TACAS, 2004.

A Tool for Checking ANSI-C Programs

Edmund Clarke,
Daniel Kroening,
Flavio Lerda Carnegie Mellon University

JUNBEOM YOO

Dependable Software Laboratory
KONKUK University

http://dslab.konkuk.ac.kr

2010.11.17

ANMNctvra~+
ALDULIaAdll

We present a tool for the formal verification of ANSI-C programs using
Bounded Model Checking (BMC). The emphasis is on usability: the tool
supports almost all ANSI-C language features, including pointer constructs,
dynamic memory allocation, recursion, and the float and double data types.
From the perspective of the user, the verification is highly automated: the
only input required is the BMC bound. The tool is integrated into a
graphical user interface. This is essential for presenting long counterexample
traces: the tool allows stepping through the trace in the same way a
debugger allows stepping through a program.

N+
L

Ff\ If'\'l'
VUl L

ents

Introduction

Bounded Model Checking for ANSI-C Programs
A Graphical User Interface

Conclusion and Future Work

> wN e

ANSI-C Language Features
CBMC

[’}

R T ~F1 A
LI CLIVUII

1 T AII
L. 111 U

O

* We present a tool that uses Bounded Model Checking to reason about
low-level ANSI-C programs.

* There are two applications of the tool:

1) the tool checks safety properties such as the correctness of pointer
constructs

2) the tool can compare an ANSI-C program with another design, such
as a circuit given in Verilog.

g
L.

[’}

If'\'l'lf' 7\
LI Ul |

T AII
111 U

~ ~%
@) CLI

We describe a tool (CBMC) that formally verifies ANSI-C programs.
— Checked include pointer safety, array bounds, and user-provided assertions.
— Implements a technique called Bounded Model Checking (BMC) [1].
— + GUI

In BMC,

— the transition relation for a complex state machine and its specification are
jointly unwound to obtain a Boolean formula that is satisfiable if there exists
an error trace.

— The formula is then checked by using a SAT procedure.

— If the formula is satisfiable, a counterexample is extracted from the output of
the SAT procedure.

The tool (CBMC) checks that sufficient unwinding is done to ensure that
no longer counterexample can exist by means of unwinding assertions.

g
L.

[’}

Tind - ~F1 A
11 1LI CLIVUII

fJII
1 U

O

Hardware Verification using ANSI-C as a Reference

There are two implementations of the same design:
(1) One written in ANSIC, which is written for simulation,
(2) One written in register transfer level HDL, which is the actual product.

The ANSI-C implementation is usually thoroughly tested and debugged.
After testing and debugging the program, the actual hardware design is
written using hardware description languages like Verilog. The Verilog
description is then synthesized into a circuit.

Due to market constraints,

An automated, or nearly automated way of establishing the consistency
of the HDL implementation with respect to the ANSI-C model is highly

desirable.

Konkuk University

g
L.

[’}

If'\'l'lf' 7\
LI Ul |

T ~A1 i~
LITLTOUUCLI

This motivates the verification problem: we want to verify the consistency
of the HDL implementation, i.e., the product, using the ANSI-C
implementation as a reference [2].

— Establishing the consistency does not require a formal specification.

— However, formal methods to verify either the hardware or software design are
still desirable.

The previous work focuses on a small subset of ANSI-C that is
particularly close to register transfer language.

— Thus, the designer is often required to rewrite the C program manually in
order to comply with these constraints.

Our tool supports the full set of ANSI-C language features.

In order to verify the consistency of the two implementations, we unwind
both the C program and the circuit in tandem.

2. Bounded Model Checking for ANSI-C
Programs

* We reduce the Model Checking Problem to determining the validity of a
bit vector equation.

« The process has five steps:

1.

vk Wi

We assume that the ANSI-C program is already preprocessed, e.g., all the
#define directives are expanded.

The loop constructs are unwound using assertions.
Backward goto statements are unwound in a manner similar to while loops.
Function calls are expanded.

The program is then transformed into static single assignment (SSA) form,
which requires a pointer analysis.

NO

I:I\ MIII"\
rUliiiula

)
>

1 ueneratil Y

The procedure above produces two bit-vector equations: C (for the
constraints) and P (for the property).

In order to check the property, we convert C A =P into CNF by adding
intermediate variables and pass it to a SAT solver such as Chaff [5].

— If the equation is satisfiable, we found a violation of the property.

— If it is unsatisfiable, the property holds.

X1=Xo+Yo.,
X:}:+}r; 'f{ IY:[]
: 1T X' =
if(x!=1)) C' = X1=Xo+yo A
Xo=aL,
x=2; lse X2=2 A
else
else — 41 s X3=X1+1 A
X++: X3=x1% 15 x4=(x1'=1)?X2:X3
P:=x4 <3
x4=(x11=1) X0 :X3; —
assert(x<=3):;
assert(xi;<=3);

’-) '-) r.l\ 2\ Wi iaYa :If'\ﬂ 'I' Ef\ vy i II"\ 'I't'\ Fkll:
£.£ VUIVETL LTIy FUITTIUId LU CINTD

=

» The conversion of most operators into CNF is straight-forward, and
resembles the generation of appropriate arithmetic circuits.

« The tool can also output the bit-vector equation before it is flattened
down to CNF, for the benefit of circuit level SAT solvers.

Qo

dl user interrace

G\

p |

To increase the usability of our tool, we have designed a user interface
meant to be more familiar.

The tool has two main possible applications:
— Verification of properties of C programs
— Checking consistency of Verilog designs against a C implementation

When a counterexample is generated, the line number reported by
CBMC is usually not pointing to the line that contains the actual bug.

A version of CBMC modified by Alex Groce addresses the problem of
error localization [6]: the tool displays which statements or input values
are important for the fact that the property is violated.

/]
%.

ra \A/Arl,
IT VVUINKN

II It":t'\

-\ A I:II'I'II
ION ana rut

rt‘\ v —
CUIIC

We described a tool that formally verifies ANSI-C programs using
Bounded Model Checking (BMQC).

The tool supports all ANSI-C operators and pointer constructs allowed by
the ANSI-C standard, including dynamic memory allocation, pointer
arithmetic, and pointer type casts.

The user interface is meant to appeal to system designers, software
engineers, programmers and hardware designers, offering an interface
that resembles the interface of tools that the users are familiar with.,

A NIC
MAINO

T_C | Aan
1= Ldll

9

CA
I C

uage

9

Table 1. Supported language features and implicit properties

Supported Language Features

Properties checked

Basic Data Types

All scalar data types

float and deuble using fixed-
point arithmetic. The bit-width
can be adjusted using a com-
mand line option.

Integer Operators

All integer operators, ineluding
division and bit-wise operators
Only the basic floating-point
operators

Division by zero
Overflow for signed data types

Type casts

All type casts, including con-
version between integer and
floating-point types

Ovwverflow for signed data types

Side effects

CBMC allows all compound oper-
ators

Side effects are checked not to
affect wariables that are evalu-
ated elsewhere, and thus, that
the ordering of evaluation does
not affect the result.

Funetion calls

Supported by inlning. The lo-
cality of parameters and non-
static local variables 15 pre-
served.

1. Unwinding bound for recur-
sive functions

2. Functions with a non-void

return type must return a

alue by means of the re-

turn statement.

Control flow
statements

goto, return, break, continue,
switch ("fall-through” is not
supported)

d

1

+.
LUl

€S

Table 2. Supported language features and implicit properties

Supported Language Features

Properties checked

Structures

Arbitrary, nested structure
types; may be recursive by
means of pointers;
plete arrays as last element of
structure are allowed

Incom-

Unions

Support for named unions,
anonymous union members are

currently not supported

CBMC checks that unlons are not
used for type conversion, Le.,
that the member used for read-
g 1s the same as used for writ-
ing last time.

Pointers

Dereferencing

When a pointer 1s dereferenced,
CBMC checks that the object
polnted to 1= still alive and of
matching type. If the object 1=
an array, the array bounds are

checked.

Pointer arithmetic

Relational operators on pointers

CBMC checks that the
operands point to the same
object.

two

Pointer Type Casts

Upon dereferencing, the type of
the object and the expression
are checked to match

Pointers to Functions

The offset within the object 1s
checked to be zero

Non-Determinism

User-input 15 modeled by
means of non-deterministic
choice functions

Assumptions and
Assertions

Only standard ANSI-C expres-

sions are allowed as assertions.

to be
non-

Assertions are verified
true for all possible
deterministic cholces given that
any assumption executed prior
to the assertion is true.

Arrays

Multi-dimensional arrays and
dynamically-sized
supported

arrays are

Lower and upper bound of ar-
rays, even for arrays with dy-
namic size

Dynamic Memory

Konkuk University

malloc and free are supported.
The argument of malloc may
be a nondeterministically cho-
sen, arbitrarily large value.

Upon dereferencing, the object
pointed to must still be alive.
The pointer passed to free 1s
checked to point to an object
that 1z still alive. CBMC can check
that all dynamically allocated
memory 18 deallocated before
exiting the program ("memory
leaks").

13

0
Co
<

N

Fig. 1. The tool is able to automatically check the bound selected by the user for the
unwinding of loops. If the given bound is not sufficient, the tool suggests to provide a
larger bound.

3 chmeUl - [bounds] =[O

e Frofed (race Her
hu.n:h:l

int main(]j | el
int ks

ink sum;

unslgned char <|10];
-

sum+=x[k];
1 L]

Sources | Traces | Emo At |I:|uhu:||

eatior failad -
-

sum 536870143 (00011

x .. l:" #53, 765, 2651 0o veu want 1o bereace the umwrdng it |1
k {undl:l'ru:d>

| Li | »

beurcs jrramed: tof 15 |

Konkuk University

14

0
Co
<

>
~

M

B chmcly [MicroCAD5 SemPend]
Filke Project Trate Help

MCmoosc I

o assemfOCK=O0R

LOCK = i;
I

void D55emPend[05 EVEMT *pewvent . INTTGL fimeout . INTEU “err |

assume [LOCK == 0);

5|:|ur|:=:.| Trm:::.l Emrz Cupuat ||:I=hug |

Sohving with 2Chat! vardon ZChat! 2003618
N7 waniables, 822 clauses
SAT chschosr: risgabsd dem s SATISFIAELE. 12, doss not hold

[

eetion
Werficmtion faied
w
oK . R
JO5EventTOupevent RO LS

limeoul ¢ 0 [nnnnnnoononnaunonnonnaononnnnnmn

.............................. B, g g gy oy g g g g g iy

Mool [0S SemPend Lok Error: 12 of 12

Fig. 2. The Watches windows allows keeping track of the current values of the program
variables. In this case, the assertion failed because the variable LOCK has value 0.

Konkuk University

e
EU
<
O

B3 chmell] - [P52]
Filz Progect Trace Halp

ped kaybaards pal kevbcand v |
i Only the ASCI codes which | cansidered important have been included. -
N if o weant more, just add the appropriale case statement lines...
i [ow will need to know the keyhoard scan codes you wish e assign.)
i The entrics are listed in ascending order of ASCI walue.
assign shill_key_ples_code = [3blc_shifl_key_onq[E1]}:
alweys Bishift_key_plus_code]
e i
casez [shift_key plus_code]
12?66 - azcii <= 8*h08; § Backspace [‘backspace' key)
12"h?0d @ ascii <= 8°h04: Jf Horizental Tab
12'h?5a ¢ ascii <= 9"h0d: § Carriage return [Menter” key)
12°WTTE6 © ascii <= @' Escape [esc” key]
12'h*20 : ascii <= 8'h20: N Space &

Soures Traces |Errur: | e | Debusg |

| Hame [Rezuklt
issing Include File Errors
Array Bounds Failed: array upper bound
Signal | 1] | 1 2 | 3 L
t{ [] ; i F] L
It: il [honoj j ! T 1 [onnTj]
I ; ; : ;
-l 1 H H H
- : E 5
-" S A S
-l ! ! ! !
= - - d
0 [00D0] b 13 (o] b 0 [nnnoj ¥ 14110 i 1 [ounT]
K [T ¥ 1 [0onTj ¥ T3] ¥ 0 [0nnoj i 1411
i I i T
! i ! ¥
*
P2 ey B 10f 106 soyupstbons

Fig. 3. The Signals window shows the values of the variables in a Verilog design using
a waveform representation.

Konkuk University 16

)
<
)

£2 comeul - [MicroC/0S SemPend]

File Project Trace Help
micoos.c |
typcdef unsigned char BOOLEAN; Sl

typedef unsigned char INTSL)
typedef signed char INT85;
typedef unsigned int INT16U;
typedef unsigned long INT32U:

typedel unsigned int 05_STK;
Project Options

ntennt annnatrct O EWERT 1010

Meme

Sources |Tmca | Erors | Dutput | Debug |

Source Path [0\ Documents \Wordd \cbme Ul eamples', J
microos.c DiA\DocumentsiWorkicbmcUexamples) TLLEELE

e

microoe. ¢ Add
Remove

W Decide W Smplify

W Substihte W Simplfy i

[+ Assertions ¥ Unwinding assertions

[Bounds check W Division by zern

[Pointer check

[~ Set urmwinding limit

Number of unwind 7 = =
MicroC /05 SemPerd] "ot umenenes I = E|

Funciion rame IOSSemF‘bnd

Command line I

OK I Cancel I

Fig. 4. The Project Options dialog allows setting up the parameters.

Konkuk University

