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From Safety Analysis
to Software Requirements
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Abstract—Software for safety critical systems must deal with the hazards identified by safety analysis. This paper investigates, how
the results of one safety analysis technique, fault trees, are interpreted as software safety requirements to be used in the program
design process. We propose that fault tree analysis and program development use the same system model. This model is formalized
in a real-time, interval logic, based on a conventional dynamic systems model with state evolving over time. Fault trees are
interpreted as temporal formulas, and it is shown how such formulas can be used for deriving safety requirements for software
components.

Index Terms—Safety analysis, fault trees, requirements engineering, formal methods, temporal logic, real-time systems.

——————————���F���——————————

1 INTRODUCTION

N “Software Safety in Embedded Computer Systems”
[14], Leveson advocates the use of system safety analysis

techniques to derive system safety constraints which must
be satisfied by software requirements. She further argues
that the software requirements must be formalized in order
to raise confidence in the verification. This paper extends
these ideas by demonstrating how fault trees resulting from
safety analysis can be interpreted directly as requirements.
It provides a link between the worlds of the safety and
software engineers, thus helping to reduce the errors occur-
ring on the interface between the two engineering disci-
plines. We link fault tree analysis to program development,
by requiring that both use the same system model. By using
a common model, it is possible to use the results of the fault
tree analysis directly, when specifying and designing the
software. It is also possible to prove formally that a pro-
gram is safe, i.e., that it does not cause the system to violate
its safety requirements. The key point is to give a common
interpretation to terms used in safety analysis and in re-
quirements formulation; in other words to give a common
semantic model.

A common framework is important whenever engineers
from multiple disciplines need to work together. This is so
since it is known that most system failures can be attributed
to subtle design faults introduced because of a mismatch of
assumptions and constraints originating from different
system aspects. The digital flight control system (DFCS)
part of the NASA advanced fighter technology integration

(AFTI) F–16 program has highlighted these problems. Ac-
cording to NASA engineer Dale Mackall [19]:

Overall, the integrated DFCS provided many operational benefits. The
hardware reliability of the complex system was excellent. However, the
complexity of the system, coupled with the wide range of disciplinary
engineers involved, caused numerous design oversights.

The analysis of the DFCS test data has shown that the
overwhelming majority of failure indications were not due
to actual hardware failures but to design oversights con-
cerning asynchronous computer operation. In particular,
these failures were due to the lack of understanding of the
interactions between the air data system, the redundancy
management software and the flight control laws. In other
words a missing common framework.

It is usual in engineering to use a mathematical theory to
provide such a common framework for a given discipline
or area. The basic framework we propose uses state vari-
ables, denoting functions of time, as in conventional dy-
namic systems theory [18]. Such models are known to engi-
neers in general, often through their graphical representa-
tion by timing diagrams. The properties which we can
model, are thus relations among time varying states. To
specify such relations we use a real-time interval logic, the
duration calculus [33], [10], which has been used successfully
for requirements specification and design [26], [24], [25].
Other temporal and real-time logics such as [11], [20], [21]
could be used in a similar manner. Whereas such logics are
well established in formal specifications of software, they
may be unfamiliar to other engineers. The underlying dy-
namic systems framework and the ability to illustrate du-
ration calculus formulas by timing diagrams (cf. also
graphical interval logic [4]) has, in our experience, helped
to overcome this problem.

In our efforts to build a common semantic model for
safety analysis and software requirements specifications,
we have discovered that the accepted informal descriptions
of fault tree gates are ambiguous, allowing several very
different interpretations. For instance, the semantics of an
AND-gate in the Fault Tree Handbook [32], is defined as:
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“The output fault occurs only if all the input faults occur.”
But what exactly does this mean? Does it mean that all the
faults have to occur at the same time, or does it mean that
all faults have to occur, but that they need not overlap in
time? And what is a fault? Clearly such uncertainty is not
desirable when dealing with safety critical systems, reen-
forcing the motivation for formalization.

1.1 Related Work
There is an extensive literature on fault tree analysis and
supporting tools, but only recently have there been at-
tempts to relate it to software.

In [8] fault trees have been given a partial orders seman-
tics and in [7] they have been given a petri net semantics.
These two semantics are used to obtain a precise meaning
of the results of a fault tree analysis, but it is not explained
how they are used further on in software development.

In [1] fault trees have been assigned a modal µ-calculus
semantics. This semantics differs from ours in that it defines
a cause-effect relation between the input and output events
of a gate, and in that it specifies that the output event does
not necessarily occur if the input event occurs. During our
work we defined a similar semantics. Later on we rejected
this semantics, because it allows an optimistic interpreta-
tion of fault trees, which we do not find appropriate when
building safety critical systems, see Section 4 for details. In
[1] it is assumed that the fault tree analysis is performed in
one system model (a safety model), and that the system
development is performed in another system model. The
model in which the semantics of fault trees is defined is
used to validate the model in which the system develop-
ment is performed in the sense that everything that is ex-
pressible in the safety model must also be expressible in the
system model. An example is that if the safety model states
that there is a train collision if there are two trains on a
track segment, then the system model should be capable of
expressing that there are two trains on a track segment. We
have avoided this problem, as we require that the safety
analysis and the system development use the same system
models.

The static structure of systems is formalized using ordi-
nary set theory in [16]. The system model defines a set of
entities that denote components and a set of binary rela-
tions corresponding to physical dependencies among com-
ponents. They also introduce events, where each event has
an associated list of involved entities and a probability. The
system model is structural and does not formalize dynam-
ics, i.e., there is no temporal order associated with events.
The events are used in constructing a fault tree, where each
node is labeled by some event. Semantic checks are used to
eliminate cyclic occurrences of events and against missing
dependencies from the system model. The semantics of
fault trees is not compositional, because nodes are labeled
independently, and thus it is is not clear how requirements
are derived from the analysis. The system model idea can
be merged with our framework giving structural properties
in addition to the dynamic properties that we discuss.
However, we think such an extended framework should
use a compositional semantics.

Useful procedures for applying fault tree techniques in
software development are discussed in [29]. That work,
however, does not discuss semantics at all.

A different link between software and safety analysis
uses safety analysis techniques for assessing software [15],
[14]. These techniques focus on analyzing eventuality prop-
erties of program executions by giving selected parts of
programs a fault tree semantics. This approach is different
from ours in the sense that it uses fault tree analysis on pro-
gram code, whereas we use the fault tree analysis to derive
the safety requirements which a program should fulfill. It is
thus a program verification technique and not a require-
ments specification step.

In [3] the analysis of a program entering a certain un-
wanted state is extended to cover failures in the form of low
voltage, radiation, etc., The analysis is based on represent-
ing weakest precondition predicates as fault trees. The ap-
proach is informal in the sense that fault trees are not as-
signed a formal semantics and in the sense that no formal
relation is defined between the weakest precondition predi-
cates and the fault trees.

1.2 Overview
We begin by introducing fault trees and their syntax in Sec-
tion 2. In Section 3, we introduce the duration calculus and
justify the choice of an interval logic. We use the logic to
give fault trees formal semantics in Section 4. In Section 5,
the semantics is used to relate fault tree analysis to software
requirements and development. We conclude with exam-
ples and a discussion in Sections 6 and 7, respectively.

2 FAULT TREES

Fault tree analysis [32] is a deductive safety analysis tech-
nique which is applied during the design phase. It is a top-
down approach whose input consists of knowledge of the
system’s functions as well as its failure modes and their
effects. The result of the analysis is a set of combinations of
component failures that can result in a specific malfunction.
The approach is graphical, constructing fault trees using
standardized symbols.

A fault tree has a root which represents a total or cata-
strophic failure. For each catastrophic failure, the system is
analyzed to reveal the possible causes of this failure. This
analysis is used to populate the lower levels of the fault
tree. Each subtree may be regarded as a fault tree for a
component constituting a system of its own. The extent of
the analysis, i.e., which components are considered basic,
depends on the abstraction level chosen.

A fault tree is not a model of all possible causes for sys-
tem failure; but given a particular failure, it reveals the pos-
sible combinations of component failures that may lead to
this failure. Fault tree analysis is basically a qualitative
model, but it is also often used in probabilistic analysis. In
this paper we are not concerned with the probabilistic ex-
tensions to the basic model.

A fault tree is constructed from a predefined set of sym-
bols [32], shown in Fig. 1. There are several variations and
extensions, but in this article we limit ourselves to the
above symbols.
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A node denoting a failure X, possibly resulting
from a combination of basic failures (nodes).

AND-gate—the failure in the top node occurs only
when all the failures in the children nodes occur.

OR-gate—the failure in the top node occurs only
when one or more of the failures in the children
nodes occur.
INHIBIT-gate—the failure in the top node occurs
only when both the failures in the child node
occurs and the condition in the oval is true.

EXCLUSIVE OR-gate—the failure in the top node
occurs only when exactly one of the failures in the
children nodes occurs.
PRIORITY AND-gate—the failure in the top node
occurs only when the failures in the children
nodes occur in a left to right order.

Fig. 1. Fault tree symbols.

In fault tree terminology no distinction is made between
faults, errors and failures, and in practice, the nodes of trees
seem to contain a mixture of these. We use the terms fault,
error and failure such that an error is the manifestation of a
fault in the system, and a failure is the effect of an error on
the service of the system [13], [12].

Fig. 2 is an example of a fault tree that relates to an
electronically controlled combustion mechanism such as a
gas burner. It is an extension of an example in [30]. It
states that if a fire occurs, then either both an excess of gas
and air have been present at the same time as an ignition
has been attempted, or some of the cables have short-
circuited. Further the fault tree states that if an excess of
gas is present, then during a 30 sec period gas has leaked
for more than 4 sec.

The problem with this tree is that it allows several differ-
ent interpretations. What does the statement “Gas leaks for
more than 4 sec” mean? Does this mean that gas should
leak continuously for more than 4 sec, or does it mean that

gas could leak for 2 sec, then stop leaking for 10 sec and
then leak again for 3 sec? And if gas ignites, does air, gas,
and ignition have to have been present at the same time? Our
intuition says yes, because we know something about com-
busion. In Section 3 we present a real-time interval logic,
the duration calculus [33], which we use to make such
statements precise.

3 DURATION CALCULUS

The formalization of fault trees is fairly straightforward in
the case of the simple AND- and OR-gates. They corre-
spond to the Boolean connectives of propositional logic. It
is less obvious how to formalize the ‘events’ of the basic
nodes. In some cases they correspond to state transitions, in
other cases they denote state occurrence. They may also
rely on some minimal or maximal time of occurrence. A
common thread for in all these possible interpretations is
that events are observed while time passes, i.e., over finite
intervals of time, when certain state patterns occur, sug-
gesting the use of a real-time, interval logic.

We introduce the duration calculus by formalizing the
statements from the fault tree in Fig. 2: “Gas leaks for
more than 4 sec” and “Observation interval less than 30
sec.” We generalize the description of the calculus at the
end of this section.

The first step in formalizing statements about a system is
to construct a system model. As basis we use the time-domain
model [18], where a system is described by a collection of
states which are functions of Time. Here we take Time to be
the non-negative reals, but discrete time domains could also
be used. To formalize the first statement, that gas leaks for
more than 4 sec, we use the following Boolean valued states

Gas, Flame : Time → {0, 1}

which express the presence of gas and flame as functions of
time. We assume that Boolean values are represented by 0
(false) and 1 (true).

Fig. 2. Fault tree for a gas burner.
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Statements about a system are expressed by constraining
states over time. We assume that a leak occurs whenever the
state assertion Gas ∧ ¬Flame, i.e., the gas valve is open and
there is no flame, is true. We abbreviate this composite state

Leak Gas Flame
def
= ∧ ¬

When we consider a bounded time interval [b, e], we
can measure the duration of Leak within the interval by
Ibe  Leak(t) dt, cf. the timing diagram in Fig. 3. We introduce
the notation ∫ Leak for the duration of Leak. It denotes a
function from intervals to reals; a real number for each par-
ticular interval. “Gas leaks for more than 4 sec” is thus
written as

I >Leak 4

Fig. 3. Timing diagram for Leak.

The duration of the constant state 1, I 1, is the length of
the interval under consideration. We abbreviate I 1 by ,.
Thus, the fact that an interval is not longer than 30 sec is
specified by the formula , ≤ 30. This completes the formal-
ization of the two nodes from the fault tree in Fig. 2.

Formulas may be combined by the usual logical connec-
tives. Thus, we may combine the above formulas by Boo-
lean connectives and obtain

( ) ( ), ≤ ∧ I >30 4Leak

that is, the considered time interval is not longer than 30
seconds and gas leaks for more than 4 sec.

The property that a state, Ignition, holds throughout a
nonpoint interval is defined by ∫ Ignition = , ∧ , > 0, abbre-
viated Ignition.

Subinterval properties are expressed by the binary
“chop” operator (written “;”) of interval logic. Given for-
mulas D1 and D2, the formula D1 ; D2 holds for the interval
[b, e] just when this interval can be divided into an initial
subinterval [b, m] where D1 holds and a final subinterval
[m, e] where D2 holds.

“Somewhere” D, written e D, i.e., D occurs in some
subinterval, is defined by the “chop” operator as

e D true D true
def
= ; ; . The dual to “somewhere” is “every-

where,” written h D and defined as ¬ e (¬D).
A safety constraint S should hold for an arbitrary interval

of the system lifetime. This can be expressed as: There is no
subinterval for which the formula ¬S holds. If we define S as

S l Leak
def
= ≤ ⇒ I ≤30 4( )

then ¬S = (, ≤ 30) ∧ (∫Leak > 4) meaning that the observation
interval is not longer than 30 sec and gas leaks for more
than 4 sec.

The safety constraint for the gas-burner is thus ¬e (¬S)
which is equivalent to h S.

3.1 Duration Calculus, Summary
The duration calculus is based on Moszkowski’s (discrete
time) interval logic (ITL) [21] which provides the basic bi-
nary modality “chop,” written ‘;’.

3.1.1 Syntax
The syntax of duration calculus distinguishes (duration)
terms, each one associated with a certain type, and (dura-
tion) formulas. Terms are built from names of elementary
states like Gas and Flame, and rigid variables representing
time independent logical variables, and are closed under
arithmetic and propositional operators. Examples of terms
are ¬Flame and Gas = 0.

Terms of Boolean  type are called state assertions. We use
P to denote state assertions. For a state assertion P, the inte-
gral ∫ P is called the duration because it measures the time P
holds in the given interval.

Duration formulas are built from duration terms of Boo-
lean  type and are closed under propositional connectives,
the chop connective, and quantification over rigid variables
and variables of duration terms. We use D for a typical du-
ration formula.

3.1.2 Semantics
The semantics of duration calculus is based on an inter-
pretation , that assigns a fixed meaning to each state
name, type and operator symbol of the language, and a
time interval [b, e]. For given , and [b, e] the semantics
defines what domain values duration terms and what
truth values duration formulas denote. For example, ∫ P
denotes the I be  P(t) dt.

A duration formula D holds in , and [b, e], abbreviated ,,
[b, e] |= D, if it denotes the truth value true for ,  and [b, e]. D
is true in ,, abbreviated , |= D, if , , [a, b] |= D for every in-
terval [a, b]. A model of D is an interpretation , which makes
D true, i.e., with , |= D. The formula D is satisfiable if there
exists an interpretation , with ,  |= D.

A behavior is an interpretation restricted to the names of
the elementary states.

Duration calculus has a powerful proof system, cf. [25],
which justifies its use in specifications. We use elementary
properties in Section 4.

4 FAULT TREE SEMANTICS

In general, fault trees can be viewed as (temporal) logic
formulas with uninterpreted basic symbols.

4.1 Leaves
In safety analysis terminology, the leaves in a fault tree are
called events, often meaning the occurrence of a specific
system state, but also used in the software engineering
sense, meaning a transition between two states. In order to
avoid misunderstandings we want to stress that whenever
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we use the term event in this article we mean a state transi-
tion (the software engineering interpretation of an event).

Our studies of fault trees have revealed that the contents
of fault tree leaves depend much on the application; some-
times the leaves denote states and sometimes events. We,
therefore, interpret a leaf node of a fault tree as a duration
calculus formula. Such a formula may for instance be:

•� the constants true, false
•� occurrence of a state P, i.e., P
•� occurrence of an event, i.e., a transition to state P:

¬P ; P
•� elapse of a certain time, i.e., ,  ≥ (30 + e), or
•� a threshold of some duration, i.e., ∫ P ≤ 4 × e.

It is crucial that the safety engineer and the software en-
gineer agree on the interpretation of the contents of leaves
as formulas. This may for instance be done by interpreting
the formulas as timing diagrams. Fig. 4 shows timing dia-
grams for some basic observations.

Fig. 4. Timing diagrams for some basic observations.

4.2 Intermediate Nodes
The semantics of intermediate nodes is defined by the se-
mantics of the leaves, edges, and gates in the subtrees in
which the intermediate nodes are roots. Intermediate nodes
are merely names of the corresponding subtrees. In the fol-
lowing we define the semantics of intermediate nodes from
the structure of the subtree.

4.3 Edges
Given interpretations of the leaves, we now consider the
meaning of an intermediate node, A, connected to a node,
B, by an edge, see Fig. 5. Assume that the semantics of B is
B. We then define the semantics of A to be

A B
def
=

i.e., as logical identity, meaning that the system failure A
occurs when the failure B occurs. This semantics is pessi-
mistic in the sense that it assumes that if something has the
possibility of going wrong, then it does go wrong.

Informal readings of fault trees often state that it is not
mandatory that A holds when B holds [32], [30], which is
formalized as A ⇒ B. This semantics allows an optimistic
interpretation of fault trees in the sense that a system failure
may be avoided if the operator intervenes fast enough, has

enough luck, etc. We do not think that speed, luck, and the
like should be design parameters in safety critical systems,
and therefore we have rejected this semantics.

Another issue is whether A and B occur at the same time
or if there is a necessary delay from the occurrence of B to
the occurrence of A, formally: B ∧ ¬A ; B ∧ A. Often
there will be such a delay, but we have refrained from mod-
eling it, as this again would give the impression that once B
has occurred there is a possibility that A can be prevented.

4.4 Gates
We now consider the semantics of intermediate nodes con-
nected to other nodes through gates.

4.4.1 AND
In the fault tree in Fig. 6 assume that the semantics of B1, …,
Bn is B1, …, Bn. We then define the semantics of A to be

A B B
def

n= ∧ ∧1 K

i.e., A holds iff B1 to Bn hold simultaneously.
We have considered a more liberal interpretation of

AND-gates in which B1 to Bn need not hold simultaneously,
namely A = e B1 ∧ … ∧ e Bn. This has been rejected since
this formula “remembers any occurrence of a Bi,” such that
if B2 becomes true 1 year after B1, and B3 becomes true 3
years after B2, and …, then A holds. This is clearly not the
intended meaning of an AND-gate.

4.4.2 OR
For the fault tree in Fig. 7 assume that the semantics of B1,
…, Bn is B1, …, Bn. We define the semantics of A to be

A B B
def

n= ∨ ∨1 K

i.e., A holds iff either B1 or … or Bn holds. This interpreta-
tion shows that an OR-gate at the top of a fault tree means
single point failure. If just one of the formulas holds, the
failure occurs.

4.4.3 INHIBIT
We consider INHIBIT-gates where the condition is not a
probability statement. According to the fault tree hand-
book, [32], the fault tree in Fig. 8 reads: “If A occurs then B1
has occurred in the past while condition B2 was true.” In a
direct translation of this sentence, we interpret B1 as an
event (state transition) that must occur while the system is
in state B2 in order to make A happen. In our semantics we
have however refrained from requiring that B1 must be an
event and that B2 must be a state, as an interpretation
equally well could be the occurrence of a state B1 while an-
other state B2 was true. We therefore interpret an INHIBIT-
gate as an AND gate with B1 and B2 as inputs, where B1 and
B2 are duration formulas. Generally, if Bn is the condition,
and B1, …, Bn–1 are children to the INHIBIT-gate, the se-
mantics is given by

A B B
def

n= ∧ ∧1 K

4.4.4 EXCLUSIVE OR
A fault tree with an EXCLUSIVE OR-gate is pictured in
Fig. 9. According to the fault tree handbook, [32], this tree
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may be drawn as in Fig. 10, in which “Not both B1 and B2”
is a necessary condition for A to hold. As for the INHIBIT-
gate we interpret the condition “Not both B1 and B2” as a

leaf which should also hold. By interpreting “Not both B1

and B2” as ¬(B1 ∧ B2), we obtain the semantics A =
def

 (B1 ∨ B2)

∧ ¬(B1 ∧ B2) , which may be rewritten to

A = (B1 ∧ ¬B2) ∨ (¬B1 ∧ B2)

This generalizes to

A B B B

B B B

def

n

n n

= ∧ ¬ ∨ ∨
∨

∨
∧ ¬ ∨ ∨ −

( ( ))

( ( ))

1 2

1 1

K

M

K

4.4.5 PRIORITY AND
A fault tree with a PRIORITY AND-gate is pictured in Fig.
11. The informal semantics states that A occurs just when all
of the children nodes occur in a left-to-right order. Assum-
ing that B1, …, Bn have the semantics B1, …, Bn we, there-
fore, define the semantics of A to be

A B B B B
def

n= ∧ ∧ ∧ ∧1 2 3e e e( ( ) )K K

Fig. 11. Fault tree with PRIORITY AND-gate.

4.5 Trees
The semantics of a fault tree is determined by the semantics
of the leaves, the edges, and the gates, such that the seman-
tics of intermediate (not leaves) nodes are given by the se-
mantics of the leaves, edges, and gates in the subtrees in
which the intermediate nodes are roots.

The above procedure assigns semantics to fault trees in a
compositional style. The meaning of a composite tree is
given by a temporal formula denoting the meaning of the
subtrees connected to the gate, while leaves are assigned a
formula independent of their position in the tree.

5 SOFTWARE SAFETY REQUIREMENTS

Traditionally fault trees are used to analyze existing system
designs with regard to safety. Instead of first developing a
design, and then performing a safety analysis, we propose

Fig. 5. Fault tree with no gates. Fig. 6. Fault tree with AND-gate.

Fig. 7. Fault tree with OR-gate. Fig. 8. Fault tree with INHIBIT-gate.

Fig. 9. Fault tree with EXCLUSIVE OR-gate. Fig. 10. Fault tree with OR-gate and a condition.
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that the design and the safety analysis should proceed con-
currently, thereby making it possible to let the fault tree
analysis influence the design. In order to do this, the fault
tree analysis and the system design must use the same sys-
tem model. Given a common model, the system safety re-
quirements may be deduced from the fault tree analysis.
Safety requirements, derived this way, can be used during
system development in order to validate the design, but
they can also be used in a constructive way by influencing
the design. We illustrate this below.

For each fault tree in which the root is interpreted as S,
the system should be built such that S never occurs, i.e., the
safety commitment which the system should implement is

h ¬S

If we have n fault trees in which the roots are interpreted
as S1, …, Sn, the safety commitment which may be deduced
from these fault trees is

h ¬S1 ∧ … ∧ h ¬Sn

i.e., the system should ensure that no top event in any fault
tree ever holds. This corresponds to combining the trees by
an OR-gate.

5.1 Deriving Component Requirements
If the fault tree contains gates, the derived specifications
depend on the type of gates. Here we only consider AND-,
OR-, and PRIORITY AND-gates, as fault trees containing
other gates may be expressed in terms of these.

5.2 AND-Gates
Recall that the fault tree in Fig. 6 has the semantics A = B1 ∧
B2 ∧ … ∧ Bn and assume that the safety commitment is h

¬A. This safety commitment corresponds to specifying that
the components never satisfy their duration formulas at the
same time, i.e.,

h ¬(B1 ∧ B2 ∧ … ∧ Bn)

One way to implement this is to implement the stronger
formula

h ¬B1 ∨ h  ¬B2 ∨ … ∨ h ¬Bn

i.e., to design at least one of the components such that it
always satisfies its local safety commitment.

Often, the software engineer does not control all the in-
put components to an AND-gate. For such components a
safe approach is to assume the worst case, namely that the
component is in a critical state and thereby contributes to
violation of the safety commitment. Let us for instance as-
sume in the case of the fault tree in Fig. 6, that the first
component is uncontrollable. The worst case is that the
component satisfies B1, i.e., that

h ¬(true ∧ B2 ∧ … ∧ Bn)

meaning that the software engineer has to implement

h ¬(B2 ∧ … ∧ Bn)

One should, at some point, arrive at a conjunction of Bis
which can be used in the design. Otherwise, we must con-
clude that the system is inherently unsafe. If the design re-

lies on the absence of only one Bi, it is a design which is
vulnerable to single point failures.

5.3 OR-Gates
The fault tree in Fig. 7 has the semantics A = B1 ∨ … ∨ Bn.
For the system to satisfy the safety commitment h ¬A, the
software engineer must implement

h ¬(B1 ∨ … ∨ Bn)

or equivalently

h ¬B1 ∧ … ∧ h ¬Bn

This formula expresses that the system only satisfies its
safety commitments if all its components satisfy their local
safety commitments.

Now suppose that the software engineer cannot control
the first component, i.e., whether that component satisfies
B1 or not, is outside the scope of the design of the program.
Making the safe choice of B1 being true causes h ¬B1 to be
false which trivially implies that the safety commitment is
violated. Making a tacit assumption of B1 being false is very
poor judgment, which essentially ignores the results of
safety analysis.

The only reasonable option is to weaken the require-
ments specification. We assume that the behavior of the first
component never satisfies B1, i.e., that h ¬B1 is true. To
make the design team as a whole aware of this assumption,
we add it to the environment assumptions. So, if the re-
quirements were given in an assumption commitment style
by a formula, Asm ⇒ Com, before this design step, we have
the assumptions Asm ∧ h  ¬B1 afterwards. The specification
of the requirements Asm ⇒ Com has thus been weakened to
Asm ∧ h ¬B1 ⇒ Com, and the software engineer should
alert the appropriate persons to the fact that the system re-
quirements have been weakened.

Many design errors are located on interfaces. Having an
explicit list of assumptions and adding to this list as the
system development progresses, makes the interfaces
clearer and reduces the likelihood of errors.

5.4 PRIORITY AND-Gates
The fault tree in Fig. 11 has the semantics A = B1 ∧ e (B2 ∧ e
(B3 ∧ … ∧ e Bn) …). If the safety commitment is h ¬A, the
software engineer must implement

h  ¬(B1 ∧ e (B2 ∧ e (B3 ∧ … ∧ e Bn) …))

This may either be done by making the implementation
such that the Bis do not occur in the specified order or such
that one of the Bis does not occur at all, i.e.,

h ¬B1 ∨ h ¬B2 ∨ … ∨ h ¬Bn

If one of the Bis, e.g., B1 is uncontrollable, the worst case
is that it does not satisfy its local safety commitment, i.e.,
that B1 is true. The software engineer therefore assumes that
B1 is true and attempts to make the design such that

h ¬ (B2 ∧ e (B3 ∧ … ∧ e Bn) …)

holds.
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6 EXAMPLE

In Section 6, we illustrate the formalization of fault trees
and the derivation of safety requirements by analyzing the
hazards of a railway interlocking system. The main task of
an interlocking system is to prevent trains from colliding
and derailing while allowing train movements. In Fig. 12
we present a fault tree for train collision. The fault tree has
been developed stepwise until some implementable nodes
were reached. The underlying model is presented in full in
[9]. The parameters in the predicates in the nodes of the
fault tree denote the station topology, tpo, the station state,
sst, and the state of the interlocking system, intlck.

A station topology consists of the placement of the track
segments, the points,1 and the signals. The state of a station
is given by the state of the track segments, i.e., whether
there is a train within a given track segment or not, by the
state of the points, i.e., the branches in which the points
have control, and by the signal aspects: “stop” or “drive.”

The state of an interlocking system is determined by the
train routes currently set, i.e., the track segments reserved
for the trains.

6.1 Safety Commitment
The safety commitment is that there should never be a colli-
sion

Safe com Collision tpo sst intlck
def

_ ( , , )= ¬h

Collision is true if there is more than one train within one
track segment. The safety commitment may, therefore, be
implemented by allowing at most one train on the station at
a time. However, with the amount of train traffic today, this
is not a desirable solution. Instead we look at the driving
possibilities at stations.

6.2 Fault Tree Analysis
Two trains may end up within the same track segment, if it
is possible for the trains to drive to the track segment either
legally, i.e., respecting the stop signals, or illegally, i.e., not
respecting the stop signals. Given a station topology and a
fixed station state, it is possible to deduce the legal driving
possibilities for each train at the station. We call the track
segments to which a train may move legally, for the area for
that train. Two trains may collide if their area have common
track segments.

Collision tpo sst intlck

Overlap areas tpo sst intlck

Signal bypass tpo sst

def
( , , )
_ ( , , )
_ ( , )

=

∨

A train passes a stop signal, if at first the train is on a
track segment in front of the signal, and then it is on the
track segment after the signal, while the signal shows
“stop” continuously.

1. American: Switches

Signal bypass tpo sst

sig tpo signals train sst train

Train before signal train sig tpo sst

Signals stop sig sst

Train after signal train sig tpo sst

Signals stop sig sst

def
_ ( , )

. , .
| _ _ ( , , , )

_ ( , ) |
;| _ _ ( , , , )

_ ( , ) |

_

_

=
∃ ∈ ∈ ⋅

∧

∧

−

−

6.3 Safety Requirements
The fault tree structure says that the safety commitment

h ¬Collision (tpo, sst, intlck),

i.e., that there must never be a collision, must be imple-
mented by

h ¬ Overlap_areas (tpo, sst, intlck)
                       ∧ h  ¬ Signal_bypass (tpo, sst)

So far the Danish National Rail Agency have chosen not
to implement h ¬Signal_bypass in interlocking systems. At
some places it is implemented in a separate train protection
system, and at other places it is only implemented in regu-
lations [31] stating that trains must not pass stop signals. In
either case, it has to be made explicit that h ¬Signal_bypass
is not implemented in the interlocking system, by adding it
to the assumptions about the environment, i.e.,

Asm Signal bypass tpo sst
def
= ¬h _ ( , )

The safety requirement deduced so far from the fault tree
is therefore

Safe Signal bypass tpo sst

Overlap areas tpi sst intlck

def
= ¬

⇒ ¬
h

h

_ ( , )
_ ( , , )

It turns out that the area concept restricts the train traffic
too much, as it assumes that trains may drive in any direc-
tion. If we instead grant each train a route which it must
use, there may be more trains at a station.

6.4 Fault Tree Analysis
Using the train route concept, i.e., a sequence of track
segments reserved for a particular train, two trains may
drive to the same track segment either if one of the trains
is not on its train route, or if both trains are on train
routes, and it still is possible for the trains to drive to a
common track segment.

Overlap areas tpo sst intlck

Outside route sst intlck

To comm track tpo sst intlck

def
_ ( , , )

_ ( . )
_ _ ( , , )

=

∨

where

           

To comm track tpo sst intlck

On routes sst intlck

Drive to comm track tpo sst intlck

def
_ _ ( , , )

_ ( , )
_ _ _ ( , , )

=

∧

It is possible for two or more trains to drive to a common
track segment, if the train routes overlap, if one of the trains
reverses, or if one of the train routes is erroneous.
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Drive to common track tpo sst intlck

Overlap routes intlck

Reverses tpo sst intlck

Error route tpo sst intlck

def
_ _ _ ( , , )

_ ( )
( , , )

_ ( , , )

=

∨
∨

Two train routes overlap if they have a common track
segment.

A train reverses if for a pair of track segments on a train
route, one of the two following sequences of observations is
made regarding the train:

First segment Second segment

Observation 1 train train
Observation 2 train –train

or

First segment Second segment

Observation 1 train –train
Observation 2 train –train

If a train is not on a train route, we cannot observe
whether it reverses or drives forward, as we do not know in
which direction it is supposed to move.

Reverses tpo sst intlck

train sst train t t tpo tracks

On track train t sst

On track train t sst

On track train t sst

On track train t sst

On track train t sst

On track train t sst

On track train t sst

On track train t sst

In intlck train t t lck

def
( , . )

. , ( , ) .
((| _ ( , , )

_ ( , , ) |
;| _ ( , , )

_ ( , , ) |
) (| _ ( , , )

_ ( , , ) |
;| _ ( , , )

_ ( , , ) |
)) | _ ( , ( , ), int ) |

_

_

_

_

_

_

_

_

_ _

=
∃ ∈ ∃ ∈ ⋅

∧

∧ ¬
∨
∧ ¬

¬
∧ ¬
∧

1 2
1

2
1
2

1
2
1
2
1 2

Finally, a train route is erroneous, if there is a point on
the train route which has control in the other branch than
the one through which the train route extends, or if there is
not a stop signal between the front end of the train and the
end of the train route.

Error_route (tpo, sst, intlck) =
      Error_point (tpo, sst, intlck)

               ∨ Error_signaling (tpo, sst, intlck)

Combining the above definitions according to the fault
tree, we obtain

Fig. 12. Fault tree for collision.



582 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,  VOL.  24,  NO. 7,  JULY  1998

Collision tpo sst intlck

Signal bypass tpo sst

Outside route sst intlck

On routes sst intlck

Overlap routes intlck

Reverses tpo sst intlck

Error point tpo sst intlck

Error signaling tpo sst intlck

def
( , , )
_ ( , )

_ ( , )
( _ ( , )

( _ ( )
( , , )

_ ( , , )
_ ( , , ) ))

=

∨
∨

∧
∨
∨
∨

6.5 Safety Requirements
Previously we ended up with the safety requirement

h ¬Signal_bypass (tpo, sst)
⇒ h ¬Overlap_areas (tpo, sst, intlck)

Following the fault tree structure, h ¬Overlap_areas must be
implemented by

h ¬(   Outside_route(sst, intlck)
∨ To_common_track(tpo, sst, intlck) )

being equivalent to

h ¬Outside_route(sst, intlck)
∨ h ¬To_common_track(tpo, sst, intlck)

As Outside_route is a leaf, and as it is input to an OR-
gate, it either has to be implemented, OR it must be justified
that all trains are always on train routes. The Danish Na-
tional Rail Agency requires that this is implemented by the
operator of the interlocking system assigning each train a
train route as it approaches a station (we do not consider
shunting trains). As this is not implemented explicitly in
the interlocking system, it is an assumption which must be
ensured by the operator.

Asm Outside route sst intlck
def

′ = ¬h _ ( , )

Further, h  ¬To_common_track must be implemented by

h ¬ ∧(
_ ( , )

_ _ _ ( , , ))
On routes sst intlck

Drive to common track tpo sst intlck

which again must be implemented by

h ¬
∧

∨
∨

( _ ( , )
( _ ( )

( , , )
_ ( , , ))

On routes sst intlck

Overlap routes intlck

Reverses tpo sst intlck

Error route tpo sst intlck

This is equivalent to

h

h

h

¬ ∧

∧ ¬ ∧

∧ ¬ ∧

(
_ ( , )

_ ))

(
_ ( , )

( , , ))

(
_ ( , )

_ ( , , ))

On routes sst intlck
Overlap routes(intlck

On routes sst intlck
Reverses tpo sst intlck

On routes sst intlck
Error route tpo sst intlck

Here, h ¬(On_routes ∧ Overlap_routes) is a safety com-
mitment which must be implemented. Strictly speaking this
safety commitment may be implemented by h ¬On_routes.
Such an implementation would however violate the as-
sumption h ¬Outside_route and therefore it is not accept-
able. So, we must design the algorithms for setting and re-

leasing train routes in such a way that two train routes
never overlap.

Currently, in the Danish National Rail Agency, h

¬(On_routes ∧ Reverses) is implemented in regulations [31],
stating that trains are not allowed to reverse on train routes
without special permission. If we follow the tradition of the
Danish National Rail Agency and do not implement this in
the interlocking system, we have to make explicit that our
design relies on it being implemented elsewhere, i.e., the
assumption

Asm

On routes sst intlck
Reverses tpo sst intlck

def
′′ =

¬ ∧h (
_ ( , )

( , , ))

Finally, still using the fault tree structure, we have that
h ¬(On_routes ∧ Error_route) must be implemented by

               h ¬(     On_routes (sst, intlck)
∧ (Error_point (tpo, sst, intlck)

               ∨  Error_signaling(tpo, sst, intlck)))

Composing the above deductions we get that the safety
commitment is

Safe com

On route sst intlck

Overlap routes intlck

Error point tpo sst intlck

Error signaling tpo sst intlck

def
_
( _ ( , )

_ ( )
( _ ( , , )

_ ( , , )))

=
¬

∧
∧

∨

h

i.e., each train should be assigned a train route, and the
train routes should be made in such a way that they do not
overlap and that all points and signals on the routes are in
states so that the trains cannot leave the train routes.

The assumptions which we have made so far are

Asm Signal bypass tpo sst

Outside route sst intlck

On routes tpo sst intlck
Reverses tpo sst intlck

def
= ¬

∧ ¬

∧ ¬ ∧

h

h

h

_ ( , )

_ ( , )

(
_ ( , , )

( , , ))

i.e., trains do not pass stop signals, all trains drive on train
routes, and trains do not reverse on train routes. The as-
sumptions must be considered together as otherwise the
assertion h ¬(On_routes ∧ Reverses) may be satisfied by h
¬On_routes, thereby violating the assumption h

¬Outside_route. Likewise as explained above, the assump-
tions and the safety commitments have to be considered
together.

The deduced safety requirements are

Safe Asm Safe com
def
= ⇒ _

This is what a programed interlocking system must ensure.

7 CONCLUDING REMARKS

We have linked one safety analysis technique, fault tree
analysis, to requirements specification so that software
safety requirements can be derived directly from the system
safety requirements. In the development of safety critical
systems, this means that the software may be proven to
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satisfy the system safety requirements. The link is based on
a dynamic systems model where states are functions of
continuous time and the behavior of a system is defined by
duration formulas that constrain the behavior within a
bounded time interval. Fault tree nodes denote such for-
mulas while gates denote formulas which express the tem-
poral, causal ordering of events in nodes. Such an interpre-
tation would also be possible and desirable with other tem-
poral or real-time logics. The crucial point is, that the logic
is capable of expressing both the semantics of the interme-
diate events, based on the structure of the fault tree, and the
semantics of the leaves.

A very interesting opportunity exists where the software is
implemented in a logic language. The semantics of fault trees
may then be given in that logic, possibly using explicit encod-
ing of time for temporal properties. It may then be feasible to
check the consistency of systematically derived requirements
directly against the program using automated tools.

Our work was originally inspired by the way that the
former Danish State Railways developed requirement
specifications for interlocking systems. They first per-
formed a hazard analysis of the system, corresponding to
deriving the roots of the fault trees, and next they negated
the hazards thereby obtaining the safety requirements for
the interlocking systems.

In practice, fault trees are developed after the system has
been designed. Our work here shows how fault tree analy-
sis and system design can be made to interact much more
effectively. The method we propose enables feedback from
the formulation of the software safety requirements to the
system design. A good example of how this might work in
practice, is the case of the software having to cope with sin-
gle point failures as identified in Section 5; when such a
software requirement is derived, a prudent systems archi-
tect might choose to modify the design, perhaps by adding
some form of redundancy.

Recently, standards have been developed in the area of
safety critical systems. These standards either advocate, or
require, that formal methods are used in program devel-
opment, and that safety analyses must be performed on the
system, e.g., [2] for railway applications and [28], [27] for
military applications. The work presented here integrates
the standards in the areas of safety analysis and program
development in a well defined, constructive way.

Our work has not yet been applied in full scale indus-
trial practice, although it has inspired the derivation of
software safety properties in one case. However, our re-
sults are currently used by an industrially led research
project [6] on a real avionics system in order to arrive at a
machine aided, stable, commercially viable software risk
assessment methodology.

We have extended the ideas presented in this paper in [9]
where we also have shown how to derive safety require-
ments from event trees [23] and cause-consequence dia-
grams [22].

One direction for further work is to extend the interpreta-
tion of fault trees to probabilistic reasoning. An initial step in
that direction is the probabilistic version of the duration cal-
culus [17], and the fault tree to Markov chain conversion [5].
The probabilistic duration calculus is based on discrete pa-

rameter Markov chains, and allows a designer to calculate
the probability of the occurrence of a certain behavior within
a given time. This would, in principle, allow us to interpret
the probability figures that are often added to fault trees.
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