establishes that the code generator worked as
expected and thus the properties which were verified at the specification
l l d t th i l t ti l llevel are preserved at the implementation level.

CVT

StatemateStatemate,
Silex DC+

Proof
Manager

Timing
Diagram

Code
Generator

C / ADA

Konkuk University 8

Diagram
- Model Checking
- Theorem Proving

2. Code Validation in the Context of the
SACRES Project

Konkuk University 9

3 The Verification Condition3. The Verification Condition

Thi i i b i f d i i f h f h ifi i• This section is a brief description of the structure of the verification
condition, which, if proven correct, guarantees the correctness of the
translation.

• DC+ program : abstract system
• C program : concrete systemp g y

– VA , VC : variables
– θA , θC : initial conditions
– ρA , ρC : transition relationsρA , ρC : transition relations

• We use two premises (verification conditions)• We use two premises (verification conditions)
– R1 : the base case
– R2 : the induction step

Konkuk University 10

3 The Verification Condition3. The Verification Condition

A i b i i• Appropriate substitution α
– The base case requires that θC implies θA, after performing an appropriate

substitution α of each (observable) variable v ∈ VA by an expression ε over VC.
S h b tit ti i d (b t ti) i b t th t t f– Such a substitution induces an (abstraction) mapping between the states of
the two systems.

Th i d ti t i th t i li i ft• The induction step requires that ρC implies ρA, once again, after an
appropriate substitution α.

• Taken all together, the refinement rule has the following structure:

Konkuk University 11

3 The Verification Condition3. The Verification Condition

Th V ifi i C di i G hi h i h fi d l i k d i• The Verification Condition Generator, which is the first module invoked in
CVT, generates these implications from the C and DC+ source codes.

• ρA and ρC are both large conjunctions of atomic sub-formulas, where
typically each sub-formula corresponds to an assignment line in the code
or a constraint imposed by the abstraction.

– These sub-formulas reflect the semantics of the source languages and the
mapping between their variables.

Konkuk University 12

4 The CVT Architecture4. The CVT - Architecture

Th d lid i k ff f ll i i hi h• The code-validation package offers a fully automatic routine which
establishes the correctness of the generated code individually for each
run of the code generator.

Konkuk University 13

4.1 The Verification Condition Generator
Module

CVT i i h DC d C d Th h• CVT receives as input the DC+ and C source codes. These are the source
and target code for the code generator.

• Two separate sub-modules generate the verification conditions (which
are actually a large logical implication) by means of various translations
and transformations.

• The validity of this logical implication implies the correctness of the
generated code w.r.t. the source code while its invalidity indicates a ge e ated code . .t. t e sou ce code e ts a d ty d cates a
potential mistake in the code generation process.

• Since at the end of this process we use TLV [6] as a decision procedure• Since at the end of this process we use TLV [6] as a decision procedure,
the verification condition is generated in the appropriate format.

Konkuk University 14

4 2 The Auto Decomposition Module4.2 The Auto-Decomposition Module

W i d i h dli i d i l i d h f• We are interested in handling industrial-size programs, and therefore
decomposition is essential.

• As will be demonstrated in section 5, the auto-decomposition is one of
the key enabling steps for scalability.

– Chunk size
– Back calculation

Konkuk University 15

4.3 The Abstract Module and the Range-
Minimizer Module

Af d i h fil CVT i k h Ab i d l• After decomposing the files, CVT invokes the Abstraction module.

• Abstraction is needed since we are trying to verify a model which y g y
contains integer and float variables, as well as functions over these
variables using a BDD-Based decision procedure for finite-state models.

• The abstraction module treats these functions as uninterpreted functions,
replacing them by new symbols.

• The faithfulness of this technique depends on the way that the compiler
manipulates these functions and the kind of functions we leave
interpretedinterpreted.

– The more we interpret, the more faithful the model is.
– The less we interpret, the smaller the model is.

Konkuk University 16

4 4 The Verifier Module (TLV)4.4 The Verifier Module (TLV)

Th lidi f h ifi i di i i h k d i TLV [6]• The validity of the verification conditions is checked in TLV [6],
– An SMV-based tool which provides the capability of BDD-programming
– Has been developed mainly for finite-state deductive proofs
– and thus convenient in our case for expressing the refinement rule.

• CVT invokes TLV for each pair of files generated by the Auto-
Composition module.

– A proof log is generated as part of this process, indicating which files were
proved, at what level of abstraction and when.

Konkuk University 17

5 A Case Study5. A Case Study

• As can be seen, about 6.1% of the conjuncts in our case could not be
verified in reasonable time using the current implementation of CVT.

• We hope that after installing the Range-Minimizer this problem will be
solved.

Konkuk University 18

