
TACAS, 2004.

A Tool for Checking ANSI-C Programs
Edmund Clarke,

JUNBEOM YOO

Daniel Kroening,
Flavio Lerda Carnegie Mellon University

JUNBEOM YOO

Dependable Software Laboratory
KONKUK University

http://dslab.konkuk.ac.kr

2010.11.17

AbstractAbstract

W l f h f l ifi i f ANSI C iWe present a tool for the formal verification of ANSI-C programs using
Bounded Model Checking (BMC). The emphasis is on usability: the tool
supports almost all ANSI-C language features, including pointer constructs,
d i ll ti i d th fl t d d bl d t tdynamic memory allocation, recursion, and the float and double data types.
From the perspective of the user, the verification is highly automated: the
only input required is the BMC bound. The tool is integrated into a
graphical user interface This is essential for presenting long counterexamplegraphical user interface. This is essential for presenting long counterexample
traces: the tool allows stepping through the trace in the same way a
debugger allows stepping through a program.

Konkuk University 2

ContentsContents

1 I d i1. Introduction
2. Bounded Model Checking for ANSI-C Programs
3. A Graphical User Interfacep
4. Conclusion and Future Work

ANSI C Language FeaturesANSI-C Language Features
CBMC

Konkuk University 3

1 Introduction1. Introduction

W l h B d d M d l Ch ki b• We present a tool that uses Bounded Model Checking to reason about
low-level ANSI-C programs.

• There are two applications of the tool:

1) the tool checks safety properties such as the correctness of pointer
constructs
2) the tool can compare an ANSI-C program with another design, such
as a circuit given in Verilog.

Konkuk University 4

1 Introduction1. Introduction

W d ib l (CBMC) h f ll ifi ANSI C• We describe a tool (CBMC) that formally verifies ANSI-C programs.
– Checked include pointer safety, array bounds, and user-provided assertions.
– Implements a technique called Bounded Model Checking (BMC) [1].
– + GUI

• In BMC, ,
– the transition relation for a complex state machine and its specification are

jointly unwound to obtain a Boolean formula that is satisfiable if there exists
an error trace.

– The formula is then checked by using a SAT procedure.
– If the formula is satisfiable, a counterexample is extracted from the output of

the SAT procedure.

• The tool (CBMC) checks that sufficient unwinding is done to ensure that
no longer counterexample can exist by means of unwinding assertions.

Konkuk University 5

1 Introduction1. Introduction

H d V ifi ti i ANSI C R f• Hardware Verification using ANSI-C as a Reference

• There are two implementations of the same design:
(1) O itt i ANSIC hi h i itt f i l ti(1) One written in ANSIC, which is written for simulation,
(2) One written in register transfer level HDL, which is the actual product.

The ANSI C implementation is usually thoroughly tested and debugged• The ANSI-C implementation is usually thoroughly tested and debugged.
After testing and debugging the program, the actual hardware design is
written using hardware description languages like Verilog. The Verilog
description is then synthesized into a circuit.desc pt o s t e sy t es ed to a c cu t.

• Due to market constraints,
• An automated or nearly automated way of establishing the consistencyAn automated, or nearly automated way of establishing the consistency

of the HDL implementation with respect to the ANSI-C model is highly
desirable.

Konkuk University 6

1 Introduction1. Introduction

Thi i h ifi i bl if h i• This motivates the verification problem: we want to verify the consistency
• of the HDL implementation, i.e., the product, using the ANSI-C

implementation as a reference [2].
– Establishing the consistency does not require a formal specification.
– However, formal methods to verify either the hardware or software design are

still desirable.

• The previous work focuses on a small subset of ANSI-C that is
particularly close to register transfer language.

– Thus, the designer is often required to rewrite the C program manually in
order to comply with these constraints.

• Our tool supports the full set of ANSI-C language features.

• In order to verify the consistency of the two implementations, we unwind
both the C program and the circuit in tandem. p g

Konkuk University 7

2. Bounded Model Checking for ANSI-C
Programs

W d h M d l Ch ki P bl d i i h lidi f• We reduce the Model Checking Problem to determining the validity of a
bit vector equation.

• The process has five steps:
1. We assume that the ANSI-C program is already preprocessed, e.g., all the

#define directives are expanded.
2. The loop constructs are unwound using assertions.
3. Backward goto statements are unwound in a manner similar to while loops.
4. Function calls are expanded.
5. The program is then transformed into static single assignment (SSA) form,

which requires a pointer analysis.

Konkuk University 8

2 1 Generating the Formula2.1 Generating the Formula

Th d b d bi i C (f h• The procedure above produces two bit-vector equations: C (for the
constraints) and P (for the property).

• In order to check the property, we convert C ∧￢P into CNF by adding
intermediate variables and pass it to a SAT solver such as Chaff [5].

– If the equation is satisfiable, we found a violation of the property.
– If it is unsatisfiable, the property holds.

Konkuk University 9

2 2 Converting the Formula to CNF2.2 Converting the Formula to CNF

Th i f i CNF i i h f d d• The conversion of most operators into CNF is straight-forward, and
resembles the generation of appropriate arithmetic circuits.

• The tool can also output the bit-vector equation before it is flattened
down to CNF, for the benefit of circuit level SAT solvers.

Konkuk University 10

3 A Graphical User Interface3. A Graphical User Interface

T i h bili f l h d i d i f• To increase the usability of our tool, we have designed a user interface
meant to be more familiar.

• The tool has two main possible applications:
– Verification of properties of C programs
– Checking consistency of Verilog designs against a C implementationg y g g g p

• When a counterexample is generated, the line number reported by
CBMC is usually not pointing to the line that contains the actual bug. C C s usua y ot po t g to t e e t at co ta s t e actua bug.

• A version of CBMC modified by Alex Groce addresses the problem of
error localization [6]: the tool displays which statements or input valueserror localization [6]: the tool displays which statements or input values
are important for the fact that the property is violated.

Konkuk University 11

4 Conclusion and Future Work4. Conclusion and Future Work

W d ib d l h f ll ifi ANSI C i• We described a tool that formally verifies ANSI-C programs using
Bounded Model Checking (BMC).

• The tool supports all ANSI-C operators and pointer constructs allowed by
the ANSI-C standard, including dynamic memory allocation, pointer
arithmetic, and pointer type casts.

• The user interface is meant to appeal to system designers, software
engineers, programmers and hardware designers, offering an interface e g ee s, p og a e s a d a d a e des g e s, o e g a te ace
that resembles the interface of tools that the users are familiar with.

Konkuk University 12

ANSI C Language FeaturesANSI-C Language Features

Konkuk University 13

CBMCCBMC

Konkuk University 14

CBMCCBMC

Konkuk University 15

CBMCCBMC

Konkuk University 16

CBMCCBMC

Konkuk University 17

