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Abstract

This paper introduces a new method for safety analysis which modifies, automates and integrates a number of classical safety analysis
techniques to address some of the problems currently encountered in complex safety assessments. The method enables the analysis of a
complex programmable electronic system from the functional level through to low levels of its hardware and software implementation. In the
course of the assessment, the method integrates design and safety analysis and harmonises hardware safety analysis with the hazard analysis
of software architectures. It also introduces an algorithm for the synthesis of fault trees, which mechanises and simplifies a large and
traditionally problematic part of the assessment, the development of fault trees. In this paper, we present the method and discuss its
application on a prototypical distributed brake-by-wire system for cars. We argue that the method can help us rationalise and simplify an
inherently creative and difficult task and therefore gain a consistent and meaningful picture of how a complex programmable system behaves
in conditions of failure.q 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Classical safety analysis techniques such as Functional
Failure Analysis (FFA) [1], Hazard and Operability Studies
((HAZOP)) [2], Failure Modes and Effects Analysis
(FMEA) [3] and Fault Tree Analysis (FTA) [4] have demon-
strated real value over the years and they are still widely
practised in safety assessments. Indeed, those safety studies
still form the spinal element of the safety case, and provide a
frame for the interpretation of the results from other, usually
more localised, verification activities such as testing and the
application of formal methods. As the complexity of modern
programmable electronic systems increases, however, the
application of classical techniques is becoming increasingly
more problematic.

The first problem that can be observed is inconsistencies
in the results from the various safety studies of the system
which mainly arise from the selective and fragmented use of
different methods at different stages of the design lifecycle.
Classical techniques assume different design representa-

tions that reflect different levels of abstraction in the system
design. While FFA requires only abstract functional
descriptions, for example, HAZOP and FMEA require
architectural designs of increasing detail and complexity.
The problem here lies in that these different design repre-
sentations are often inconsistent. One of the reasons for that
inconsistency is that different notations are employed at
different stages of the lifecycle. Perhaps more importantly,
abstract designs are not always kept updated, and they do
not reflect changes made in lower level designs. Inevitably,
the analyses that are based on inconsistent designs are them-
selves inconsistent. One significant conclusion that in our
view can be drawn from this discussion is that if we wish to
address the problem of inconsistencies in the analyses then
we must find ways to guarantee the consistency of the design
as this evolves in the course of the lifecycle.

A second problem in classical safety analysis is the diffi-
culty in relating the results of the various safety studies to
each other and back to the high-level FFA. One dimension
of this problem is that hardware safety analysis and software
hazard analysis typically form two separate parts of the
assessment and, as a consequence, the relationship between
hardware and software failure often remains vague and
unresolved. A second dimension of this problem is that, as
the analysis remains fragmented, the safety case usually
fails to offer a coherent and complete picture of the ways
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in which low-level component failures contribute to hazar-
dous malfunctions of the system. Although fault trees are
built for this purpose, the traditional process of constructing
these fault trees relies heavily on expert knowledge, and
lacks a systematic or structured algorithm which the analyst
can apply on a system model in order to derive the tree. In
the context of a complex system this process becomes
tedious, time consuming and error prone, and the resultant
fault trees are large, but more importantly, difficult to inter-
pret and verify. In consequence, safety analyses are in prac-
tice not only voluminous but also fragmented and
inconsistent. Such analyses are also difficult to interpret
and do not always provide a useful resource in the design
of the system. But is it not the aim of safety analysis to
improve the system design? And does the fragmentation
of classical techniques not compromise this aim?

Our first aim in this paper is, precisely, to propose anew
method for safety analysis,which, we believe, can address
some of the difficulties that we discussed above. Our second
aim is to demonstrate how the proposed method has helped
us analyse, and improve in our case study, the failure

behaviour of a prototypical brake-by-wire system for cars,
and how at the end of the assessment process we have
achieved a consistent and meaningful safety case for this
system. The brake-by-wire system not only provides the
“case study” in this paper, but it also serves as a “running
example” for the presentation of our approach to safety
analysis. It is, therefore, useful to start with a brief introduc-
tion to this system.

The brake-by-wire system is a prototype in a laboratory
environment that has been developed by DaimlerChrysler
Research in the context of the European Commission
funded project Time Triggered Architectures (TTA1) [5].
The system provides a design concept for future brake-by-
wire applications in the automotive industry. The general
topology of its architecture is illustrated in Fig. 1.

The system is implemented over a network of six
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Fig. 1. Architecture of the brake-by-wire system.

1 ESPRIT project 23396. The work that we present in this paper continues
in the context of a new European Commission funded project called
SETTA (System Engineering for Time Triggered Architectures-IST project
10043).



programmable electronic nodes which communicate
using TTP/C [6], a Time Triggered communication
Protocol.2 Two of those nodes, the pedal nodes, are
physically located near the braking pedal. Their function
is to read continuously and broadcast the braking
demand on two replicated busses. On the receiving
end, there are four wheel nodes, which receive the brak-
ing demand sent by the pedal nodes. By processing this
information and sensory feedback from wheel-load,
rotational acceleration and pressure sensors, each node
calculates the value of the braking pressure that is fed
to an actuator which then applies the actual braking
pressure on the corresponding wheel of the car. The
overall system delivers a number of sophisticated
braking functions, which include braking proportional
to each wheel’s load, anti-lock braking (ABS) and
electronic stability functions. This prototype is linked
to a simulation model of the dynamic behaviour of a
passenger car on the road. The on-line visualisation
component of this simulator can dynamically show the
reactions of the vehicle to control commands, injected
failures and automatic recovery actions.

In the following sections, we will discuss the way in
which we have analysed and improved the behaviour of
this system in conditions of failure. Before we do so,
though, let us first develop the general method that we
propose for the assessment of programmable electronic
systems.

2. Overview of the safety analysis method

The proposed method is called Hierarchically Performed
Hazard Origin and Propagation Studies (HiP-HOPS) and
enables the integrated assessment of a hierarchically
described system from the functional level through to the
low levels of its hardware and software implementation.

To ensure the transferability of the vast practical experi-
ence that classical analyses incorporate, we have founded
the new method on a number of well-established techniques
such as FFA, FMEA and FTA. At the same time though, we
havemodified, automatedandintegratedthese techniques to
overcome some of the difficulties that we have already
discussed. The method mechanises and simplifies a large
and traditionally problematic part of the analysis, the devel-
opment of fault trees. It also integrates classical hardware
safety analysis with software hazard analysis and guarantees
the consistency of the results from the assessment.

Fig. 2 illustrates the safety analysis process in HiP-HOPS.
The process starts early in the design lifecycle with explora-
tory FFA of an abstract functional model of the system. At
this stage, we employ an extension of classical FFA to
identify single and plausible combinations of multiple func-
tional failures and assess their effects and criticality. This
study can assist the development of an appropriate initial
architecture for the system, which is then further refined as
the system is decomposed into sub-systems and basic
components. The result of this process in HiP-HOPS is a
consistenthierarchical model that progressively records
with increasing detail the implementation of the system
(see Fig. 2, belowSystem Design).

As the refinement of this hierarchical model proceeds, the
failure behaviour of components in the model is analysed
using a modification of classical FMEA called Interface
Focused-FMEA (IF-FMEA). The application of this techni-
que generates amodel of the local failure behaviourof the
component under examination, which is represented as a
table. The table provides a list of component failures
modes as they can be observed at the component outputs,
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Fig. 2. Overview of design and safety analysis in HiP-HOPS.

2 TTP/C has a number of safety directed properties which make it parti-
cularly suitable for application in safety critical systems. In fault free condi-
tions, for example, the communication controller ensures timely delivery of
all communication messages on the basis of a statically defined message
schedule. In the presence of faults, the controllerfails silentin response to
transient or permanent faults that could corrupt the temporal access pattern
and the integrity of data on the bus. The controller also provides rapid fault
detection of certain classes of host failures, bus failures, other node failures
and failures caused by disturbances during transmission. Finally, the proto-
col offers support for replicated buses and replicated nodes and enables the
implementation of fault-tolerant architectures [7].



and for each suchoutput failure, it determines the causes as
a logical combination ofinternal malfunctions of the
componentor deviations of the component inputs.An
IF-FMEA table records how a hardware or software compo-
nent reacts to failures generated by other components. In addi-
tion, the table determines the failure modes that the component
itself generates or propagates to other components. As weshall
show (in Section 5 and Section 7.3), this type of analysis can
provide a useful resource in the design of the failure detection
and mitigation mechanisms of the component under
examination and other components in its periphery.

Once we have determined the local failure behaviour of
all components, we can then proceed to the final stage of the
analysis where we determine the structure of the fault propa-
gation process in the system. At this stage, we determine
how the functional failures that we have identified in the
exploratory FFA arise from combinations of the low-level
component failure modes that we have identified in the
IF-FMEAs. In HiP-HOPS, this is achievedmechanically
with the aid of asystematic algorithmfor the synthesis of
fault trees. Fault trees are constructed by exploiting the
structure of the hierarchical model and information about
the local failure behaviour of components that is contained
in low-level IF-FMEAs.

The proposed fault tree synthesis algorithm is mechani-
cal, and it was, therefore, possible to automate it. Indeed, in
the context of this work we have implemented this algo-
rithm as part of an experimental tool3 that enables hierarch-
ical modelling of the system and the safety analysis process
defined by HiP-HOPS. In the following sections we exam-
ine in more detail the three stages of this process:FFA,
component failure analysisandfault tree synthesis.

3. An extended FFA process

FFA is a relatively recent safety analysis technique,
which is recommended by a number of standards as the

first step in the assessment of new or modified complex
systems. Fig. 3 records the main steps of a standard FFA
process as it is defined in SAE ARP-4761 [1]. The process
starts with the identification and listing of the system func-
tions and continues with the precise definition of the
purpose and behaviour of each function. Each function is
then examined for specific failure modes in three general
categories of failure: loss, inadvertent delivery and incorrect
operation of function. For each identified failure, the analy-
sis determines the effects on the system and the severity of
failure.

This standard process encourages and systematises the
anticipation of functional failures at the early stages of the
design. The analysis, however, is restricted tosingle func-
tional failures and it does not address issues of failure detec-
tion and recovery. This type of analysis is probably
sufficient if we can make valid assumptions of independence
between all system functions. In the general case, though,
there will be dependent functions, for example functions
that utilise common material, energy or information
resources. In such cases, we need to address the possibility
of multiple (dependent) functional failures. We believe that
one way to explore functional dependencies is by construct-
ing a more elaborate functional model than the list of
functions currently used in standard FFA.

The model that we propose is a functional block diagram,
which identifies functions and records how these functions
rely on physical parameters or data. Fig. 4 illustrates an
example of such a model for a system which delivers
three functions (A,B,C). The model clearly identifies two
functional dependencies. The first such dependency is
between functionsA andB. It can be noticed that the two
functions operate on a common physical input (p). Any
deviation of this input, therefore, is likely to cause a
malfunction of bothA andB. The second dependency that
the model identifies is between functionsB andC. Clearly
function C operates on the output of functionA and, there-
fore, relies on the correct operation ofA. The construction of
this functional model is the first step in an extended FFA
process that we propose as part of HiP-HOPS and which we
present here in Fig. 5.
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Fig. 3. The standard FFA process.

3 This tool is in fact an experimental extension of an existing commer-
cially available tool for safety analysis called the Safety Argument
Manager [8].



The first objective in this process is to identify and
remove any avoidable dependencies between the functions
that we have specified in the functional model. Each
function is then systematically examined for potential fail-
ure modes in a number of abstract failure classes, which
include the loss of function, the unintended deliveryof
function andmalfunctionssuch asearlyor late deployment.
For each identified failure the analyst determines the effects
and severity of failure and lists the results in a tabular form.
At this point, analysts are also expected to think of potential
mechanisms for failure detection and recovery. We actually
believe that it is possible to address such issues at the early
stages of the design and we, therefore, extend the FFA table
to include adetectionand arecoverycolumn.

Once we have identified all the single functional failures,
we can then identify and listplausible combinations of
multiple failures and, in a similar way, examine the effects
and criticality of such failures. A difficulty that analysts may
encounter here is the potentially large number of possible
combinations between functional failures. The number of
combinations that require examination can be constrained
by exploiting symmetries in the functional model, by
excluding combinations of failures that can only occur
under mutually exclusive conditions and by applying other
application specific plausibility criteria.

The results of this analysis are listed in a tabular form. As
we demonstrate in our case study, they provide a compre-
hensive picture of the ways that the system can fail, and
assist in focusing early the design effort to a number of
important issues:

1. the prevention of hazardous single functional failures, by
identifying and allocating critical functions to reliable
fault tolerant architectures;

2. the prevention of multiple (dependent) functional
failures, by removing avoidable dependencies between
functions and developing partitions between the systems
that deliver those functions;

3. the design of mechanisms for failure detection and
recovery from single and multiple functional failures.

4. Hierarchical modelling

FFA assists the development of an appropriate initial
architecture, which identifies the basic failure detection
and fault tolerance strategies of the target system. During
the design decomposition, this initial architecture is further
refined as the system is typically decomposed into sub-
systems, and then these sub-systems are decomposed into
more basic architectural modules. In HiP-HOPS, the result
of this process is a consistenthierarchical modelof the
system that progressively records with increasing detail
the implementation of the system. To achieve consistency
in this model, we place constraints on the modelling nota-
tions used, and introduce some additional notation for
describing levels of design.

The notation allows complex systems to be modelled as
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Fig. 4. Example functional model.

Fig. 5. The proposed extended FFA process.



hierarchies of architectural diagrams. At each level of the
system hierarchy, flow diagrams are used to describe the
operation of the system and its subsystems. At plant level,
such flow diagrams can be derived, for example, from engi-
neering schematics or piping and instrumentation diagrams.
At lower levels they can be derived from any form of
structured design notation used for the architectural design
of software or hardware components, for example Data-flow
diagrams [9] or MASCOT diagrams [10]. The five primitive
elements of the proposed notation are illustrated in Fig. 6.

According to the notation, modules of an architecture can
be represented either ascomponentsor subsystems. If the
failure behaviour of a module is known, and it can be
recorded in an IF-FMEA table, the module is represented
as a basiccomponent.In the opposite case, the module is
rendered as asubsystem, and is further decomposed into an

architecture of more basiccomponentsthe failure behaviour
of which can be determined using IF-FMEA. Components
and subsystemscommunicate exchanging flows, which
represent the material, energy or data transactions between
the elements of the architecture. To enable this type of
modelling, we have implemented in the Safety Argument
Manager ahierarchical model editorthat supports the
proposed notation (see Fig. 7).

5. Assessment of failure at component level

As the refinement of the hierarchical model proceeds, we
identify basic hardware and software components. The fail-
ure behaviour of these components is analysed using an
extension of FMEA. Traditional FMEA examines the
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Fig. 6. Modelling notation.

Fig. 7. The hierarchical modelling editor.



origins of failure within the component itself. In other
words, it examines the failure behaviour of the component
considering only internal malfunctions (possibly caused by
the environment). The function of a component in the fail-
ure domain, however, is significantly more complicated. A
component does not only generate failure events. It can also
detect (or not) and respond (or not) to failure events gener-
ated by other components which interface to the component
via its inputs.

A component, for example, may detect disturbances of its
input parameters, e.g. the absence of a power signal, or a
value that is out of range. In turn, the component canmiti-
gatethe propagation of such failure events. In the absence of
a power signal, for example, the component may automati-
cally switch to a redundant power supply.4 Similarly, it may
replace a detected invalid input value with a correct default
value. A component can also fail to detect such input fail-
ures and it canpropagatethose failures to other compo-
nents. Finally, it maytransform a certain input failure
event, to a different type of output failure. An example of
such a component is the TTP/C communication controller
that is used for the exchange of messages between the nodes
of the brake-by-wire system. The controller detects the early
or late delivery of messages from the host and, in response,
it cancels the transmission of those messages to ensure the
integrity of other data on the bus [11]. This clearly repre-
sents a case of atiming failure being transformed into an
omissionfailure.

To capture those additional aspects of the behaviour of
the component in the failure domain, we propose an exten-
sion of FMEA, called IF-FMEA (Interface Focused-
FMEA). IF-FMEA is a tabular technique, which can be
used in a similar way to traditional FMEA in order to exam-
ine component failure modes caused by internal component
malfunctions. Beyond that, however, the method provides a
systematic way to examine thedetection, mitigation and
propagation of failure across the componentinput and
output interfaces. The method requires a model of the
component, which identifies the component inputs and
outputs. In the course of the analysis, each output of the
component is systematically examined for potential devia-
tions from the intended normal behaviour. The specific fail-
ure modes of each output are determined as the behaviour of
the output isscrutinised for potential deviations that may fall in
one of the following three abstract categories of failure:

1. service provisionfailures such as the omission or commis-
sion of the output;

2. timing failuressuch as the early or late delivery of the
output;

3. failuresin the value domainsuch as the output value being
out of a valid range, stuck, biased, exhibiting a linear or
non-linear drift or erratic behaviour.5

The result of this analysis is a model of the local failure
behaviour of the component under examination. This model
is represented as a table and it provides a list of component
failures modes as they can be observed at the component
outputs. For each suchoutput failurethe analysis determines
the causes as a logical combination of un-handledinternal
malfunctions of the componentor un-handleddeviations of
the component inputs.6 For each internal malfunction, the
analysis records an estimated or experimentally derived fail-
ure ratel in failures per hour (f/h) or other suitable units.

In HiP-HOPS, this technique replaces the traditional fail-
ure mode and effects analysis of hardware components.
Beyond hardware safety analysis though, IF-FMEA is also
used for the analysis of software architectures. In the case of
a software module, a task for example, the IF-FMEA table
records how the task responds to omission, commission or
corruption of input data caused byprovision, timing and
value failurespropagated by other software modules. In
addition, the table shows how malfunctions of the task can
be caused by failures of subsidiary elements such as the
processor, the operating system or the memory elements
used by the task. An example of software IF-FMEA is illu-
strated in Fig. 8.

The figure contains a fragment from the IF-FMEA of the
pedal task, which is located on the pedal node of the brake-
by-wire system. The task reads the braking demand
provided by two pedal sensors, detects invalid (out of
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4 The component, for example, is connected to the second power supply
through a normally open contact which is relayed to the main power signal.
As long as power is received from the primary supply, the contact remains
open and breaks the secondary circuit. In the case of power failure, the
contact closes and the component automatically connects to the secondary
power source.

5 The basis of this categorisation can be found in earlier work on classi-
fications of failures in particular domains (see [12–14]). In [14] for exam-
ple, McDermid and Pumfrey propose a HAZOP inspired technique for
software hazard analysis in which the above classification (provision,
timing and value failures) guides the identification and assessment of
hazards in software architectures. Their original classification distinguishes
between two broad classes of value failures: subtle and coarse failures.
Although we have essentially adopted this classification for the purposes
of IF-FMEA, whenever this is appropriate we attempt a separation of value
failures in more detailed classes (such as valueout of range, stuck, biased
etc). As we demonstrate in the brake-by-wire case study (Section 3.3.3), a
more detailed classification of value failures can increase the information
content and the value of the analysis and can help to identify appropriate
techniques for detecting failures that belong to particular classes.

6 We must note that our work on IF-FMEA draws from the work of
Fenelon [15,16] on the Failure Propagation and Transformation Notation,
a graphical notation for the representation of the transformation and propa-
gation of failure in a system. Although an FPTN module and an IF-FMEA
table differ in form, they are conceptually similar in the sense that they both
define a set of equations which characterise the logical relationships
between input and output failure events. In contrast to FPTN modules
though, IF-FMEAs are semantically and syntactically linked to the design
representation of the system. Input and output failure events, for example,
always represent deviations of parameters that are explicitly represented as
flows in the hierarchical model of the system, and they strictly refer to those
parameters with the name that they possess in the model. As we shall show
in the following section this link enables the mechanical generation of fault
trees from the design representation and the IF-FMEAs of its components.



range) measurements and provides as output the average of
the valid sensor readings. The output of the pedal task is the
driver message that is send over the bus to the wheel nodes
(see Fig. 1). The IF-FMEA table examines two potentially
hazardous failure modes of this output.

The first such failure is an omission of the driver message.
The analysis shows that this event can arise from a task
malfunction with an assumedoverall failure rate of
1026�1027 1 9 × 1027 � 1026 f =h�: Such a malfunction
can be caused by a failure of the processor�� 1027 f =h�
or a failure of the operating system�� 9 × 1027 f =h�: The
output event can also be caused by deviations of the inputs
that the task receives from the pedal sensors. Indeed, if both
sensor readings are out of the valid range of measurement,
the task is unable to produce the driver message. The second
hazardous output failure examined in the table is a condition
wherethe value of the driver message is stuck at zeroand
does not represent the actual pedal stretch. This
condition can be caused by stuck at zero failures of
the memory elements used by the task with a failure rate
of 2 × 1026 f =h: In addition, the analysis shows that the
condition will also occur if both sensor inputs are stuck at
the minimum of the normal measurement range. Note that
the above failure rates are only given as examples and do not
represent reliability data of a real system.

Clearly, an IF-FMEA of a component shows how the
component reacts to failures generated by other compo-
nents. The table for the pedal task, for example, shows
how the task responds to failures generated by the two
sensors. In addition, the table determines the failure
modes that the component itself generates or propagates.
Such a table, we believe, can be employed usefully by the
designer of the system in order to improve the failure detec-
tion and mitigation mechanisms of the component under

examination and other components in its periphery. To
enable this type of analysis and integrate it with the
hierarchical model of the system, we have developed in
the Safety Argument Manager tool a tabular (spreadsheet
like) editor (Fig. 9).

6. An algorithm for the mechanical synthesis of fault
trees

IF-FMEAs contain expressions that describe the causes of
output failures as logical combinations of internal component
malfunctionsor deviations of the component inputs. These
expressions are described in two columns of the IF-FMEA
table: theInput Deviation Logiccolumn and theComponent
Malfunction Logic column. The semantic relationship
between the expressions in those two columns is a disjunction
(i.e. a logical OR). Thus, given an arbitrary row of the IF-
FMEA table, the logical relationship between theOutput Fail-
ure Modedescribed in this row and the correspondingInput
DeviationandComponent Malfunction Logicis:

Output Failure Mode

� Input Deviation Logic u

Component Malfunction Logic

where u represents the disjunction

operator �OR�
The grammar of a combined expression that determines the
causes of output failure in the above form is given in Fig. 10
(described in Extended Backus Naur Form). This grammar
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Fig. 8. Model and fragment of the IF-FMEA of the pedal task.



recognises parenthesised logical expressions that contain
conjunction (&) and disjunction (u) operators and other term-
inal symbols representingcomponent malfunctionsor input
deviations. Such terminals are recognised ascomponent
malfunctions, unless they contain a hyphen (-) in which case
they are recognised asinput deviations. The part preceding the
hyphen is interpreted as thefailure class(‘O’ for omission, ‘C’
for commission, ‘Vs_0 ’ for value stuck at zero etc.) while the
remaining part of the string is interpreted as the name of the
component input.

The grammar of Fig. 10 is right recursive and gives prece-
dence to conjunction operators. Thus, for example, the
expression aub&c is interpreted as au(b&c) and not as
(aub)&c. In terms of syntactical analysis, the grammar can
be interpreted by a relatively simple and efficient parsing
scheme. This scheme is, in fact, a top–down predictive

parser [17] that can perform syntactic analysis and interpre-
tation of expressions that conform to the foregoing grammar
without backtracking through production rules in the course
of the translation process.

Fig. 11 shows the parse tree generated when, for example,
the parser processes the expression:

short_circuit u mechanical_failure u

�O 2 input 1 u O 2 input 2� & O 2 power :

It can be noticed easily that the logical structure of this
parse tree is identical to that of a mini fault tree that
represents in graphical form the failure logic described
in the expression. Fig. 12 illustrates the equivalent mini
fault tree for the expression. We can clearly notice the
identical position of logical connectives within the two
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Fig. 9. Component and its safety analysis (IF-FMEA).

Fig. 10. Grammar for IF-FMEA expressions.



tree structures. The relationship between the parse tree
and the fault tree is not coincidental nor is it limited to
the above example. It reflects a generic property of the
parser, which enables the simple and straightforward
synthesis of a mini fault tree for any expression that
conforms to the proposed grammar, in the course of the
translation process.

In HiP-HOPS this mechanism is used as part of an algo-
rithm for the automatic synthesis of fault trees. Fault trees
for hazardous functional failures, as they are observed at the
outputs of the system or its subsystems, are constructed by
traversing the hierarchical model of the system and by
following the propagation of failure backwards from the
final elements of the design (actuators) towards the system
inputs (sensors). The fault tree is generated incrementally as
we parse the expressions contained in the IF-FMEAs of the
components that we encounter during the traversal, and as
we progressively substitute the input deviations received by
each component with the corresponding output failures

propagated by other components. The synthesis algorithm
proceeds in two dimensions:
1. vertically, translating system (or sub-system) failures to

component failures;
2. horizontally, translating output failures to combinations

of component malfunctions and deviations of component
inputs.

The search across the vertical axis of the hierarchy has
always a higher priority. The rule is that when a sub-system
is encountered during the traversal of the hierarchical
model, the causes of its output failure are always traced
first at the sub-ordinate hierarchical level of the design,
which describes the architecture of the sub-system.

To integrate the fault tree synthesis into the modelling
and safety analysis process, we have implemented the
synthesis algorithm in our tool and integrated it with the
modelling and IF-FMEA editors. The tool can now synthe-
sise fault trees for functional failures at the outputs of the
system or its sub-systems by traversing the system model
and parsing the IF-FMEAs of its components. In practice,
when we wish to generate a fault tree, we select an output
parameter or an internal flow in the model and specify a
deviation of this parameter from its intended behaviour
(see Fig. 13). In response, the tool generates the fault tree
for the given deviation. During the synthesis, the Safety
Argument Manager derives the probabilities of component
malfunctions from IF-FMEAs, and uses these data to
perform minimal cut-set analysis and probabilistic calcula-
tions on the fault tree.

The fault tree is drawn on a scrollable canvas upon which
we can zoom to study different parts of a large and complex
fault tree. During the synthesis, the tool hyperlinks nodes of
the fault tree to component renderings. Thus, it enables
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Fig. 12. The equivalent mini fault tree.

Fig. 11. The parse tree for the given example expression.



direct navigation between nodes of the fault tree and the
hierarchical model of the system, so that we can always
trace easily the origins and propagation of failure back to
the system design. This aids review of the fault trees, and
helps gain confidence that the mechanically constructed
trees represent the failure behaviour of the design.

The synthesised fault trees record the propagation of fail-
ure in a very strict and methodical way. They start from
failures of the final elements of the design (actuators) and
following the dependencies between components in the
model, they progressively record other component failures
and deviations of the system inputs. The rules that we apply
to capture the fault propagation in the tree structure are
explicit, consistent and always the same. The resultant
fault trees, therefore, have a logical structure which is deter-
mined by the application of these rules (synthesis algo-
rithm), the interconnections between the components of
the model and the IF-FMEAs of those components. This
logical structure is straightforward and can be easily under-
stood, unlike the structure of many manually constructed
fault trees, which is often defined by implicit assumptions
made by analysts.

For those reasons, we believe that the synthesised fault
trees are easier to interpret in the context of the system
model, and that such fault trees can provide a useful
resource in the system design. The probabilistic calculation
on these fault trees can indicate if the target failure rates for
the critical functions of the system have been met. Cut-sets

of the fault trees that contribute more to the overall failure
probability can directly point out weak areas of the design
and initiate useful design iterations. Currently, re-design
creates enormous difficulties in the maintenance of large
manually constructed fault trees. In contrast, design itera-
tions would not pose problems to the synthesis of the fault
trees as new fault trees could be re-constructed automati-
cally after each design iteration after certain changes in the
underlying safety analyses.

The idea underlying the proposed fault tree synthesis is a
simple one and it can be summarised in the following
proposition:

If we know the “structure” of a system (model) and
the “local failure behaviour of its components”
(IF-FMEAs) then we can mechanically derive the
“failure behaviour of the system” (fault trees).

This proposition implies that the synthesis algorithm could
also be used for the mechanical synthesis ofsystem IF-
FMEAs. Indeed, to synthesise an IF-FMEA for a system
one would just need to construct the fault trees for all the
possible deviations at the system outputs, and then derive
the minimal disjunctive form of those fault trees. Such IF-
FMEAs could help in rationalising and simplifying complex
safety assessments, as they would provide failure models
which could be re-used within the same application or
even across different applications, possibly after some
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Fig. 13. Tool support for automatic Fault tree synthesis.



necessary minor adjustments to reflect the effects of a
different environment.

Finally, we must point out that the quality of the mechani-
cally generated fault trees is strongly contingent to the qual-
ity of the system model and the low-level analyses of its
components. But while the method does not necessarily
generate perfect fault trees, on the other hand it ensures
that the assumptions underlying the structure and content
of those trees (i.e. model and IF-FMEAs) have been
recorded and they are in an explicit, complete and accessible
form for reviews. This, in our view, is probably the most
significant contribution of the synthesis algorithm in
improving the quality of the results from the safety
assessment.

7. Case study

Our case study on the brake-by-wire system is a safety
case that we have produced in parallel to the development of
this system using HiP-HOPS and the Safety Argument
Manager tool. The study is based on a detailed hierarchical
model of the implementation of the system. Our analysis
starts at the functional level of the design, and proceeds all
the way down the design hierarchy to examine the failure
behaviour of low-level hardware components such as
sensors and actuators and software components such as

the tasks running on the nodes of the distributed architec-
ture.

In this section we discuss the results from this study and
highlight our most significant findings. Drawing from these
results, we will attempt to illustrate how HiP-HOPS has
helped us to overcome some of the problems of classical
techniques, improve the system design, and how at the end
of the assessment process we have achieved a consistent and
meaningful safety case.

7.1. FFA

The FFA of the brake-by-wire system was carried out
early in the design process. Although it was based on a
conceptual design of the system, it helped us to determine
ways in which the system can fail beyond the obvious loss
of braking, and to consider detection and recovery mechan-
isms for these failures. Fig. 14 illustrates the abstract func-
tional model of the brake-by-wire system which provided
the basis for the analysis. The model shows the four braking
functions delivered by the system (one on each wheel), their
input parameters and their outputs.

Our first observation on the model is that thefour braking
functions are dependentsince they rely on the same physical
input, the braking demandprovided by the driver. This
dependency is essential and it cannot be removed. The
implication for the design is that the braking demand must
be carried in a reliable manner from the driver’s pedal to the
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Fig. 14. Abstract functional model of the brake-by-wire system.



wheels. We have, therefore, decided early to replicate the
pedal nodes, which capture the braking demand and use a
dual bus for carrying this information to the wheel nodes.
The model also shows that the four braking functions are
almost identical. They perform identical calculations on
identical typesof input data (braking demand, axle load,
wheel rotational acceleration, and pressure feedback) and
generate identical types of output (braking pressure to the
wheel).

Their only difference is defined by the parameters KF and
KR which determine the distribution of braking between the
front and rear axle of the car (the ratiofront:rear is approxi-
mately 60:40). This symmetry of the functional design
across the longitudinal axis of the car made it possible to
examine only two out of the four braking functions in the
course of the FFA.

The first part of the FFA identifiessinglefunctional fail-
ures of thefront-left andrear-left wheelbraking functions.
Each of the two functions has been systematically examined
for potential failures in a number of failure classes, which
include the loss of function, the unintended delivery of func-

tion and malfunctions such as early or late deployment. For
each failure that we have identified, the analysis records the
effects in terms of the impact on three parameters of the car:
stability, steerability and braking capacity. The severity of
each failure is described using the standard four severity
classes of IEC-61508 [18] (catastrophic, critical, marginal,
insignificant). Our analysis shows that certain functional
failures can be mapped to other types of failures.Late and
less braking,for example, can be seen as temporaryloss of
braking with obviously less severe effects than permanent
loss of braking. Table 1 summarises the four most severe
failures of each braking function.

It can be noticed that in this type of distributed system
there is nocatastrophicsingle functional failure and that all
single functional failures are tolerable (althoughcritical).
There are also possibilities for detection and recovery from
a number of failures. Some of the effects of a permanently
locked wheel on the stability of a car, for example, can be
compensated by a recovery function which in response to
the initial failure locks the diagonal wheel (see Table 1;
FL7).
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Table 1
Main functional failures of a wheel braking function

Failure ID Effects on System Severity Detection Recovery Recommendation

Loss of Braking (omission)
When there is braking intention

FL3 The car tends to drift to the side
230% stability218/232%
braking (rear/front)215%
steerability In the worst case the
drift is opposite to the drivers
intention

Critical Locally, using
feedback from
a pressure
sensor
Remotely, by a
local status
reporter and a
remote monitor
task

Not Possible In addition, the failure can
be detected by a global
rotational acceleration
sensor. An Electronic
Stability Program device
may handle the problem
(this is out of the scope of
this brake-by-wire system)

Unintended Braking
(Commission) When there is no
braking intention

FL4 The car tends to drift to the side Critical It is possible in
certain cases by
comparing the
state of the
pedal with a
pressure sensor
feedback from
the wheel

Release actuator The detection algorithm
should be sufficient to detect
pedal sensor failures and
internal corruption of the
pedal messages. There
should be provisions to keep
commission failures
temporally limited

Permanently Locked Wheel
When there is braking intention

FL7 The car tends to drift to the side
230% of stability21/22% of
braking (rear/front)265%
steerability In the worst case the
drift is opposite to the drivers
intention

Critical It is possible,
by using
feedback from
a rotational
acceleration
sensor

Release pressure
until wheel
unlocked If for any
reason the wheel
remains locked,
then lock the
diagonal wheel

Incorporate an ABS
algorithm, to prevent
permanent locking of wheel.
In addition implement a
detection mechanism for
ABS failure and a recovery
mechanism at system level
(locking of diagonal wheel)

Permanently Locked Wheel
When there is no braking
intention

FL8 Equivalent to FL4 but more
severe since maximum braking is
applied

Critical It is possible,
see FL4 and
additionally by
using feedback
from a
rotational
acceleration
sensor

See FL4 See FL4



In the second part of the FFA, we have considered combi-
nations of multiple (two, three and four) functional
failures. The first step here was to identify the plausible
combinations of such failures. The system has four braking
functions and each function has four major failure modes
(see Table 1). Although the number of the possible combi-
nations of those failures is large, a systematic examination
of those combinations has shown that the number ofunique
combinations is relatively small. One reason is the symme-
try in the functional design of the brake-by-wire system. In
addition, certain combinations are impossible because they
can only occur in different and mutually exclusive
conditions (braking intention/no braking intention).

The analysis has shown that, with the exception of loss of
rear axle braking and loss of “diagonal braking”, the loss of
two or more braking functions is intolerable (severity�
catastrophic), mainly because of unacceptable loss of brak-
ing capacity. Recovery is impossible and, therefore, such
multiple failures shall be prevented by design, for example
by taking measures against common cause failure. The
analysis also indicates that the commission of two or more
functions (unintended braking) can be tolerable if it is
temporally limited, in other words if it is a result of short
transient failures or if there is rapid detection and release of
the braking actuator.

Finally, the analysis shows that wheel locking affects the
stability and steerability of the car. The severity of the
effects varies frommarginal(two diagonal wheels), tocata-
strophic (rear axle, three wheels). An interesting observa-
tion is that while the severity of a single locked wheel is
critical, the severity of two locked diagonal wheels is
marginal. This indicates that it is possible to use the inten-
tional locking of the diagonal wheel as a simple recovery
from a single wheel locking failure (see Table 1:FL8). The

analysis also confirms that the locking of four wheels is less
severe (critical) than the locking of three or, in some cases,
two wheels. Thus, intentional locking of all wheels can be
used as a compensatory mechanism against certain more
serious locking failures.

7.2. Hierarchical model

This high-level FFA equipped us with a comprehensive
view of the ways in which the system can fail, and helped
the design of the initial architecture of the system. To ensure
consistency between the analyses, all the remaining aspects
of safety assessment were performed on a consistenthier-
archical model of this architecture. The hierarchy was
developed during the design decomposition process. The
process involved the decomposition of the system into
sub-systems, and then further decomposition of each sub-
system into more basic modules. The hierarchical model
that we have developed in the Safety Argument Manager
tool is precise and is based on the actual hardware and soft-
ware implementation ofone braking function over two
pedal nodes and one wheel node.

Fig. 15 illustrates the top-level architecture of this model.
It can be noticed that the pedal nodes (P1, P2) and the wheel
node (W) are marked as sub-systems. Each such sub-system
in the model has a subordinate hierarchical level, which
describes the architecture of this sub-system. This decom-
position process is repeated until we reach the low levels of
the hardware and software implementation. Fig. 16, for
example illustrates two successive layers in the architectural
decomposition of the wheel node sub-system (W).

In the first layer, we see the architecture of the wheel
node, composed of a communication controller, an actuator
unit, three sensors (rotational acceleration, load and
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Fig. 15. Top level of the hierarchical model of the brake-by-wire system.



pressure feedback sensor) and a wheel controller. At the
second level of the decomposition, Fig. 16 illustrates
the architecture of the wheel controller. The model at this
level identifies the software tasks that compose the software
architecture of the wheel controller as well as the data flows
between them. We must point out that the intention of those
figures is rather to provide an indication of the complexity
of the model than to show details of the design.

7.3. Component safety analyses

As the hierarchical model of the system evolved, IF-
FMEAs contributed further to its improvement. Sensor IF-
FMEAs, for example, provided lists of sensor failure modes
as these can be observed at the sensor outputs (e.g. output
stuck, biased, out of range, exhibiting non-linear drift etc.).
These IF-FMEAs have directly supported the design of
hardware redundancy schemes and averaging or voting
algorithms for the detection and masking of sensor failures.

Fig. 17 illustrates an example of a sensor/converter unit.
The unit receives one input, the signal that triggers the
analogue to digitalconversion, and delivers one output,
the measurement value. The IF-FMEA of this unit is
presented in Table 2. The table lists all the potential failure
modes that can be observed at the output of the component.
In other words, it provides a detailed account of the failures
that the component generates and that it potentially propa-
gates to other components. Let us now see how this table can
assist the design of a component that interfaces to the sensor
and operates on the measurement that the sensor provides at
its output.
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Fig. 16. Two successive levels in the hierarchy of the brake-by-wire model.

Fig. 17. Sensor and analogue to digital converter unit.



Let us assume for example, that the sensor of Fig. 17 is a
pedal sensor, and that we want to design apedaltask which
reads the braking demand and then broadcasts this value on
the dual bus. The failure rates in the IF-FMEA of the sensor
suggest that the sensor is a fairly unreliable component. To
capture the braking demand in a fairly reliable manner we,
therefore, need to employ at least two sensors. The table
also indicates that the pedal task should perform range
checks on the value of the monitored variable in order to
detect invalid (out of range) measurements (Vv,MIN 2 o and
Vv.MAX2 o) that can be caused by a number of sensor
failures.

It can be noticed that noise may also cause invalid (out of
range) indications, when the value of the parameter lies
close to the minimum or maximum of the measurement
range. In the worst case noise will shift a value, which
reflects a demand for maximum braking into the region of
invalid measurements. This in turn may cause a failure to

brake. To prevent hazardous false alarms arising from noise
in border conditions, the pedal task should consider the
possible presence of noise in its interpretation of the sensor
output. A simple way to achieve this is by relaxing the range
of valid measurements to tolerate a reasonable level of
noise. Beyond noise, high temperature and mechanical
problems can also cause small drifts, which distort the
measurement of the physical parameter (Vv_DRIFT 2 o).
One way to compensate against such drifts is by averaging
the valid sensor values.

It is important to point out that this strategy also offers
some protection againststuck at(Vv_STRUCK2 o) and omis-
sion (O2 o) failures of the sensors. Indeed, the average of
the two measurements will bestuck ata certain value only if
both measurements are stuck at the same or different values.
The pedal task, therefore, will fail to deliver a non-zero
braking demand only if both sensors are stuck at zero.
Indeed, if only one measurement isstuck at zero, the
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Table 2
Sensor IF-FMEA

Output failure mode Description Input deviation logic Component malfunction logic l (f/h)

Vv,MIN 2 o Output value below valid range.
Caused by a short circuit to
ground (e.g. because insulation
has failed) or by noise when the
value is close to the minimum of
the measurement range.

– Short_circuit_to_grounduNoise 1E-4u2E-4

Vv.MAX2 o Output value above valid range.
Caused by a short circuit to
power supply or by open line or
by noise when the value is close
to the maximum of the
measurement range.

– Short_circuit_to_power_supplyuOpen_lineuNoise 1E-4u2E-4u1E-5

Vv_DRIFT 2 o Output drifts from actual
measurement. Caused by noise,
high temperature or more subtle
mechanical problems

– NoiseuTemperatureuMechanically biased 2E-4u1E-4u1E-3

Vv_STUCK2 o Output stuck at a certain value.
Caused by mechanical parts
being stuck or by memory buffer
failure

– Mechanically_stuckuMemory_buffer_stuck 1E-3u1E-5

O2 o Failure to update the sensor value
buffer. Caused by a converter
failure or by an omission of the
trigger signal (e.g. trigger line is
broken). Similar effect to
Vv_STUCK2 o

O2 i Converter_failure 1E-5

C2 o Inadvertent update of sensor
value buffer. Caused by a
converter failure,
electromagnetic interference
(e.g. lightning) or by a
commission of the trigger signal

C2 I Converter_failureuElectromagnetic_interference 1E-5u2E-5

E 2 o Early delivery of measurement
Caused by a timing failure of the
converter. Similar effect to a
commission failure (C2 o)

– Converter_failure 1E-5

L 2 o Late delivery of measurement.
Caused by a timing failure of the
converter

– Converter_failure 1E-5



pedalwill average zero with the correct measurement and
send to the wheel nodes a non-zero value which represents
half of the actual braking demand.

IF-FMEA also contributed in the analysis of software
architectures and the identification of subtle errors in certain
software algorithms. The technique has helped us, for exam-
ple, to identify a condition that could make an early version
of the genericpeak detectionalgorithm of the brake-by-wire
system fail with possibly severe consequences for the
system. The peak detection algorithm is applied to sensor
readings in order to detect and remove transients that violate
the normal dynamic behaviour of the physical parameter.
The average of thek last valid readings (vm1…vmk) is calcu-
lated in every cycle of measurement. If the current reading
(m) deviates from this average more than a maximum
allowable limit (1), i.e. if

um2
Xk
i�1

vmi

 !
=ku . 1;

then it is considered invalid and is discarded. The model of a
software task that uses such a mechanism is illustrated in
Fig. 18. The task performs peak detection on the input value
(m). When the input value does not violate the peak detec-
tion criterion, it is copied to the task output (o). In the
opposite case, the output carries the average of the lastk
valid values (a).

During the IF-FMEA analysis of the task and as we
systematically examine the task output (o) for potential fail-
ure modes, we will have to consider the possibility of the
output beingstuck ata certain value. Part of the examination
process is to identify deviations of the input (m) that can

cause thestuck atfailure at the output. An obvious case of
such a deviation is theomissionof input. For as long there is
an omission of input, the output will be stuck at a value
defined by the average of thek last valid measurements.
More importantly thestuck atfailure may persist following
the end of a temporary omission. Indeed,if the omission is
long enoughto create a deviation between the restored
measurement and the last valid average which is greater
than 1 , then all new measurements will be discarded as
invalid, i.e. we will have a persistent stuck at failure.

Let us now assume that the task is part of the wheel node
implementation. The task input is the pedal message arriv-
ing through the bus and the task output is the braking pres-
sure applied to the wheel. Our analysis has shown that if
there is atemporary omissionof the pedal message at the
early stages of braking (e.g. due to electromagnetic inter-
ference), the output might bepermanently stuck at zero or at
a low braking valuewhich will causea failure to brake. This
problem was rectified in a redesign of the peak detection
algorithm.

7.4. Fault tree synthesis

In the course of this study we also mechanically gener-
ated, regenerated and evaluated a number of fault trees for
the brake-by-wire system. Fig. 19 illustrates, for example,
the fault tree that we synthesised for one of the main hazar-
dous functional failure modes of the system: “omission of
braking”. We must clarify that the intention of this figure is
to illustrate the level of complexity and the form of the
mechanically generated trees rather than to show details
of the case study.

The mechanical analysis of the fault trees that we synthe-
sised pointed out weak areas of the design and focused our
efforts on those areas. Theminimal cut-setanalysis, for
example, pointed out single points of failure and areas of
the design that contributed more to the overall failure prob-
ability of the system. These results initiated a number of
useful design iterations and guided the revision of the
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Fig. 18. Simplified model of the peak detection and removal task.

Fig. 19. Distant view of the fault tree for the event “Omission of braking”.



fault tolerance strategies in the system and the allocation of
additional redundant resources.

It is equally important to point out that the synthesis
algorithm could not have generated those fault trees if
there were any inconsistencies in the hierarchical model
or among the analyses of the components of that model.
In that case, the algorithm would have simply pointed out
the inconsistencies. The synthesised fault trees, therefore,
link in a consistent manner the results from the various
analyses to each other and back to the high-level FFA,
and hence guarantee the consistency of the safety case.

8. Conclusions and further work

In this paper we identified a number of problems arising
in complex safety assessments and proposed a way to
address those problems by extending, automating and inte-
grating a number of classical techniques into a new method
for safety analysis.

The proposed method enables the assessment of a
complex system from the functional level through to low
levels of the hardware and software implementation of the
system. It integrates design and safety analysis, and in the
process of the assessment, links a consistent hierarchical
model of the system to the results from the safety studies.
The method also harmonises hardware safety analysis with
the hazard analysis of software architectures, and introduces
an algorithm for the synthesis of fault trees, which
mechanises and simplifies a large and difficult part of the
analysis, the development of fault trees.7

We described the method and demonstrated its applica-
tion on a distributed brake-by-wire prototype in a laboratory
environment. In the course of our presentation, we attempted
to address two questions concerning our approach to safety
analysis. Firstly, can the method help us rationalise and
simplify safety assessment, and generate consistent safety
cases? Secondly, can the results from the analysis help us
improve the failure detection and recovery mechanisms of
the system under examination and, if so, how? We believe
that the brake-by-wire case study demonstrates positive
results with regard to both those questions.

Firstly, the fault trees that we mechanically generated
guarantee consistency among the low-level safety analyses
and between those analyses and the hierarchical model.
They also indicate that HiP-HOPS can rationalise the
development and maintenance of large fault trees, and, in
that sense, can alleviate some of the problems currently

encountered in the quantitative aspects of complex
safety assessments.

Secondly, the results from the analysis helped us to
improve systematically the failure detection and control
mechanisms of the brake-by-wire system. The FFA, for
example, helped the design of mechanisms for the recovery
from single and multiple wheel locking failures. Sensor IF-
FMEAs directly supported the design of hardware redun-
dancy schemes and averaging or voting algorithms for the
detection and masking of sensor failures. IF-FMEAs also
helped us analyse the pedal and wheel node architectures,
and to identify subtle errors in the design of certain software
algorithms. Finally, the mechanical analysis of fault trees
further helped us to identify weak areas of the design and
focus our efforts to those areas.

Our limited experience from the application of the
method indicates that the method can rationalise and
simplify an inherently difficult and costly task, the safety
assessment of programmable electronic systems. The
method, though, also inherits some of the limitations of
classical safety analysis. In the quantitative aspects of the
assessment, for example, we still rely on component failure
rates (l ) which are often difficult to obtain and the validity
and value of which are generally disputed [19,20].

A second limitation of HiP-HOPS is that the predominantly
structural model currently providing the basis for the analysis
does not enable the representation of highly interactive
systems where operator errors can contribute significantly to
the failure of the system. The application of the method is
therefore currently restricted to electromechanical systems
that have limited interaction with human operators. Finally,
we must point out that the process that we described in this
paper requires that thebehaviour or configuration of the
system remains stable within the period of operation covered
by the analysis. If the system undergoes behavioural or struc-
tural transformations during operation, a separate set of
analyses must be carried out within each phase of operation.

We currently extend our method to resolve the complica-
tions caused in safety analysis by the often interactive or
dynamic character of complex systems. Our approach is to
introduce in the centre stage of the assessment process a
dynamic model that can capture the behavioural of struc-
tural transformations that occur in such systems. In its
general form, this model is a hierarchy of abstract state-
machines, which is structured around the current static
(structural) hierarchy of HiP-HOPS. We hope that we will
soon be in a position to demonstrate that, with those exten-
sions, the principles that we have developed in this paper
could also be applied effectively in the context of highly
dynamic or interactive systems.
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7 We are aware of other approaches to the synthesis of fault trees, which
exhibit some conceptual similarity to our approach, in that they also use a
description of the system to trace dependencies and the propagation of
failure between components (see for example, [21–24]). However, it is
beyond the scope of this paper to discuss the precise relationship of this
aspect of HiP-HOPS to previous attempts for the automatic synthesis of
fault trees.
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