
0 74 0 - 74 5 9 / 0 9 / $ 2 5 . 0 0 © 2 0 0 9 I E E E 	 July/August 2009 I E E E S o f t w a r e � 19

focus

during development as well as after delivery, to
meet users’ ever-changing needs. So, mainte-
nance performance significantly impacts soft-
ware development productivity.

Proponents claim that a key driver of DSM is
easier comprehension of system structure and be-
havior, which should make evaluating and main-
taining the models easier. We investigate this
through the following research question: Does
DSM improve the maintenance performance of
designers, compared to general-purpose modeling
using UML?

Our Objectives
Maintenance effort has two components:

understanding the artifact being changed and ■■

the changes’ impact on the artifact, and
incorporating changes.■■

We investigated how each type of modeling lan-
guage affects model comprehension, the correct-
ness of changes, and the degree of changes made
during a maintenance task.

We assessed the accuracy with which design-
ers understand model syntax and model seman-
tics. Model syntax defines a language’s or a rep-
resentation’s forms and structure. DSM directly
represents the problem space by mapping model-
ing concepts to domain concepts. The modeling
language incorporates the business rules repre-
senting domain knowledge. Furthermore, these
domain concepts represent the system’s design
by specifying the system’s static structure and
dynamic behavior. As a result, models created
with DSM match well with domain specialists’
vocabularies.1 So, we expect designers to com-
prehend the semantics of DSM models more ac-
curately than that of UML models.

A lthough domain-specific modeling (DSM) languages have been ad-
opted in industries such as telecommunications and insurance, they
haven’t yet gained wide acceptance in practice. This is because the
claims of increased productivity and ease of understanding haven’t

yet been verified by independent studies. To address this concern, we exam-
ined a DSM language’s performance for maintenance tasks. Maintenance in
software-intensive systems is critical because software often continuously evolves

Experimental
results show that
maintenance can be
significantly easier
and faster with a
DSM language than
with a general-
purpose modeling
language.

Lan Cao, Old Dominion University

Balasubramaniam Ramesh, Georgia State University

Matti Rossi, Helsinki School of Economics

Are Domain-Specific
Models Easier to Maintain
Than UML Models?

dom a in - sp e c i f i c m o de l ing

Authorized licensed use limited to: Konkuk University. Downloaded on August 02,2010 at 08:19:11 UTC from IEEE Xplore. Restrictions apply.

20	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

The tight coupling of the DSM with the do-
main allows a simpler, more compact language.
Also, the DSM language can incorporate many
business rules and domain concepts, leading to
smaller models. In contrast, the tendency to ge-
nerically use UML often results in large, complex
models. So, we expect designers to comprehend
the syntax of DSM models more accurately than
that of UML models.

The information obtained during design, in
the early stages, is usually informal and subject
to rapid changes. Therefore, models constructed
at this point often undergo major changes. The
model’s changeability (the ease of modifying it)
significantly influences the development project’s
productivity. A DSM language’s higher abstrac-
tion levels and smaller size should decrease the de-

gree of model changes and increase those changes’
correctness.

Research Design
We conducted an experiment to empirically test
our claims. The independent variable was the
modeling approach. The dependent variables were
the syntactic and semantic accuracy of the partici-
pants’ model comprehension and the degree and
correctness of the changes.

The participants were 64 senior undergradu-
ate IT students in system analysis and design
courses that included advanced UML training.
The participants had previously taken at least two
object-oriented courses and one UML course.
They also received training and completed ex-
ercises on Enterprise Mobile Application DSM
(EMADSM), a domain-specific language devel-
oped for the mobile phone industry.2 Although
the amount of training on EMADSM was much
shorter than on UML, the subjects had sufficient
levels of proficiency with both approaches.

The experimental task involved designing a
mobile-phone application for conference registra-
tion. The implementation target was a Symbian
S60-based mobile-phone application framework
for enterprise applications. The experimental
material consisted of a DSM diagram and a set
of UML diagrams representing the system design
at the design phase’s end. The UML schema in-
cluded a use case diagram, three sequence dia-
grams, three activity diagrams, and a class dia-
gram. The DSM design schema represented the
same information in EMADSM.

We randomly split the participants into DSM
and UML groups. We gave them a high-level
textual description of the system objectives and
requirements and asked them to perform the
maintenance task, which involved modifying the
models to satisfy a new requirement for the ap-
plication. After performing the task, the partici-
pants answered questions evaluating their syntac-
tic and semantic comprehension and the models’
changeability.

Discussion
The results in Table 1 and Figure 1 indicate that
the subjects performed better with DSM for each
dependent variable. All differences are statistically
significant.

Both syntactic and semantic model compre-
hension were significantly better with DSM.
This is especially noteworthy because the sub-
jects had extensive UML training but only brief
experience with DSM. Most syntactic errors in

Table 1
A comparison of UML and domain-specific

modeling in maintenance performance
Dependent
variable Unit UML DSM p value

Syntactic
accuracy

The percentage of correct answers 66.4 70.3 0.03

Semantic
accuracy

The percentage of correct answers 68.8 76.4 0.03

Correctness
of change

The score on a 100-point scale for
the changes’ correctness

68.5 83.2 <0.01

Degree
of change

The number of “steps” involved in
incorporating the change, weighted
by each step’s size

8.7 4.6 <0.01

0

1

2

3

4

5

6

7

8

9

10

0

10

20

30

40

50

60

70

80

90

UML DSM

Pe
rc

en
ta

ge
 o

f c
or

re
ct

ne
ss

De
gr

ee
 o

f c
ha

ng
e

(w
ei

gh
te

d
nu

m
be

r o
f s

te
ps

)Syntactic accuracy Correctness of change
Semantic accuracy Degree of change

Figure 1. A comparison
of comprehension and
changeability (the
ease of modifying a
model) between UML
and domain-specific
modeling (DSM). DSM
is better in both model
comprehension and
model changeability.

Authorized licensed use limited to: Konkuk University. Downloaded on August 02,2010 at 08:19:11 UTC from IEEE Xplore. Restrictions apply.

	 July/August 2009 I E E E S o f t w a r e � 21

DSM occurred because the participants mistook
one component for another. The difference in
performance for semantic comprehension was
particularly pronounced. We believe that map-
ping the model to the problem domain was eas-
ier in EMADSM because the semantic gap be-
tween the model and the problem was smaller.

The DSM models’ correctness score was about
20 percent higher than the UML models’ score.
Most subjects using EMADSM changed models
by using the correct components, although some
of them incorrectly specified the flow of actions.
In contrast, subjects using UML changed their
models primarily by adding or modifying design
elements (for example, methods) or adding new
diagrams. Several subjects neglected to change
important components in some UML diagrams,
which made the diagrams inconsistent. This find-
ing amplifies the findings for comprehension,
because it’s easier to understand the design and
incorporate changes more accurately with DSM.
This results in less maintenance effort and in
maintenance that’s less likely to generate ripple
effects and new bugs. We speculate that this dif-
ference is partly because DSM models are more
compact.

Finally, the degree of changes in DSM is much
smaller than in UML; UML diagrams required
nearly twice the number of steps.

As we mentioned before, the participants
had significant experience with UML but only
brief training with DSM. We believe that the
performance improvements with DSM would
be even more dramatic if the participants pos-
sess similar levels of experience in both model-
ing languages.

T he study has significant practical im-
plications. First, domain experts who
aren’t technical specialists might be

able to improve productivity by using DSM in
maintenance tasks. Furthermore, our findings
suggest that DSM lets users spend less time
understanding implementation or language
issues and more time modeling the solution.
Users can build DSMs incrementally and eas-
ily change them, and in many cases execut-
able applications can be built automatically
from these models. So, their use in domains
with constantly evolving requirements will
likely be beneficial.

The findings are even more compelling for
system maintenance. Because comprehending
and modifying DSM models is significantly

easier, system maintenance should be faster and
cheaper. This, combined with automatic code
generation, promises far shorter release cycles
and lower costs for providing new features.

We hope that other developer groups will
study DSM performance in different application
domains to confirm our findings.

References
	 1.	 J. Greenfield and K. Short, Software Factories: Assem-

bling Applications with Patterns, Models, Frameworks,
and Tools, John Wiley & Sons, 2004.

	 2.	 S. Kelly and J.-P. Tolvanen, Domain-Specific Modeling:
Enabling Full Code Generation, Wiley-IEEE CS Press,
2008.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/csdl.

About the Authors
Lan Cao is an assistant professor of information technologies and decision sciences at
Old Dominion University. Her major research interests are agile software development and
software process simulation and modeling. Cao has a PhD in computer information systems
from Georgia State University. Contact her at lcao@odu.edu.

Matti Rossi is a professor of information systems at the Helsinki School of Economics.
His major research interests are domain-specific modeling and design research. Rossi has
a PhD in information systems from the University of Jyväskylä. He’s a member of the ACM
and Association for Information Systems. Contact him at matti.rossi@hse.fi.

Balasubramaniam Ramesh is the Board of Advisors Professor of Computer
Information Systems at Georgia State University. He studies requirements engineering and
traceability, agile software development, and knowledge management. Ramesh has a PhD in
information systems from New York University’s Stern School of Business. He’s a member of
the IEEE, ACM, and Association for Information Systems. Contact him at bramesh@gsu.edu.

NEXT ISSUE
End-User
Software
Engineering

Authorized licensed use limited to: Konkuk University. Downloaded on August 02,2010 at 08:19:11 UTC from IEEE Xplore. Restrictions apply.

