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of comprehending software and producing a
model of it at a high abstraction level, suitable
for documentation, maintenance, or reengi-
neering. Managers can use reverse engineering
to better handle foreign code. In many proj-
ects, reverse-engineering technology has
helped a maintenance team better understand
a software system’s structure and function.
But from a manager’s viewpoint, there are two
painful problems:

� It’s difficult or impossible to predict how
much time reverse engineering will require.

� There are no standards to evaluate the
quality of the reverse engineering that the
maintenance staff performs.

Model-driven reverse engineering can over-
come these difficulties. A model is a high-level
representation of some aspect of a software
system. Software engineers often use models
to precisely specify systems before building
them. In some cases, modeling tools can even
generate part or all of the code without ex-
plicit, error-prone programming. MDRE uses
these features of modeling technology but ap-
plies them differently to address the mainte-
nance manager’s problems. Our approach to
MDRE uses formal specification and auto-
matic code generation to reverse the reverse-
engineering process. Models written in a for-
mal specification language called SLANG

describe both the application domain and the
program being reverse engineered, and inter-

Model-Driven Reverse
Engineering

development risk.

M
anaging software maintenance projects is difficult. A manager
typically must deal with a backlog of outstanding problems, a
staff battling various concurrent fires, and a corporate profile
in which failures have high visibility and success is greeted by

a deafening silence. When a project includes programs written by a differ-
ent group or possibly a different company, there’s the added problem of try-
ing to understand obscure foreign code. Reverse engineering is the process 

A model-driven reverse-engineering approach can help
managers handle challenging software maintenance projects.
This approach defines objective adequacy criteria for reverse
engineering and provides a quality standard, enabling better
effort prediction and quality evaluation and reducing
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pretations annotate the connections between
the two. The ability to generate a similar ver-
sion of a program gives managers a fixed tar-
get for reverse engineering. This, in turn, en-
ables better effort prediction and quality
evaluation, reducing development risk.

Adequate reverse engineering
The maintenance manager’s uncertainty

arises from a lack of understanding about
when a reverse-engineering effort is adequate.
The idea of adequacy comes from the world of
software testing. An adequate test set is one
that, when successfully executed, indicates
that the software development’s testing phase
is complete.1 Testers use various adequacy cri-
teria, such as ensuring that tests exist to
demonstrate the satisfactory exercise of all re-
quirements or execution of all program state-
ments. These criteria derive their benefit from
being deterministic and measurable.

If adequacy criteria existed for reverse en-
gineering, software engineers could collect ex-
perience reports and build databases of project
statistics to help predict reverse-engineering
time and effort. For such criteria to be useful,
they must be objectively measurable. This im-
plies there’s an artifact that’s the subject of the
measurement. For testing, the artifact is the
test suite. An adequate test suite provides con-
fidence in the quality of the testing it directs.
For MDRE, a maintenance manager measures
adequacy using the high-level model produced
by the software engineers undertaking the re-
verse engineering.

What might adequacy criteria for a reverse-
engineering model comprise? Two characteris-
tics seem essential: thoroughness and lucidity.
Thoroughness is the extent to which the re-
verse-engineering effort covers the entire sys-
tem under examination. Lucidity is the extent
to which the reverse engineering sheds light on
the system’s purpose and how the code fulfills
that purpose.

Reversing reverse engineering
How can models help measure a reverse-

engineering effort’s thoroughness and lucid-
ity? The answer is to reverse the reverse-engi-
neering process. In other words, we can use
the result of reverse engineering to produce a
second version of the original system. Thus,
reverse engineering produces a high-level
model of the system under study. If that model

is expressed by a formal specification language
supported by a code-generation tool, we can
use the code generator to produce another ver-
sion of the original system. If the generated
version proves close enough to the original,
the reverse-engineering effort was adequate.

However, what does “close enough” mean?
Several possible definitions come to mind, cor-
responding to different degrees of adequacy.
At one extreme would be a stub generator that
produced a compilable version of the pro-
gram, including stubs for all the subprograms
and external data structures, but that pro-
duced no results when executed. Such tools
currently exist, but they provide only superfi-
cial insight into a program’s workings. At the
other extreme would be a generator that re-
produced the original program on a line-by-
line basis. Although such a version might be
desirable, it is currently unrealistic, given the
state of specification technology and the al-
lowable time available for reverse engineering.

A compromise is to generate a program that
can duplicate the original program’s output
without necessarily generating the same code.
That is, the close-enough version might not run
as fast or use the same amount of memory, but
it will compute the same values. This is the tar-
get we used in our MDRE approach.

Model-driven reverse engineering
What sort of models can support this re-

verse reverse engineering? MDRE uses two
types, a program model and an application
domain model, which roughly correspond to
our target adequacy criteria for thoroughness
and lucidity. In the following example, we de-
scribe both models using an algebraic specifi-
cation language called SLANG, which is part of
a tool called Specware,2 developed by the
Kestrel Institute. Specware includes a code
generator capable of producing executable
code from high-level models.

The program model provides a high-level
rendering of the functions that the program
computes. Thus, it provides a precise state-
ment of the program-computed values but at a
higher abstraction level than in the program
source code. Algebraic specifications are pop-
ular precisely because they support program-
ming at a high abstraction level, thereby re-
ducing effort at the possible expense of
execution speed. Because algebraic specifica-
tions are precise enough to serve as a basis for

A compromise
is to generate a
program that
can duplicate
the original
program’s

output without
necessarily

generating the
same code. 
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code generation, they enable measuring the
thoroughness of reverse engineering.

An application domain model expresses
domain concepts, their relationships, and their
meanings independently of a program. An ap-
plication domain is a set of related problems
that have engendered software solutions.3 An
example is desktop publishing, for which there
are several competing products. When a pro-
gram solves an application domain problem,
its users can expect a certain context, behav-
ior, and terminology. Moreover, if the pro-
gram’s constructs can relate to corresponding
domain model concepts, then it’s possible to
determine the roles these constructs play in
achieving application domain goals. In
MDRE, both the program model and the do-
main model are present, so we can make ex-
plicit connections between program constructs
and the corresponding domain concepts. In
this way, an application domain model is use-
ful for assessing lucidity.

Example
To illustrate the issue of adequate models,

we used reverse engineering on a numerical
application called ZBRENT,4 written in the C
programming language. The application do-
main was numerical computation—specifi-
cally, finding the root of a real-valued func-
tion. We constructed a domain model by
collecting material from textbooks on numer-
ical analysis. Then we used SLANG to model
both the domain and the program. Finally, we
used the SLANG code generator in Specware to
produce an executable version from our model
of ZBRENT, which we compared with the orig-
inal program on a set of test functions.

Root finding
Finding a nonlinear equation’s root is a

well-understood problem in numerical analy-
sis.5,6 There’s a considerable collection of pro-
grams for finding roots. We can identify com-
mon characteristics from this collection and
use them as expectations to guide the reverse-
engineering process.

As Figure 1 shows, at the top level we can
partition the root-finding application domain
into polynomial and nonpolynomial algo-
rithm families. For the latter, a further distinc-
tion exists between algorithms capable of find-
ing multiple roots and those capable of
handling only a single root. Our example con-

cerns the latter class. In single-root finders, a
final distinction exists between those guaran-
teed to converge (bracketed root finders) and
those presumably more efficient ones that
don’t necessarily converge (open root finders).

Single-root, nonpolynomial root finders
work as Figure 2 shows. The input includes a
subprogram (f) to compute a functional value
at a given real value (x), and an initial root es-
timate denoted by the endpoints of an interval
within the set of real numbers. Functional eval-
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uation is typically expensive, so root-finding al-
gorithms try to reduce the number of calls to f.

Root finding normally involves selecting a
trial point in the current interval, partitioning
the interval into two pieces; determining the
piece containing the root; creating a new, refined
interval using the chosen piece; and iterating. In
Figure 2, dashed lines indicate interval end
points. Increasing subscripts in interval names
denote the order of refinement. For example, in-
terval i3 refines interval i2. For bracketed root-
finding algorithms, the interval gets smaller with
every iteration. Moreover, a stopping criterion
determines whether there’s been sufficient
progress to warrant continuing the process.

Root-finding algorithms differ regarding the
method for choosing a refined interval and the
stopping criterion. Variations of the former 
include bisection (Bolzano’s method), linear in-
terpolation (Regula Falsi), inverse quadratic in-
terpolation (Mueller’s method), Aiken’s delta-
squared method, the Newton-Raphson method,
and secant. Variations of algorithms that choose
the stopping criterion include those that stop
when the functional value is close enough to 0,
the interval width is sufficiently narrow, or a
fixed number of iterations have occurred. Of
course, we can combine several methods to im-
prove robustness or efficiency.

ZBRENT

ZBRENT is production software that’s been
in use for many years. It combines several of
the variations just described, to improve effi-
ciency and robustness. For our case study, we
chose the Brent variation, from William Press
and his colleagues,7 for several reasons:

� It offers several stopping-criteria choices.
� It features three interval shrinkage meth-

ods: bisection, secant, and inverse quad-
ratic interpolation.

� Victor Basili and Harlan Mills used a vari-
ant of ZBRENT in an influential case study.8

Thus, we can more closely compare our
work with theirs.

Because of the number of variations, the code
is complex and difficult to follow, making it a
good candidate for reverse engineering.

Algebraic specification
Algebraic specifications consist of sorts (data

types) and the operations that manipulate them.
Axioms (sets of equations) define these opera-
tions. Each axiom equates the computed values
of two different sequences of operations. We can
think of the equations comprising an axiom as
rewrite rules. Thus, we can replace occurrences
of an equation’s left-hand side with the right-
hand side, possibly including parameter substi-
tution. Specware automates the substitution to
generate code that implements the operation in
a programming language.

Figure 3 gives an example algebraic specifi-
cation (in SLANG code) of an interval that’s used
in building a root-finder domain model. This
specification for INTERVAL (lines 1 to 20) de-
scribes a sort, Interval (line 3), that uses a
previously defined sort, Real, to model x-axis
values. An imported specification, EXTENDED-
REAL (line 2), provides Real. A sort axiom
(line 4) defines the structure of Interval as
the Cartesian product of two Real sorts.

INTERVAL defines two operations: mid-
point and make-interval. Operation defi-
nitions include a signature and one or more
axioms. For example, the mid-point signa-
ture (line 6) indicates that it takes Interval
as input and produces Real as output. The
single axiom defining mid-point (lines 8 and
9) asserts that the output value produced,
when its input is the Interval constructed
from values a and b, equals the value pro-
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Figure 3. Slang 
IINNTTEERRVVAALL specification.

(1) spec INTERVAL is

(2) import EXTENDED-REAL

(3) sort Interval

(4) sort-axiom Interval = Real, Real

(5)

(6) op mid-point : Interval -> Real

(7) definition of mid-point is

(8) axiom mid-point(a, b) =

(9) half(plus(a, b))

(10) end-definition

(11)

(12) op make-interval : Real, Real ->

(13) Interval

(14) definition of make-interval is

(15) axiom make-interval(a, b) = (a, b)

(16) end-definition

(17)

(18) constructors { make-interval }

(19) construct Interval

(20) end-spec
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duced from applying the half operation to
the results of the plus operation for a and
b. Similarly, lines 12 to 16 define the make-
interval operation. Finally, lines 18 and 19
show that the make-interval operation pro-
vides a way to construct an Interval.

SLANG support for adequate models
Specifications in Specware are actual data

values that high-level operators called mor-
phisms can manipulate. SLANG provides three
kinds of morphisms:

� Import includes one specification inside
another.

� Translate renames a specification’s sorts
and operations.

� Colimit combines specifications in a struc-
tured way.

By writing simple specifications and then using
morphisms to connect and compose them, de-
velopers can cleanly model complex systems.

We employed one other Specware feature,
an interpretation, which Specware uses to for-
malize design refinements. Refinements relate
abstract domain-model concepts to executable
code. Operationally, an interpretation demon-
strates how Specware implements sorts and
operations in one model using sorts and oper-
ations in another model at a lower abstraction
level. Interpretations let reverse engineers di-
rectly relate application domain concepts to
program constructs. MDRE assesses lucidity
by requiring interpretations to connect do-
mains and implementations.

MDRE process
Our reverse engineering of ZBRENT included

three steps. First, we constructed a domain
model by reading descriptions in books and
articles on root finding and articulating them
in SLANG. The domain model provides expec-
tations for concepts that root-finding pro-
grams might realize. Second, we constructed a
program model by expressing the ZBRENT

source code as a specification comprising a set
of SLANG operation definitions. This step pro-
duces an abstract but comprehensive represen-
tation of the program without providing any
insight into how the programming constructs
relate to application domain concepts. Third,
we defined SLANG interpretations using an iter-
ative process to connect the program model

operations to domain concepts. After making
a set of connections, we executed the
Specware code generator, producing an ap-
proximation to ZBRENT. If the generated pro-
gram produced results identical to the origi-
nal, the reverse engineering was thorough; if
domain concepts connected to all the program
constructs, the reverse engineering was lucid.

Introducing an interpretation often re-
quired refactoring the implementation model.
We allowed only changes that maintained
thoroughness—those for which Specware
could generate a program that is testing equiv-
alent (equivalent with respect to the outcome
of testing) to ZBRENT’s original code. We
stopped this process when we could connect
every implementation specification to the ap-
propriate domain specification.

The root-finding domain model
Figure 4 depicts the root-finding domain

model as a set of related Specware specifica-
tions. Boxes denote specifications that represent
different concepts and relationships in the do-
main. The darker boxes are not part of the
root-finding domain but provide resources to it
from other domains. For example, REAL is the
specification for real numbers. The root-finding
domain model proper includes 12 specifica-
tions, which we can organize into three groups:
the iterative root-finding algorithm (ROOT-
FINDER), termination condition checks (ROOT-
CONVERGENCE-TEST, NARROW, and EQUALS-
ZERO), and methods for interval shrinking—the
remaining (lighter) boxes in Figure 4.

In addition to the 12 domain specifications,
Figure 4 also illustrates several kinds of mor-
phisms. An unadorned line denotes an import
morphism, indicating the textual inclusion of
one specification within another. This nor-
mally signifies a new specification that builds
on an old one’s features. For example, the
INTERVAL specification must import from the
REAL specification because the interval end
points are real numbers. The bold lines corre-
spond to translate morphisms, which rename
one or more imported specification elements.
In the root-finding domain model, renaming
lets us write the ROOT-FINDER specification
using an abstract convergence test. In the
ZBRENT algorithm, the disjunction of the two
concrete tests specified in the figure (EQUALS-
ZERO and NARROW) refines this test.

Finally, in Figure 4, the dashed lines ending
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in a small circle denote the two colimit mor-
phisms. A colimit is a shared union of the two
source specifications. It’s particularly valuable
because it lets us separately model inde-
pendent concepts and then explicitly combine
them. For example, in Figure 4, a colimit pro-
duces the NARROW specification by combining
the ROOT-CONVERGENCE-TEST and MACHI-
NEEPS specifications. ROOT-CONVERGENCE-
TEST defines properties of all mechanisms for
terminating root-finding iterations; MACHI-
NEEPS describes specific properties of float-
ing-point numbers. NARROW then describes a
test for termination when the current interval
has become so small that no further progress
is possible using available floating-point oper-
ations.

The ZBRENT program model
Besides the root-finding domain model, we

needed a specification for the ZBRENT algo-
rithm itself. The intent was to render the algo-
rithm’s details into SLANG so that we could use
interpretations to relate them to the domain

model. Figure 5 shows how this step works. In
this high-level flow chart for ZBRENT, box la-
bels express domain concepts. However, no
such labels occur in the actual source code.
Connections between source code constructs
and domain concepts emerge only through
significant iterative reverse engineering. The
outer loop of the source code wraps the
shrinking process and ensures termination by
counting iterations. In this loop, it’s possible
to terminate successfully if either the root has
been found (node labeled root found) or the
interval itself has grown too narrow (con-
verged). If termination is not warranted,
ZBRENT checks to see whether interpolation is
promising (possible to interpolate). In
this case, the algorithm chooses either secant
or inverse quadratic interpolation. If neither of
these methods produces a bracketed value,
then the algorithm uses bisection. Finally,
ZBRENT updates the interval with the appro-
priately chosen subinterval.

The ZBRENT algorithm’s SLANG specification
implements the flow-chart boxes with axioms.
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To construct this specification, reverse engi-
neers must perform the following activities:

� Define operations corresponding to the
various computations performed, nesting
operation invocations where appropriate.

� Model conditional statements using built-
in SLANG constructs.

� Use recursion to model iterative compu-
tations.

� Model assignments by passing the result-
ing state to subsequent operations.

During these steps, the software engineer must
consider each program construct, thus increas-
ing thoroughness. Moreover, the various oper-
ations and axioms produced become the tar-
gets of the interpretations devised during the
third step of the reverse-engineering process.

Figure 6a contains a segment of the original
program text for the box labeled “inverse
quadratic interpolation” in Figure 5. Figure 6b
contains the corresponding SLANG operation
definition for line (3) of Figure 6a, the second
computation of q. In Figure 6b, phrase
div(fa1,pToNZReal(fc1)) describes the
earlier computation of q in line (1) of Figure
6a. Phrase r(fb1, fc1) describes the specifica-
tion of program variable r in line (2) as an op-
eration (also named r) applied to two param-
eters, fb1 and fc1.

Interpretations
After constructing the ZBRENT algorithm’s

program model, the software engineer can de-
fine interpretations to indicate how to map
domain concepts to program constructs. For
the fragment shown in Figure 6a, the interpre-
tation must map the domain specification of
INVERSEQ to the set of operations that realize
it in the program model.

The ZBRENT algorithm’s SLANG model is
thorough because Specware can automatically
refine it into a program that is testing equiva-
lent to the original source code. However, by
itself, it sheds no light on how the algorithm
finds a root. The SLANG interpretations serve
this purpose. In particular, an interpretation in-
dicates precisely how the program manifests an
abstract domain concept. For example, an in-
terpretation between the EQUALS-ZERO do-
main specification and the program model
construct corresponding to the “Root found”
box in Figure 5 gives a precise indication of the

program construct’s purpose, which is to use a
root-convergence test to check program termi-
nation. To the extent that each component of
the algorithm specification is formally related
to an application domain concept through an
interpretation, the maintenance manager
judges that the domain model is a lucid repre-
sentation of the program.

Applying MDRE
A fixed standard for thoroughness and lu-

cidity would let the maintenance manager bet-
ter control the reverse-engineering process.
There’s an analogy with tools such as Co-
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como9 and Slim10 for estimating project
schedules. These tools use a database of past
experiences as a standard to evaluate current
projects. Similar projects predict similar
schedules. Likewise, adequacy standards for
reverse-engineering efforts would allow main-
tenance managers to use experience data to
predict the cost of such efforts.

An additional benefit of adequacy stan-
dards is as follows. Various reverse-engineer-
ing tools currently exist in the marketplace.
But it’s difficult to judge their benefits because
there’s no agreed-on standard to evaluate the
quality of the representations they produce.
An adequacy standard would allow direct
comparisons—for example, indicating that
one tool provides a more thorough description
than another.

Relative adequacy
The adequacy criteria we presented are rel-

ative rather than absolute standards. Lucidity
is relative to the abstraction level required for
the reverse-engineering effort. Thoroughness
is relative to the suite of tests used to deter-
mine equivalence; however, we can leverage
what is known about adequate testing to pro-
vide an objective, deterministic standard.

Amortizing the cost of domain modeling
The reverse engineering of ZBRENT involved

constructing a domain model for root finding,
which required significant background re-
search. Fortunately, this activity need occur
only once regardless of how long the program
lasts. Also, if there are other root-finding pro-

grams, they might be able to share the domain
model. In other words, domain modeling has a
value that goes beyond a single program’s re-
verse engineering. We can amortize domain
modeling’s cost across subsequent maintenance
activities for the same or related programs.

T here are two prerequisites for using
MDRE: a mature domain and a code-
generation tool capable of compiling

domain-specific application specifications. An
example of a mature domain is scheduling—
for instance, scheduling airline crews. More-
over, developers have used Specware to gener-
ate efficient scheduling algorithms from
schedule constraints expressed in SLANG.11

The Unified Modeling Language12 makes it
possible to apply MDRE to a broader class of
problems using alternative tool support. UML
provides an industry-standard, semiformal de-
sign notation. Even though extra training and
effort are necessary to use this notation, it’s
quite popular. UML provides various nota-
tions to use for modeling domains. Moreover,
its graphical orientation, tool support, and
early detection of certain error classes, along
with the increasing popularity of the object-
oriented methods it supports, suggest that it
will provide some of the same advantages as
formal methods. A recent addition to UML,
the Object Constraint Language, complements
UML’s ability to describe structure with the
ability to formally model program functional-
ity. Together, UML and OCL facilitate more
rigorous software development practices. De-
velopers frequently use UML in designing in-
formation systems and e-commerce software.
Applying MDRE in this context requires sub-
stituting a UML refinement tool, such as UML
All Purpose Transformer,13 for Specware, and
a UML compatible language, such as OCL,
for SLANG.
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Figure 6. Inverse 
quadratic interpolation:
(a) source code 
fragment; (b) SLANG

specification.

(1) q = fa / fc;

(2) r = fb / fc;

(3) q = (q – 1.0) ∗ (r – 1.0) ∗ (s – 1.0);

(a)

op q : Real, Real, Real, Real -> Real

definition of q is

axiom q(s, fa1, fb1, fc1) =

times(minus(div(fa1,

pToNZReal(fc1)),one),

times(minus(r(fb1, fc1),

one), minus(s, one)))

end-definition

(b)
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