
Getting started with SMV

K� L� McMillan

Cadence Berkeley Labs

���� Addison St�

Berkeley� CA ��	��

USA

mcmillan
cadence�com

March ��� ����

Abstract

This tutorial introduces the SMV veri�cation system� It includes examples of tem�

poral logic model checking� and re�nement veri�cation� including techniques of circular

compositional proof� temporal case splitting� symmetry reduction� data type reduction

and induction�

c����� Cadence Berkeley Labs� Cadence Design Systems�

�

� Introduction

This is a short tutorial introduction to SMV� a veri�cation system for hardware designs� SMV
is a formal veri�cation tool� which means that when you write a speci�cation for a given
system� it veri�es that every possible behavior of the system satis�es the speci�cation� This
is in contrast to a simulator� which can only verify the system	s behavior for the particular
stimulus that you provide�

A speci�cation for SMV is a collection of properties� A property can be as simple as
a statement that a particular pair of signals are never asserted at the same time� or it
might state some complex relationship in the values or timing of the signals� Properties are
speci�ed in a notation called temporal logic� This allows concise speci�cations about temporal
relationships between signals� Temporal logic speci�cations about �nite state systems can
be automatically formally veri�ed by a technique called model checking�

SMV is quite e
ective in automatically verifying properties of combinational logic and
interacting �nite state machines� Sometimes� when checking properties of complex control
logic� the veri�er will produce a counterexample� This is a behavioral trace that violates
the speci�ed property� This makes SMV a very e
ective debugging tool� as well as a formal
veri�cation system�

Model checking by itself is limited to fairly small designs� because it must search every
possible state that a system can reach� For large designs� especially those including sub�
stantial data path components� the user must break the correctness proof down into parts
small enough for SMV to verify� This is known as compositional veri�cation� SMV provides
a number of tools to help the user reduce the veri�cation of large� complex systems to small
�nite state problems� These techniques include re�nement veri�cation� symmetry reduction�
temporal case splitting� data type reduction� and induction�

This tutorial will introduce all of the above techniques by example�

� Modeling� specifying and verifying

We will start with some very simple examples� to illustrate the process of entering a model�
specifying properties� and running SMV to verifying them� You can enter the examples
yourself� using a text editor �and thus become acquainted with SMV	s response to syntax
errors� Or� if you are reading this tutorial on�line� you can follow the hyperlinks to the
corresponding �les�

Consider� for example� the following description of a very simple combinational circuit�
with some assertions added� This example is written in SMV	s native language� Use a text
editor to enter the following program into a �le called �prio�smv��

module main�req��req��ack��ack��

�

input req��req� � boolean	

output ack��ack� � boolean	

ack� �
 req�	

ack� �
 req� � �req�	

�

mutex � assert ��ack� � ack��	

serve � assert �req� req�� �� �ack� ack��	

waste� � assert ack� �� req�	

waste� � assert ack� �� req�	

�

This example shows most of the basic elements of an SMV module� The module has four
parameters� req�� req�� ack� and ack�� of which the former two are inputs� and the latter
two outputs� It contains�

� Type declarations� In this case the signals req�� req�� ack� and ack� are declared to
be of type boolean�

� Signal assignments� These give logic functions for outputs ack� and ack� in terms of
inputs req� and req��

� Assertions� These are properties to be proved�

The program models a �highly trivial two bit priority�based arbiter� which could be
implemented with a two�gate circuit� The assert statements specify a number of properties
that we would like to prove about this circuit� For example� the property called mutex says
that outputs ack� and ack� are not true at the same time� Note that � stands for logical
�and� while � stands for logicol �not�� The property serve says that if either input req�
or req� is true� then one of the two outputs ack� or ack� is true� Note that stands for
logical �or�� while �� stands for �implies�� Logically� a �� b is equivalent to �a b� and
can be read �a implies b� or �if a then b��

We would like to verify these speci�cations formally� that is� for all possible input patterns
�of which in this case there are only four� To do this under Unix� enter the following shell
command�

vw prio�smv

On a PC under Windows� double�click the icon for the �le �prio�smv�� This will start
the SMV viewer� called �vw�� with the �le �prio�smv�� This interface has a number of
tabbed pages� which can be accessed by clicking an the appropriate tab� When you start the
interface� you see the browser� which is a tree representation of all the signals and assertions
in your source �le� and the source page� which shows the source �le� If you made a syntax
error in the source �le� this error will be pointed out on the source page� Correct the error�
and then choose �Reopen� from the �File� menu�

If you have no syntax errors� expand top level in the browser by double�clicking it� or
by clicking the � icon� The � indicates that top level has children which are not currently
visible� You should see under top level the names of all the signals and properties in your
source �le� Since none of these has children� they will not be marked with a �� Select one
of these� and notice the highlight in the source page moves to the location in the program
where that signal or property is declared� Select the signal ack�� and then in the source

�

page� select �Where assigned� in the �Show� menu� The souce line where ack� is assigned
will now be highlighted�

Now select �Verify all� from the �Prop� menu� SMV veri�es the four properties in our
program� The results page now shows the results of this veri�cation run� In this case� all
the properties are true�

Now let	s modify the design so that one of the speci�cations is false� For example� change
the line

ack� �
 req�	

to

ack� �
 req� � �req�	

Save the modi�ed text �le and choose �Reopen� from the �File� menu �or� if you are on�line�
just click here to save typing� Then select �Prop�Verify all� again� Notice that this time
the property serve is false� Also note� not all of the properties appear in the results pane�
This is because SMV stops when it reaches the �rst property that is false� Thus� not all the
properties were checked�

When a property is false� SMV produces a counterexample that shows a case when it
doesn	t hold� To see the counterexample for serve� select it in the results page by clicking
on it� The trace page will appear� showing a counterexample � a truth assignment to all the
signals that shows that our property is false� The counterexample shows the case when both
inputs are true and both outputs are false�

The veri�er keeps track of which properties have been veri�ed since the most recent
source �le change� You can see which properties have been veri�ed thus far� by selecting the
properties page� Currently only mutex is veri�ed� To verify waste�� for example� click on
it in the properties page� and then choose �Verify waste�� from the �Prop� menu� Notice
that only the property you select is veri�ed in this case� The name of the property that is
currently selected appears at the bottom of the window�

��� Sequential circuits and temporal properties

To specify sequential circuits� we need to be able to make statements about how signals
evolve over time� SMV uses a notation called temporal logic for this purpose� Temporal logic
formulas are like formulas in ordinary boolean logic� except that truth value of a formula
in temporal logic is a function of time� Some new operators are added to the traditional
boolean operators �and�� �or�� �not� and �implies�� in order to specify relationships in time�

For example� the F operator is used to express a condition that must hold true at some
time in the future� The formula F p is true at a given time if p is true at some later time�
On the other hand� G p means that p is true at all times in the future� Usually� we read F

p as �eventually p� and G p as �henceforth p��
In addition� we have the �until� operator and the �next time� operator� The formula p

U q� which is read �p until q� means that q is eventually true� and until then� p must always
be true� The formula X p means that p is true at the next time�

Here are the exact de�nitions of the temporal logic operators� with example time lines
showing the states when they hold true�

�

� The �globally� operator� G p is true at time t if p is true at all t� � t�

p p p p p...ppppp

Gp...

� The �future� operator� F p is true at time t if p is true at some t� � t�

p p pp

Fp... ...Fp

� The �until� operator� p U q is true at time t i

� q is true at some t� � t� and

� p is true in the range �t� t�

p p pp

pUq... ...pUq

p qpp

� The �next time� operator� X p is true at time t if p is true at time t � ��

As an example� suppose we are designing a bus arbiter with two �grant� signals� ack�
and ack�� Among other things� we want to specify that the two grant signals are never
asserted at the same time� In temporal logic� we would write G ��ack� � ack��� The G

operator is used to say that our speci�cation should hold true at all times� This is needed
because SMV interprets �assert� statements to hold at the initial state of execution of the
program� If we wrote only ��ack� � ack��� SMV would interpret this only to mean that
both grants may not be asserted at time t � ��

Return to our original example� and edit the four properties we speci�ed so that they
begin with the G operator� Make sure to undo the error we introduced in the previous section�
You should have something like this�

module main�req��req��ack��ack��

�

input req��req� � boolean	

output ack��ack� � boolean	

ack� �
 req�	

ack� �
 req� � �req�	

mutex � assert G ��ack� � ack��	

serve � assert G ��req� req�� �� �ack� ack���	

waste� � assert G �ack� �� req��	

�

waste� � assert G �ack� �� req��	

�

Open the �le and choose �Prop�Verify all� again to con�rm that the properties we
speci�ed in fact hold true for all time� This is because the two logic equations we wrote
for ack� and ack� hold implicitly for all time� Now let	s write a more interesting temporal
speci�cation� Suppose we want to use our priority circuit as a bus arbiter� In addition to
the above properties� we would like to avoid �starvation� of the low priority requester� That
is� we don	t want req� to be asserted forever while ack� is never asserted� Put another way�
we want it to always eventually be true that either req� is negated or ack� is asserted� In
temporal logic� we write �always eventually� by combining G and F� In this case we assert�
G F ��req� ack��� Therefore� add the following speci�cation to the program�

no�starve � assert G F ��req� ack��	

Now open the new version and verify the property no starve� The property should be
false� and a counterexample trace with one state should appear in the trace page� Notice
that the state number is marked with �repeat� signs� thus� � � �� This is to indicate
that the �rst state repeats forever� In this state� both req� and req� are asserted� Since
req� has priority� ack� is never asserted� hence requester � �starves��

As an aside� you might also have observed that the signal ack� doesn	t appear in the
trace� This is because SMV noticed that the property no starve doesn	t actually depend on
this signal� so it left ack� out of its analysis� The set of signals that a property depends on is
referred to as the cone of that property� When you have selected a given property to verify�
you can view the cone of that property by clicking the �Cone� tab� In this case� you	ll notice
that the signals req� and req� are listed as �free�� This is because they are unconstrained
inputs to the circuit� and thus are free to take on any values in their type� These signals each
contribute one �combinational� variable to the veri�cation problem� SMV must verify the
property you speci�ed for all possible combinations of these variables� Thus� it is generally
best to keep the number of variables in the cone small� when possible�

Now� to prevent this starvation case� let	s add a latch to the circuit that remembers
whether ack� was asserted on the previous cycle� In this case we	ll give priority to requester �
instead� To do this� add the following code to the program�

bit � boolean	

next�bit� �
 ack�	

The above means that bit is a boolean variable� and that the value of bit at time t� �
is equal to the value of ack� at time t� This is how a state variable �or a register� if you like
is represented to SMV � as an equation involving one time unit of delay� Now� replace the
de�nitions of ack� and ack� with the following�

if �bit� �

ack� �
 req� � �req�	

ack� �
 req�	

�

�

else �

ack� �
 req�	

ack� �
 req� � �req�	

�

That is� when bit is set� we reverse the priority order� Note that even though this may look
like a sequential program� it really represents two simultaneous equations� If you like� you
can write the same thing instead like this�

ack� �
 bit � req� � �req� � req�	

ack� �
 bit � req� � req� � �req�	

Now open the new version and verify property no starve� It should be true� By the way�
you might have noticed that we didn	t specify an initial �i�e� reset value for the register bit�
In fact� SMV veri�ed no starve for both possible initial values� If you check the �Cone�
panel� you	ll notice that there are now two combinational variables �the inputs and one
state variable �the signal bit�

��� A three�way arbiter

Now let	s try to apply the same idea to a three�way bus arbiter� In this version� we will have
one latched bit for each requester� This bit holds a one when the corresponding requester
was granted the bus on the previous cycle� We	ll still use a �xed priority scheme� but if a
given request was granted on the previous cycle� we	ll give it lowest priority on the current
cycle� Thus� if the bit for a given requester is set� its request is served only if no others are
requesting� Further� the requester with its bit set does not inhibit lower priority requesters�
Here is one attempt at such an arbiter�

module main�req��req��req��ack��ack��ack��

�

input req��req��req� � boolean	

output ack��ack��ack� � boolean	

bit��bit��bit� � boolean	

next�bit�� �
 ack�	

ack� �
 req� � �bit� � ��req� req�� � ��	

next�bit�� �
 ack�	

ack� �
 req� � �bit� � ��req� req�� � ��req� � � bit���	

next�bit�� �
 ack�	

ack� �
 req� � �bit� � ��req� req�� �

��req� � �bit� req� � �bit���	

�

The speci�cations for the three�way arbiter are as follows�

�

mutex � assert G ��ack� � ack� ack� � ack� ack� � ack��	

serve � assert G ��req� req� req�� �� �ack� ack� ack���	

waste� � assert G �ack� �� req��	

waste� � assert G �ack� �� req��	

waste� � assert G �ack� �� req��	

no�starve� � assert G F ��req� ack��	

no�starve� � assert G F ��req� ack��	

no�starve� � assert G F ��req� ack��	

They are similar to the two�way case� but note that in mutex we consider all pairs� Also�
we	ve speci�ed non�starvation for all of the requesters� just in case� Save this program in a
�le �you can put the speci�cations anywhere inside the module declaration � statement order
is irrelevant in SMV� Then open the �le and choose �Verify all�� You should get a false
result for no starve�� Click on no starve� and observe the counterexample trace� This is
an example of a �livelock�� The last two states in the counterexample repeat forever� Notice
that requesters � and � are served alternately while requester � starves�

In fact� there is another error in the design� If you select the serve property and try to
verify it� you	ll �nd that serve can be false in the initial state� This occurs if more than
one of the bits are true initially� We could rule this out by specifying initial values for these
bits� as follows�

init�bit�� �
 �	

init�bit�� �
 �	

init�bit�� �
 �	

Alternatively� if we don	t care if no one gets served in the initial state� we can change
the speci�cation� In temporal logic X p means that p is true at the �next� time� Thus� for
example X G p means that p holds from the second state onward� Thus� we could change
the speci�cation to�

serve � assert X G ��req� req� req�� �� �ack� ack� ack���	

As an exercise� you might want to try designing and verifying a three�way arbiter that
satis�es all the speci�cations above�

��� A tra�c light controller

Now we	ll consider a slightly more complex example that uses some additional features of
SMV	s language� The example is a controller that operates the tra�c lights at an intersection
where two�way street running north and south intersects a one�way street running east� The
goals are to design the controller so that collisions are avoided� and no tra�c waits at a red
light forever�

The controller has three tra�c sensor inputs� N Sense� S Sense and E Sense� indicating
when a car is present at the intersection traveling in the north� south and east directions
respectively� There are three outputs� N Go� S Go and E Go� indicating that a green light
should be given to tra�c in each of the three directions�

�

module main�N�Sense�S�Sense�E�Sense�N�Go�S�Go�E�Go��

input N�Sense�S�Sense�E�Sense � boolean	

output N�Go�S�Go�E�Go � boolean	

In addition� there are four internal registers� The register NS Lock is set when tra�c is
enabled in the north or south directions� and prevents east�going tra�c from being enabled�
The three bits N Req� S Req� E Req are used to latch the tra�c sensor inputs�

NS�Lock� N�Req� S�Req� E�Req � boolean	

The registers are initialized as follows�

init�N�Go� �
 �	

init�S�Go� �
 �	

init�E�Go� �
 �	

init�NS�Lock� �
 �	

init�N�Req� �
 �	

init�S�Req� �
 �	

init�E�Req� �
 �	

In modeling the tra�c light controller	s behavior� we will use two new SMV statements� The
case statement is a conditional form� The sequence�

case�

cond� � �block��

cond� � �block��

cond� � �block��

�

is equivalent to

if �cond�� �block��

else if �cond�� �block��

else if �cond�� �block��

In addition� we will use the default construct to indicate that certain assignments are to
be used as defaults when the given signals are not assigned in the code that follows� In a
sequence like this�

default �block��

in �block��

assignments in block� take precedence over assignments in block�� SMV enforces a �single
assignment rule�� meaning that only one assignment to a given signal can be active at any
time� Thus� if we have more than one assignment to a signal� we must indicate which of the
two takes precedence in case both apply�

Now� returning to the tra�c controller� if any of the sense bits are true� we set the
corresponding request bit�

�

default�

if�N�Sense� next�N�Req� �
 �	

if�S�Sense� next�S�Req� �
 �	

if�E�Sense� next�E�Req� �
 �	

�

The code to operate the north�going light is then as follows�

in default case�

N�Req � �N�Go � �E�Req � �

next�NS�Lock� �
 �	

next�N�Go� �
 �	

�

N�Go � �N�Sense � �

next�N�Go� �
 �	

next�N�Req� �
 �	

if��S�Go� next�NS�Lock� �
 �	

�

�

This says that if a north request is latched� and the north light is not green and there is no
east request� then switch on the north light and set the lock �in e
ect� we give priority to
the east tra�c� If the north light is on� and there is no more north tra�c� switch o
 the
light� clear the request� and switch o
 the lock� Note however� that if the south light is on�
we don	t switch the lock o
� This is to prevent south and east tra�c from colliding� The
south light code is similar�

in default case�

S�Req � �S�Go � �E�Req � �

next�NS�Lock� �
 �	

next�S�Go� �
 �	

�

S�Go � �S�Sense � �

next�S�Go� �
 �	

next�S�Req� �
 �	

if��N�Go� next�NS�Lock� �
 �	

�

�

Finally� the east light is switched on whenever there is an east request� and the lock is o
�
When the east sense input goes o
� we switch o
 the east light and reset the request bit�

in case�

E�Req � �NS�Lock � �E�Go � next�E�Go� �
 �	

E�Go � �E�Sense � �

next�E�Go� �
 �	

next�E�Req� �
 �	

�

�

�

There are two kinds of speci�cation we would like to make about the tra�c light controller�
The �rst is a �safety� speci�cation that say that lights in cross directions are never on at
the same time�

safety� assert G ��E�Go � �N�Go S�Go��	

The second is a �liveness� speci�cation� for each direction� which says that is the tra�c
sensor is on for a given direction� then the corresponding light is eventually on� thus no
tra�c waits forever at a read light�

N�live� assert G �N�Sense �� F N�Go�	

S�live� assert G �S�Sense �� F S�Go�	

E�live� assert G �E�Sense �� F E�Go�	

Note� however� that our tra�c light controller is designed so that it depends on drivers not
waiting forever at a green light� We want to verify the above properties given that this
assumption holds� To do this� we write some �fairness constraints�� as follows�

N�fair� assert G F ��N�Sense � N�Go�	

S�fair� assert G F ��S�Sense � S�Go�	

E�fair� assert G F ��E�Sense � E�Go�	

Each of these assertions states that� always eventually� it is not the case that a car is at a
green light� To tell SMV to assume these �fairness� properties when proving the �liveness�
properties� we say�

using N�fair� S�fair� E�fair prove N�live� S�live� E�live	

assume E�fair� S�fair� N�fair	

�

Because of the assume statement� the fairness constraints themselves will simply be left
unproved� Now� open this �le and try to verify the property safety� The result should be
�false�� and in the �Trace� panel� you should see a counterexample trace in which the south
light goes o
 exactly at the time when the north light goes on� The result is that the lock
bit is cleared� This is because the code for the south light takes precedence over the code
for the north light� due to our use of default� With the north light on and the lock cleared�
the east light can now go on� violating the safety property�

To �x this problem� let	s change the south light code so that it tests to see whether that
north light is about to go on before clearing the lock� Here is the revised code for the south
light�

in default case�

S�Req � �S�Go � �E�Req � �

next�NS�Lock� �
 �	

next�S�Go� �
 �	

��

�

S�Go � �S�Sense � �

next�S�Go� �
 �	

next�S�Req� �
 �	

if���N�Go N�Req � �N�Go � �E�Req�� next�NS�Lock� �
 �	

�

�

Open this new version and verify the property safety� It should be true� Now try to verify
N live� It should come up false� with a counterexample showing a case where both the north
and south lights are going o
 at exactly the same time� In this case neither the north code
nor the south code clears the lock� because each thinks that the other light is still on� As
a result� the lock remains on� which prevents an east request from being served� Since the
east request takes priority over north and south requests� the controller is deadlocked� and
remains in the same state inde�nitely �note the �repeat signs� on the last state�

To �x this problem� we	ll give the north light controller the responsibility to turn o
 the
lock when both lights are going o
� Here	s the new north light code�

in default case�

N�Req � �N�Go � �E�Req � �

next�NS�Lock� �
 �	

next�N�Go� �
 �	

�

N�Go � �N�Sense � �

next�N�Go� �
 �	

next�N�Req� �
 �	

if��S�Go �S�Sense� next�NS�Lock� �
 �	

�

�

Open this new version and verify the properties safety� N live� S live and E live� They
should all be true� Note that if you try to verify the fairness constraints N fair� S fair

and E fair� they will come up false� These are unprovable assumptions that we made in
designing the controller� However� if we used the controller module in a larger circuit� we
could �and should verify that the environment we put the controller into actually satis�es
these properties� In general� it	s best to avoid unproved assumptions if possible� since if any
of these assumptions is actually false� all the properties we �proved� are invalid�

� Symbolic model checking

A model checker veri�es a property by building a graph of all of the states in the model� In
SMV� the number of states in the model is �n� where n is the number of state variables in
the cone of the property� In fact� it is only necessary for the model checker to consider the
states that are �reachable� from an initial state� However� as you might expect� the amount
of computational e
ort required to verify a property still tends to grow very rapidly with
the number of state variables� This is known as the �state explosion problem��

��

To address this problem� SMV uses a structure called a �Binary Decision Diagram�
�BDD to implicitly represent the state graph of the model� and sets of states satisfying given
properties� For some models and properties� the use of BDD	s �implicit enumeration allows
SMV to handle models with many orders of magnitude more states than could be handled
by considering individual states �explicit enumeration� First� we see a simple example of a
circuit with a very large number of states that can still be handled e�ciently using BDD	s�
Later we	ll consider what to do when a direct approach using BDD	s doesn	t work�

��� A bu�er allocation controller

This example is designed to control the allocation and freeing of bu
ers in� for example�
a packet router� The controller keeps an array of �busy� bits� one for each available data
bu
er� The busy bit is true when the bu
er is in use� and false otherwise� An input alloc
indicates a request to allocate a new bu
er for use� If there is a bu
er available� the controller
outputs the index of this bu
er on a signal alloc addr� If there is no bu
er available� it
asserts an output nack� To make the circuit a little more interesting� we	ll add a counter
that keeps track of the number of busy bits that are set� Thus nack is asserted when the
count is equal to the total number of bu
ers� To begin with� we	ll de�ne the number of
bu
ers to be ��� using a C�style macro de�nition�

�define SIZE ��

module main�alloc�nack�alloc�addr�free�free�addr�

�

input alloc � boolean	

output nack � boolean	

output alloc�addr � ����SIZE � ��	

input free � boolean	

input free�addr � ����SIZE � ��	

busy � array ����SIZE � �� of boolean	

count � ����SIZE�	

init�busy� �
 �� � i
 ����SIZE����	

init�count� �
 �	

Note that we initialized busy to a vector of �� zeros using an iterator expression� Here is
the logic for the counter and the nack signal� Notice� we add one to the counter when there
is an allocation request and nack is not asserted� We subtract one from the counter when
there is a free request� and the bu
er being freed is actually busy� Note� if we didn	t check
to see that the freed bu
er is actually busy� the counter could get out of sync with the busy
bits�

nack �
 alloc � �count
 SIZE�	

next�count� �
 count � �alloc � �nack� � �free � busy�free�addr��	

Next we handle the setting and clearing of the busy bits� We use a default statement
to indicate that� if a given bu
er is being both freed and allocated at the same time� the
allocation request takes precedence�

��

default�

if�free� next�busy�free�addr�� �
 �	

� in �

if�alloc � �nack� next�busy�alloc�addr�� �
 �	

�

Finally� we choose a bu
er to allocate using a priority encoder� This is most easily generated
using the chain constructor� This repeats a given block of statements for a range of index
values� given precedence to later iterations� So� for example

chain �i
 �	 i � �	 i
 i � �� block�i�

is equivalent to

default block��� in default block��� in default block���

Our priority encoder is de�ned as follows�

chain�i
 �SIZE � ��	 i �
 �	 i
 i � ���

if��busy�i�� alloc�addr �
 i	

�

Since the last statement in the chain is the case i
 �� we e
ectively give highest priority
to bu
er �� Note� in the case when all bu
ers are busy� alloc addr in not assigned� and
thus remains unde�ned�

Now� we consider the problem of specifying the bu
er allocator� We will write a separate
speci�cation for each bu
er� stating that the given bu
er is never allocated twice without
being freed in the interim� This is a technique known as �decomposition�� that is� breaking
a complex speci�cation of a system into smaller parts that can be veri�ed separately� To
make it simpler to state the speci�cation� it helps to de�ne some additional signals� a bit
allocd�i� to indicate that bu
er i is currently being allocated� and a bit freed�i� to
indicate that bu
er i is currently being freed�

for�i
 �	 i � SIZE	 i
 i ����

allocd�i�� freed�i� � boolean	

allocd�i� �
 alloc � �nack � alloc�addr
 i	

freed�i� �
 free � free�addr
 i	

�

Note� we used a for constructor to make an instance of these de�nitions for each bu
er i�
To write the speci�cation that a bu
er is not allocated twice� we can use �until� operator of
temporal logic� Recall that the formula p U q in temporal logic means that q is eventually
true� and until then� p must always be true�

for�i
 �	 i � SIZE	 i
 i ����

safe�i� � assert G �allocd�i� �� � X ���freed�i�� U allocd�i���	

�

�

��

Here we state that� if bu
er i is allocated� then it is not the case that� starting at the next
time� it remains unfreed until it is allocated a second time�

Now� let	s verify this speci�cation� Open the �le and verify the property safety���� This
should take something under a minute� If you watch the log output during the veri�cation
process� you	ll notice that it is reporting a sequence of �iterations�� These are the steps
of a breadth��rst search of the model	s state space� starting from the initial states� The
numbers reported are the sizes of the BDD	s representing the set of states reached thus far
in the search� The size of the BDD	s can be much smaller than the number of states in the
set� To see this� select �Prop�State count�� This will rerun the veri�cation and report the
number of states reached at each iteration� The �nal number of states reached in this case
is something over two billion�

Now let	s increase the number of bu
ers from �� to ��� Change the de�nition of SIZE at
the beginning of the program to

�define SIZE ��

Open the new version� select the property safety���� and then select �Prop�State count��
This will verify the property� and also compute the number of states reached� You might
want to go make a cup of co
ee at this point� since the computation will take ten or twenty
minutes� The only point to be made here is that the number of states reached is on the
order of ����� while the BDD representing this set of state has about ���� �nodes�� This
shows that the BDD	s can be a very compact representation for large sate sets� Sometimes�
this makes it possible to verify a model� even though the number of states is much too large
to be searched �explicitly� �i�e� larger than the number of atoms in the universe�

There is no guarantee� however� that SMV	s BDD�based algorithms will be able solve
a given veri�cation problem� This is because the problem is SMV is trying to solve is
fundamentally hard �PSPACE complete� to be precise� On the other hand� when SMV
fails to solve a veri�cation problem �or when we run out of patience waiting for it to solve
the problem� there are usually many ways to make the problem simpler for SMV to solve�
This usually involves decomposition � breaking big problems into small problems� and then
localizing the veri�cation of each subproblem to a small part of the overall model� This
technique is described in the following section�

� Re�nement veri�cation

Re�nement veri�cation is methodology of verifying that the functionality of an abstract
system model is correctly implemented by a low�level implementation� It can be used� for
example� to verify that a packet router or bus protocol� modeled at the clock�cycle level�
correctly implements a given abstract model of end�to�end data transfer� Similarly one can
verify that a clock�accurate model of a pipelined� out�of�order processor correctly implements
a given instruct�set architecture �i�e�� a programmer	s model of a machine�

By breaking a large veri�cation problem into small� manageable parts� the re�nement
methodology makes it possible to verify designs that are much too large to be handled directly
by model checking� This decomposition of the veri�cation problem is enabled by specifying
re�nement maps that translate the behavior of the abstract model into the behavior of given

��

ABSTRACT MODEL

IMPLEMENTION
COMPONENT

REFINEMENT MAPS

Figure �� Re�nement maps

interfaces and structures in the low�level design� This makes it possible to verify small parts
of the low�level design in the context of the abstract model� Thus� the proof obligations can
be reduced to a small enough scale to be veri�ed by model checking�

SMV supports this methodology by allowing one to specify many abstract de�nitions
for the same signal� A new construct called a �layer� is introduced for this purpose� A
layer is a collection of abstract signal de�nitions� A layer can� for example� de�ne low�level
implementation signals as a function of abstract model signals� and thus provide a re�nement
map �i�e�� a translation between abstraction levels� The low�level implementation of a signal
must be simultaneously consistent with all of its abstract de�nitions� Thus� each abstract
de�nition entails a veri�cation task � to show that every implementation behavior is allowed
by this de�nition� For the purpose of this veri�cation task� one may use whichever abstract
de�nition is most convenient for de�ning of the other signals� Suppose� for example� that
we have abstract de�nitions of both the inputs and outputs of a given low�level block as a
function of a high�level model� as depicted in �gure �� We can use the abstract de�nitions
of the inputs to drive the inputs of the block from the high�level model when verifying that
the outputs are consistent with their abstract de�nitions� Thus� the abstract model provides
the context �or environment for verifying the block� and we do not need to consider the
remainder of the low�level model�

SMV also supports design by a successive re�nement� One can de�ne a sequence of layers�
each of which is more detailed than the previous layer� The implementation of each signal
is given by the lowest�level de�nition in the hierarchy�

��� Layers

A layer is a collection of abstract signal de�nitions� These are expressed as assignments in
exactly the same way that the implementation is de�ned� except that they are bracketed by

��

a layer statement� as follows�

layer �layer�name� � �

assignment�	

assignment�	

���

assignmentn	

�

where each assignment is of the form

�signal� �
 �expression�	

or

next��signal�� �
 �expression�	

or

init��signal�� �
 �expression�	

High level control structures� such as if� switch and for can also be used inside a layer

construct� since these are simply �syntactic sugar� for assignments of the above form�
The layer declaration is actually a formal speci�cation� which states that every imple�

mentation behavior must be consistent with all of the given assignments� If this is the case�
we say the implementation re�nes the speci�cation�

As an example� let	s consider a very simple example of a speci�cation and implementation
of a �nite state machine�

module main���

x � boolean	

�� the specification ��

layer spec� �

init�x� �
 �	

if�x
�� next�x� �
 �	

else next�x� �
 �����	

�

�� the implementation ��

init�x� �
 �	

next�x� �
 �x	

�

��

Note that spec is not a keyword here � it is just an arbitrary name given to our speci�cation�
This speci�cation is nondeterministic� in that at state �� it may transition to either state �
or state �� The implementation on the other hand has only one behavior� which alternates
between state � and state �� Since this is one possible behavior of spec� the speci�cation
spec is satis�ed�

If you enter this example into a �le� and open the �le with vw� you will �nd in the
Properties page a single entry named x��spec� This is a notation for �the de�nition of signal
x in layer spec�� It appears in the Properties page because it is an obligation to be veri�ed�
rather than a part of the implementation� You can verify it by selecting �Prop�Verify
all�� SMV does this by translating the assignment into an initial condition and transition
invariant� The former states that x is � at time t � �� while the latter states that the value
of x at time t � � is � if x is � at time t� and else is either � or �� The implementation must
satisfy these two conditions� which are veri�ed by exhaustive search of the state space of the
implementation�

If more than one signal is assigned in a layer� then the two de�nitions are veri�ed sep�
arately� This is known as decomposition� The reason for using decomposition is that we
may be able to use a di
erent abstraction of the implementation to prove each component
of the speci�cation� As a very simple example� consider the following program�

module main���

x�y � boolean	

�� the specification ��

layer spec� �

x �
 �	

y �
 �	

�

�� the implementation ��

init�x� �
 �	

next�x� �
 y	

init�y� �
 �	

next�y� �
 x	

�

Both state bits in the implementation start at �� and at each time they swap values� Thus�
the speci�cation is easily seen to be satis�ed � both x and y are always equal to �� If you open
this example with vw� you will �nd two entries in the Properties page� x��spec and y��spec�
Each of these can be veri�ed separately ���e�� we can verify separately that x is always equal
to � and that y is always equal to �� Suppose we want to verify x��spec �select it in the
Properties page� We now have two choices� we can use either the speci�cation de�nition of y
or the implementation de�nition y� Note� however� that if we use the speci�cation de�nition
of y� we eliminate one state variable from the model� since y is de�ned to be identically ��

��

Thus� by decomposing a speci�cation into parts� and using one part as the �environment�
for another� we have reduced the number of state variables in the model� and thus reduced
the veri�cation cost �though it is in any event trivial in this case� In fact� if you click on
the Cone tab in vw� you will see that SMV has selected layer spec to de�ne y� and that as
a result� y is not a state variable� This is because SMV assumes by default that it is better
to use an abstract de�nition of a signal than a detailed one� Select �Prop�Verify x��spec�
to verify the property using this abstraction�

Note that y��spec can now be veri�ed using x��spec to de�ne x� This might at �rst
seem to be a circular argument� However� SMV avoids the potential circularity by only
assuming y��spec holds up to time t� � when verifying x��spec at time t� and vice versa�
Because of this behavior� we need not be concerned about circularities when choosing an
abstract de�nition to drive a signal� SMV does the bookkeeping to insure that when all
components of the speci�cation are declared �veri�ed�� then in fact the implementation
re�nes the speci�cation�

��� Re	nement maps

The most e
ective way to decompose the speci�cation and veri�cation of a system into
manageable parts is to de�ne an abstract model as a speci�cation� and then to specify
�re�nement maps� that relate abstract model behaviors to implementation behaviors� Gen�
erally� abstract models specify �what� is being done� without specifying the �how�� �where�
or �when�� The �where� and �when� are given by the re�nement maps� while the imple�
mentation determines the �how�� In the simplest case the abstract model does nothing at
all� For example� in the case of a link�layer protocol that simply transfers a stream of data
from point A to point B without modifying it� there is no �what� and the only important
information is the �where� and �when�� The abstract model in this case might consist only
of the stream of data itself� In the case of a microprocessor� the abstract model might de�
termine the sequence of instructions that are executed according to the ISA �instruction set
architecture� The re�nement map would determine what instruction appears at each stage
of the pipeline at any given time�

����� A very simple example

We will consider �rst a very simple example of specifying abstractions and re�nement maps�
Suppose that we would like to design a circuit to transmit an array of �� bytes from its
input to its output� without modifying the array� The abstract model in this case is just
an unchanging array of bytes� since no actual operations are performed on the array� The
re�nement maps specify the protocol by which the array is transferred at the input and
output� We	ll assume the the input consists of three components� a bit valid indication the
the input currently holds valid data� an index idx that tells which element of the array is
currently being transferred� and a byte data that gives the value of this element� Assume
the output uses a similar protocol� Thus far� we have the following speci�cation�

typedef BIT ����	

typedef INDEX �����	

��

typedef BYTE array BIT of boolean	

module main���

�� the abstract model ��

bytes � array INDEX of BYTE	

next�bytes� �
 bytes	

�� the input and output signals ��

inp� out � struct�

valid � boolean	

idx � INDEX	

data � BYTE	

�

�� the refinement maps ��

layer spec� �

if�inp�valid� inp�data �
 bytes�inp�idx�	

if�out�valid� out�data �
 bytes�out�idx�	

�

Note that the abstract model simply states that nothing happens to the array of bytes�
The re�nement map is partially speci�ed� For example� if inp�valid is �� then inp�data is
allowed to have any value� since there is no else clause in the conditional� You can think of
this as a �don	t care� case in the speci�cation�

Now let	s add a very trivial implementation�

init�out�valid� �
 �	

next�out� �
 inp	

�

That is� the output is just the input delayed by one time unit� Note� at time t � � we have
to signal that the output is not valid� but we don	t have to specify initial values for idx and
data since they are �don	t cares� in this case�

Save this program in a �le and open it with vw� Note that there are eight properties in the
�le� of the form out�data�i���spec� where i
 ����� Select property out�data�����spec�
for example� If you click on the Cone tab� you	ll notice that only signals with bit index �
appear� This is because SMV has detected the property you selected doesn	t depend on the
other bit indices� Also notice that the data input signal inp�data��� has used layer spec
for its de�nition �since this is in fact the only available de�nition at this point� Thus� we
are driving the input of our implementation from the abstract model �through a re�nement
map and verifying the output with respect to the abstract model �again through a re�nement
map� Now� select �Prop�Verify out�data�����spec�� It should take less than � seconds

��

to verify this property� You can select �Prop�Verify All� to verify the remainder of the
re�nement maps� SMV will quickly recognize that the � remaining veri�cation problems are
isomorphic to the one we just solved� and report �true� for all of them� Note that although
we have reduced the number of state bits by a factor of eight by using decomposition �since
we only deal with one bit index at a time we are still using �� bits out of the data array for
each veri�cation� This gives us �� state bits� which is a fairly large number and guarantees us
at least � billion states� In this case� the large state space is easily handled by the BDD�based
model checker� so we do not have to do any further decomposition� In general however� we
cannot rely on this e
ect� Later we	ll see how to decompose the problem further� so that we
only use one bit from the data array�

����� End�to�end veri�cation

Now we	ll consider a more complex �though still trivial implementation with multiple stages
of delay� The goal is to verify the end�to�end delivery of data by considering each stage in
turn� specifying a re�nement map for each stage� The re�nement map for each stage drives
the input of the next� Suppose we replace the above implementation with the following
implementation that has three time units of delay�

stage�� stage� � struct�

valid � boolean	

idx � INDEX	

data � BYTE	

�

init�stage��valid� �
 �	

next�stage�� �
 inp	

init�stage��valid� �
 �	

next�stage�� �
 stage�	

init�out�valid� �
 �	

next�out� �
 stage�	

We	ll include a re�nement map for each intermediate delay stage� similar to the maps for
the input and output�

layer spec� �

if�stage��valid� stage��data �
 bytes�stage��idx�	

if�stage��valid� stage��data �
 bytes�stage��idx�	

�

�

When verifying the output of one stage� we can drive the output of the previous stage from
the abstract model� via the re�nement map� thus decomposing the veri�cation of each stage
into a separate problem� Open this version in vw and select� for example� the property
out�data�����spec� That is� we want to verify the �nal output against the re�nement
map� Select the Cone page� and notice that to de�ne the data outputs of the stage��

��

SMV has chosen the layer spec� rather that the implementation de�nition� The number
of state bits remaining ��� is still larger than in the previous case� however� because spec

doesn	t give any de�nition of the signals valid and idx� hence these are still driven by the
implementation�

If you select �Prop�Verify out�data�����spec�� you	ll observe that we can still quickly
verify this property� even thought the number of state variables is larger� Nonetheless� we
would like to make the veri�cation of the last stage independent of the previous stages� to be
sure we can still verify it if the previous stages are made more complex� We can do this by
explicitly �freeing� the signals stage��valid and stage��idx� that is� allowing these signals
to range over any possible values of their types� This is the most abstract possible de�nition
of a signal� and is provided by a built�in layer called free� To tell SMV explicitly to use the
free layer for these signals� we add the following declaration�

using

stage��valid��free� stage��idx��free

prove

out�data��spec	

Open this new version� and select property out�data�����spec� Note the the number of
state bits �in the Cone page is now ��� as in our original problem� In fact� if you select
�Prop�Verify out�data�����spec� you will probably get a very fast answer� since SMV
will notice that the veri�cation problem you are trying to solve is isomorphic to that of the
one�stage implementation we started with� This information was saved in a �le for future
use when that property was veri�ed�

To verify stage�� in the same way� we need to make similar using���prove declaration�
as follows�

using stage��valid��free� stage��idx��free prove stage��data��spec	

Note that we don	t need a corresponding declaration for stage�� since the input signals
inp�valid and inp�idx have been left unde�ned� and are thus free in any event� With
this addition� chose �Prop�Verify all�� and observe that all the properties are veri�ed very
quickly� since they are all isomorphic�

����� Re�nement maps as types

You may have observed that it is getting a bit tedious to re�nement maps for each stage
of the implementation� when they are actually all the same� SMV provides a way to avoid
this by specifying abstract de�nitions of a signal as part of its data type� We can also give
a type a parameter� so that we can specify in the type declaration which abstract object an
implementation object corresponds to� A parameterized type in SMV is otherwise known as
a module� Let	s declare a type with a re�nement map as follows�

module byte�intf�bytes��

bytes � array INDEX of BYTE	

��

valid � boolean	

idx � INDEX	

data � BYTE	

layer spec�

if�valid� data �
 bytes�idx�	

�

This de�nes an interface type that transfers an array bytes of bytes according to a speci�c
protocol� This protocol is de�ned by layer spec� Now� lets rewrite our example using this
type�

module main���

�� the abstract model ��

bytes � array INDEX of BYTE	

next�bytes� �
 bytes	

�� the input and output signals ��

inp� out � byte�intf�bytes�	

�� the implementation ��

stage�� stage� � byte�intf�bytes�	

init�stage��valid� �
 �	

next�stage�� �
 inp	

init�stage��valid� �
 �	

next�stage�� �
 stage�	

init�out�valid� �
 �	

next�out� �
 stage�	

�� abstraction choices ��

using stage��valid��free� stage��idx��free prove out�data��spec	

using stage��valid��free� stage��idx��free prove stage��data��spec	

�

Notice that there	s no need to write the intermediate re�nement maps� They are part of the
data type�

����� The e	ect of decomposition

To see the e
ect of using re�nement maps let	s make two versions of our simple example�
one with and one without intermediate re�nement maps� We can easily do this by changing

��

the types of the intermediate stages� To make it interesting� we	ll use �� delay stages� Here
is the version with intermediate re�nement maps�

�� the implementation ��

stages � array ����� of byte�intf�bytes�	

init�stages����valid� �
 �	

next�stages���� �
 inp	

for�i
 �	 i �
 ��	 i
 i � ���

init�stages�i��valid� �
 �	

next�stages�i�� �
 stages�i���	

�

init�out�valid� �
 �	

next�out� �
 stages����	

�� abstraction choices ��

for�i
 �	 i �
 ��	 i
 i � ��

using stages�i����valid��free� stages�i����idx��free

prove stages�i��data��spec	

using stages�����valid��free� stages�����idx��free prove out�data��spec	

Here is the version without intermediate re�nement maps�

�� the implementation ��

stages � array ����� of

struct�

valid � boolean	

idx � INDEX	

data � BYTE	

�

init�stages����valid� �
 �	

next�stages���� �
 inp	

for�i
 �	 i �
 ��	 i
 i � ���

init�stages�i��valid� �
 �	

next�stages�i�� �
 stages�i���	

�

��

init�out�valid� �
 �	

next�out� �
 stages����	

Note� we don	t want to free any of the intermediate signals in this version� Now� open the
�rst version� and select �Props�Verify all�� It should verify all ��� properties in something
like �� seconds �depending on your machine� Now� open the second version �without re�ne�
ment maps� There are only � properties to verify in this case �one for each output bit� bit
SMV cannot verify these properties� as you may observe by select �Prop�Verify all�� When
you get bored of watching SMV do nothing� select �Prop�Kill Veri�cation� �note� this may
not work under Windows� and click the Cone tab� Observe that the cone contains ��� state
variables� which is usually to large for SMV to handle �though occasionally SMV will solve
a problem of this size� if the structure of the problem is appropriate for BDD	s� Note that
it is possible to construct even a fairly trivial example which cannot be veri�ed directly by
model checking� but can be veri�ed by decomposition and model checking� Generally� when
a direct model checking approach fails� it	s best to look for a decomposition of the problem
using re�nement maps� rather than to try to determine why the BDD	s exploded�

��� Decomposing large data structures

In our trivial example� we are sending an array of �� bytes� Because we only need to
consider one bit out of each byte at a time� we were able to verify the implementation
without explicitly decomposing this data structure� However� cases often arise when it is
necessary to consider only one element at a time of a large structure� For example� we
might increase the size of our array to � million bytes� As we will see later� sometimes even
small arrays must be decomposed in this way� One one of decomposing a large array in the
abstract model is to write an array of re�nement maps �we	ll see a more elegant way later� in
section ���� Each element of this array de�nes a given low�level signal only when it contains
the value of the corresponding element in the abstract array� For example� let	s rewrite our
interface data type to use a decomposed re�nement map of this kind�

module byte�intf�bytes��

bytes � array INDEX of BYTE	

valid � boolean	

idx � INDEX	

data � BYTE	

forall�i in INDEX�

layer spec�i��

if�valid � idx
 i� data �
 bytes�i�	

�

Notice that layer spec is now an array� with one element for each element of the array bytes�
The layer spec�i� speci�es the value of data only when idx is equal to i� and otherwise

��

leaves data unde�ned� The advantage of this re�nement map is that spec�i� refers to only
one element of the array bytes� Thus� the other elements will not appear in the cone when
verifying it� and we have reduced the number of state variables that the model checker must
handle�

Let	s go back to our ��stage delay example� and use this new de�nition of byte intf�
Because we have changed the layer declarations� we also have to change the corresponding
using���prove declarations� Replace these with the following�

forall�i in INDEX��

using stage��valid��free� stage��idx��free prove out�data��spec�i�	

using stage��valid��free� stage��idx��free prove stage��data��spec�i�	

�

Now� when you try to open this �le� you	ll get an error message� something like this�

The implementation layer inherits two definitions of inp�data� �

���in layer spec����� !map��smv!� line �

���in layer spec����� !map��smv!� line �

Perhaps there is a missing !refines! declaration�

This is because we have given many abstract de�nitions for inp�data without providing
an implementation� By default� if there is only one abstract de�nition� SMV takes this
as the implementation� However� if there are many abstract de�nitions� it is possible that
these de�nitions are contradictory� and hence there is no possible implementation� There are
several possible ways to make SMV stop complaining about this� One is to provide an actual
implementation� For example� we could simply implement inp�data by a nondeterministic
choice among all possible data values� This would mean� of course� that we could not then
prove consistency with the maps inp�data��spec�i�� On the other hand� we don	t really
want to prove these� since they are actually assumptions about the inputs to our design�
and not properties to be proved� One way to tell SMV this is to declare inp explicitly as an
input to the design� SMV does not attempt to verify re�nement maps driving global inputs�
It just takes them as assumptions� If our main module is later used as a submodule in a
later design� we	ll have to verify these maps in the context of the larger design� Meanwhile�
let	s change the header of our main module to look like the following�

module main�bytes�inp�out��

bytes � array INDEX of BYTE	

input inp � byte�intf�bytes�	

output out � byte�intf�bytes�	

Notice we	ve also make bytes a parameter to the module� If we later use this module in a
larger design� we can then specify what abstract data array we want the module instance
to transmit� Now� open this �le� and select� for example� property out�data�����spec����
You	ll notice that there are now only � state variables in the cone� since �� of data bits have
been eliminated� Also� notice that SMV chose the layer spec��� to de�ne stage��data����
out of the �� possible abstract de�nitions� This is a heuristic choice� which was made on the
basis of the fact that we are verifying an abstraction in layer spec���� If you	d like to see

��

the reasoning SMV went through to arrive at this choice� select the signal stage��data���
and pull down �Abstraction�Explain Layer��

If you now select �Prop�Verify out�data�����spec����� you can observe that the ver�
i�cation is in fact faster than in the previous case� However� you	ll also notice that the
number of properties to prove is now very large� In fact� it is �� times greater than before�
since every property has now been decomposed into �� cases� Select �Prop�Verify All��
and you will �nd that the total veri�cation time for this long list of properties is about ��
seconds� actually longer than before� Surely it is unnecessary to verify all of the �� cases for
each re�nement map� since each is in e
ect symmetric to all the others� In fact� if we simply
tell SMV where the symmetry is� we can convince it to prove only one case out of ���

��� Exploiting Symmetry

Change the type declaration for INDEX from

typedef INDEX �����	

to

scalarset INDEX �����	

This is exactly the same as an ordinary type declaration� except it tells SMV that the given
scalar type is symmetric� in the sense that exchanging the roles of any two values of the type
has no e
ect on the semantics of the program� In order to ensure that this symmetry exists�
there are a number of rules placed on the use of variables of a scalarset type� For example� we
can	t use constants of a scalarset type� and the only operation allowed on scalarset quantities
is equality comparison� In addition� we can	t mix scalarset values with values of any other
type� We can� however� declare an array whose index type is a scalarset� This makes it legal
for us to make the type INDEX into a scalarset� Now� when SMV encounters an array of
properties whose index is of scalarset type� it chooses only one case to prove� since if it can
prove one case� then by symmetry it can prove all of them�

Let	s see the e
ect of this on our example� Open the new �le �with INDEX changed to
a scalarset� and look in the Properties page� You	ll see that there are now only properties
from layer spec���� Pull down �Prop�Verify All�� and you	ll �nd the total veri�cation
time reduced to about a half second �a savings of a factor ����

We can go a step further than this� and make the type BIT a scalarset as well� This is
because all of the bits within a byte are symmetric to each other� So change

typedef BIT ����	

to

scalarset BIT ����	

and open the new �le� Now� in the Properties pane� there are only three properties� one for
each stage� Thus� using symmetry� we have reduced the number of properties� by a factor of
��� � � ����

��

��
 Decomposing large structures in the implementation

Thus far� we	ve seen how we can decompose a large structure in the abstract model �such as
the byte array in our example� and verify properties relating only to one small component
of the structure� Now� we	ll consider the case where we have a large structure in the imple�
mentation� and wish to consider only one component at a time� Let	s keep the speci�cation
from our previous example� but design an implementation that has a large bu
er that can
store data bytes in transit� To make the problem more interesting� we	ll put �ow control in
the protocol� so that our implementation can stop the �ow of incoming data when its bu
er
is full� To implement �ow control� we	ll use two signals� one to indicate the sender is ready
�srdy and one to indicate the receiver is ready �rrdy� A byte is transferred when both of
these signals are true� Here	s the de�nition of this protocol as an interface data type�

module byte�intf�bytes��

bytes � array INDEX of BYTE	

srdy�rrdy � boolean	

idx � INDEX	

data � BYTE	

valid � boolean	

valid �
 srdy � rrdy	

forall�i in INDEX�

layer spec�i��

if�valid � idx
 i� data �
 bytes�i�	

�

Note that the re�nement map only speci�es the value of the data when both srdy and rrdy

are true� Our system speci�cation is exactly the same as before�

module main�bytes�inp�out��

bytes � array INDEX of BYTE	

input inp � byte�intf�bytes�	

output out � byte�intf�bytes�	

�� the abstract model ��

next�bytes� �
 bytes	

For the implementation� we	ll de�ne an array of � cells� Since all of the cells are symmetric�
we	ll de�ne a scalarset type to index the cells�

scalarset CELL ����	

Each cell holds an index and a data byte� Each cell also needs a bit to say when the data in
the cell are valid�

��

cells � array CELL of struct�

valid � boolean	

idx � INDEX	

data � BYTE	

�

We also need pointers to tell us which cell is to receive the incoming byte and which cell is
to send the outgoing byte�

recv�cell� send�cell � CELL	

The implementation is ready to receive a byte when the cell pointed to by recv cell is
empty �i�e�� not valid� On the other hand� it is ready to send a byte when the cell pointed
to by send cell is full �i�e�� valid�

inp�rrdy �
 �cells�recv�cell��valid	

out�srdy �
 cells�send�cell��valid	

Here is the code that implements the reading and writing of cells�

forall�i in CELL�init�cells�i��valid� �
 �	

default�

if�inp�valid��

next�cells�recv�cell��valid� �
 �	

next�cells�recv�cell��idx� �
 inp�idx	

next�cells�recv�cell��data� �
 inp�data	

�

� in �

if�out�valid��

next�cells�send�cell��valid� �
 �	

�

�

out�idx �
 cells�send�cell��idx	

out�data �
 cells�send�cell��data	

For the moment� we will leave the pointers recv �cell and send cell unde�ned� and thus
completely nondeterministic� This will allow us to cover all possible policies for choosing
cells� Later� we can re�ne these signals to use a particular policy �e�g�� round�robin without
invalidating our previous work�

Finally� having de�ned our implementation� we will de�ne a re�nement map for the
structure cells so that we do not have to consider the entire array at once� In fact� this
re�nement map almost de�nes itself� given the way the data structure cells is encoded� We
want to say that if a cell i is valid� then its data is equal to the element of bytes pointed to
by its index idx� Here is the re�nement map�

��

forall�i in INDEX�

layer spec�i��

forall�j in CELL�

if�cells�j��valid � cells�j��idx
 i� cells�j��data �
 bytes�i�	

Note that once again� we have decomposed the map into separate indices� If cell j	s index
is i� then cell j contains byte i from the abstract array�

Now that we have de�ned each cell	s contents in terms of the abstract model� we can
verify each cell separately� We can then assume that all the cells are correct when we verify
the implementation output� Open this �le� and notice that in the properties pane� there
are just two properties� cells����data�����spec��� and out�data�����spec���� All the
other properties are equivalent to one of these by symmetry� Try �Prop�Verify All� to
check that in fact our re�nement is correct� Now select cells����data�����spec��� in the
Properties pane� and the click on the Cone tab� There are �� state variables in total for this
property� Notice that once again SMV has chosen layer spec��� to drive inp�data���� since
this is the layer we are verifying� Because of the decomposition we have used� data bits from
only one cell and one element of the bytes array appear in the cone� In fact� most of the
state bits come from the valid bits of the cells� These are included in the cone because the
bit inp�rrdy depends on them� However� it is reasonable to hypothesize that the correctness
of cell � does not actually depend on the valid bits of the other cells� We should be able
to free them and still verify the property� To do this� add the following declaration to the
program�

forall�i in INDEX� forall�j in CELL� forall�k in BIT�

using cells��free� cells�j�

prove cells�j��data�k���spec�i�	

This declaration probably requires some explanation� First� even though we are only inter�
ested in proving one property� cells����data�����spec���� we give a prove declaration
for cells�j��data�k���spec�i�� for all i�j�k� This is because we are not allowed to use
constants of a scalarset type in the program� Second� in order to free the signals in all the
cells except cell j� we specify cells��free� indicating that all components of cells should
use the free layer� and then specify cells�j� to override this choice for the speci�c case of
cell j� In a using declaration� a signal name without a layer indicates the implementation
de�nition of that signal�

Open this version and select the property cells����data�����spec���� The number of
state variables should now be � rather than ��� since the valid bits for the other cells are
now free variables� Select �Prop�Verify cells����data�����spec���� and observe that
our hypothesis is con�rmed � the correctness of cell � is preserved� even when we free the
state of the other cells� Also note that veri�cation time is reduced�

Note� that by freeing some signals� we have decreased the number of state variables in the
cone� we have also increased the number of �combinational� variables� These are variables
that act as free or constrained inputs to the model� We can go a step further and substitute
the �unde�ned� value for these bits� This is very much like an �X� value in a logic simulator�
For example�

��

� � undefined
 �

� � undefined
 undefined

� undefined
 undefined

� undefined
 �

Using the unde�ned value has the advantage that no combinational variables will introduced�
since these signals are given the constant value �unde�ned�� The di�culty is that� as in a
logic simulator� these unde�ned values can propagate widely� giving a pessimistic result � we
may �nd that a counterexample is produced to the property using unde�ned values� even
though the property is actually true� However� we can never �prove� a false property by
introducing unde�ned values�

We can set signals to the unde�ned value using a prede�ned layer called undefined� For
example� replace cells��free in the using ��� prove declaration above with

cells��undefined

This will cause the signals that were previously freed to be given the unde�ned value instead�
Open the new �le and select the property cells����data�����spec���� Notice in the
Cone pane that the other valid bits are no longer combinational variables� Thus we have
eliminated � combinational variables from the cone� On the other hand� you can observe by
selecting �Prop�Verify cells����data�����spec���� that the property is still provable
under this weaker assumption about the environment�

Finally� let	s go back to the other property we need to prove in this example� which is that
the outputs are correct with respect to the speci�cation �out�data�����spec���� Select
this property in the Properties pane� and observe that there are still �� state variables in the
cone� This is because� although our re�nement map drives the data value for each cell from
the abstract model� the control bits idx and valid for each cell are still driven from the
implementation� This is not a problem for us� since BDD	s come to our rescue in this case�
You can con�rm this by selecting �Prop�Verify out�data�����spec����� This veri�cation
should take less than � seconds� Nonetheless� if this were not the case� we could reduce the
number of state bits by freeing the cells	 control bits� That is� our re�nement map provides
that the data in a cell are correct� for any values of the control bits valid and idx� So let	s
add the following declaration to the program�

forall�i in INDEX� forall�j in CELL� forall�k in BIT�

using cells�j��idx��free� cells�j��valid��free

prove out�data�k���spec�i�	

Open the new version and select the property out�data�����spec���� Notice that the
number of state bits is now reduced to �� a single bit of the abstract array� The veri�cation
time is also reduced� as you can observe by selecting �Prop�Verify out�data�����spec�����

��� Case analysis

Suppose that we have a condition p� and we would like to show that p holds true at all times�
For any particular variable x� we could break the problem into cases� For each possible value

��

of v of x� we could show that condition p is true at those times when x
 v� Since at all
times x must have one of these values� we can infer that p must be true at all times�

SMV has a special construct to support this kind of case analysis� It is especially useful
for compositional veri�cation� since for each case we can use a di
erent abstraction of the
system� including di
erent components in the veri�cation� This allows us to break large
veri�cation problems into smaller ones�

The above described case analysis is expressed in SMV in the following way�

forall �v in TYPE�

subcase q�v� of p for x
 v	

Now suppose that p is some temporal assertion G cond� where cond is any boolean
condition� The above declaration e
ectively de�nes a collection of properties q�v�� as if we
had written

forall �x in TYPE�

q�v� assert G �x
v �� cond�	

That is� each q�v� asserts that p holds at those times when x
 v� Clearly� if q�v� holds
for all values of v� then p holds� Thus� SMV is relieved of the obligation of proving p� and
instead separately proves all the cases of q�v�� Note that if TYPE is a scalarset type� we may
in fact have to prove only one case� since all the other cases are symmetric�

��
�� A very simple example

Now� let	s look at a trivial example of this� Let	s return to our very simple example of
transmitting a sequence of bytes� Here is the speci�cation again�

scalarset BIT ����	

scalarset INDEX �����	

typedef BYTE array BIT of boolean	

module main���

�� the abstract model ��

bytes � array INDEX of BYTE	

next�bytes� �
 bytes	

�� the input and output signals ��

inp� out � struct�

valid � boolean	

idx � INDEX	

data � BYTE	

�

��

�� the refinement maps ��

layer spec� �

if�inp�valid� inp�data �
 bytes�inp�idx�	

if�out�valid� out�data �
 bytes�out�idx�	

�

And let	s use our original very trivial implementation�

init�out�valid� �
 �	

next�out� �
 inp	

�

That is� the output is just the input delayed by one time unit�
Note that our speci�cation �layer spec says that at all times the output value must be

equal to the element of array bytes indicated by the index value out�idx� We would like to
break this speci�cation into cases and consider only one index value at a time� To do this�
we add the following declaration�

forall �i in INDEX�

subcase spec�case�i� of out�data��spec for out�idx
 i	

In this case� the property we are splitting into cases is out�data��spec� the assignment to
out�data in layer spec� The resulting cases are out�data��spec case�i�� Note� however�
that in the subcase declaration� we only give a layer name for the new cases� since the signal
name is redundant� This declaration is exactly as if we had written

forall �i in INDEX�

layer spec�case�i��

if �out�idx
 i�

out�data �
 bytes�out�idx�	

except that SMV recognizes that if we prove out�data��spec case�i� for all i� we don	t
have to prove out�data��spec� Run this example� and look in the properties pane� You	ll
see that out�data��spec does not appear� but instead we have out�data��spec case����
Note that only the case i
 � appears� since INDEX is a scalarset type� and SMV knows
that all the other cases are symmetric to this one� Now look in the cone pane� You	ll notice
that all of the elements of the array bytes are in the cone� This is because the de�nition of
inp�data in layer spec references all of them� However� all of them except element � are in
the undefined layer� This is a heuristic used by SMV� if a property references some speci�c
value or values of a given scalarset type� then only the corresponding elements of arrays
over that type are used� The rest are given the unde�ned value� You might try clicking
on element bytes��� and choosing AbstractionExplain Layer to get an explanation of
why this signal was left unde�ned� You can� of course� override this heuristic by explicitly
specifying a layer for the other elements� In this case� however� the heuristic works� since
property out�data��spec case��� veri�es correctly�

��

��
�� Using case analysis over data paths

Now we	ll look at a slightly more complex example� to show how case ananlysis can be used
to reduce a veri�cation problem to a smaller one� by considering only one path that a given
data item might take from input to output� This technique is quite useful in reasoning about
data path circuitry�

We	ll use essentially the same speci�cation as before� but in this case our implemen�
tation will be the array of cells that we used previously when discussing re�nement maps
�section ���� We have an array of cells� and each incoming byte is stored in an arbitrarily
chosen cell� Recall that the speci�cation in this case has to take into account the handshake
signals� That is� the data are only valid when both sdry and rrdy are true�

�� the abstract model ��

bytes � array INDEX of BYTE	

next�bytes� �
 bytes	

�� the input and output signals ��

inp� out � struct�

srdy�rrdy � boolean	

idx � INDEX	

data � BYTE	

�

�� the refinement maps ��

layer spec� �

if�inp�srdy � inp�rrdy� inp�data �
 bytes�inp�idx�	

if�out�srdy � out�rrdy� out�data �
 bytes�out�idx�	

�

For reference� here is the implementation again�

�� the implementation ��

cells � array CELL of struct�

valid � boolean	

idx � INDEX	

data � BYTE	

�

recv�cell� send�cell � CELL	

inp�rrdy �
 �cells�recv�cell��valid	

out�srdy �
 cells�send�cell��valid	

��

forall�i in CELL�init�cells�i��valid� �
 �	

default�

if�inp�srdy � inp�rrdy��

next�cells�recv�cell��valid� �
 �	

next�cells�recv�cell��idx� �
 inp�idx	

next�cells�recv�cell��data� �
 inp�data	

�

� in �

if�out�srdy � out�rrdy��

next�cells�send�cell��valid� �
 �	

�

�

o

out�idx �
 cells�send�cell��idx	

out�data �
 cells�send�cell��data	

Recall that in the previous example� we wrote re�nement maps for the data in the
individual cells� in order to break the veri�cation problem into two pieces� one to show that
cells get correct data� and the other to show that data in cells are correctly transfered to
the output� Now� we will use case analysis to get a simpler decomposition� with only one
property to prove�

Our case analysis in this example will be a little �ner� That is because we have two
arrays we would like to decompose� One is the array of bytes to transfer� and the other
is the array of cells� We would like to consider separately each case where byte�i� gets
transfered through cell�j�� In this way� we can consider only one byte and one cell at a
time� This is done with the following declaration�

forall �i in INDEX� forall �j in CELL�

subcase spec�case�i��j� of out�data��spec

for out�idx
 i � send�cell
 j	

Notice that our case analysis now has two parameters� Each case is of the form out�idx

i � send cell
 j where i is an INDEX and k is a CELL� We can� in fact� have as many
parameters in the case analysis as we like� provided we write the condition in the above form�
SMV recognizes by the form of the expression that the cases are exhaustive�

Now run this example� and observe that once again� we have a single property to prove�
out�data��spec case������� The other cases are symmetric� If you look in the cone� you	ll
see that� while all elements of bytes and cells are referenced� all except element � of these
arrays is left unde�ned� according to SMV	s default heuristic� This makes the veri�cation
problem small enough that we can handle it directly� without resorting to an intermediate
re�nement map� You can con�rm this by verifying out�data��spec case�������

This technique of breaking into cases as a function of the speci�c path taken by a data
item through a system is the most important reduction in using SMV to verify data path

��

circuitry� Notice that symmetry is crucial to this reduction� since without it we would have
a potential explosion in the numer of di
erent paths�

��� Data type reductions

Now suppose that we would like to verify the correct transmission of a very large array of
bytes� or even an array of unknown size� SMV provides a way to do this by reducing a type
with a large or unknown number of values to an abstract type� with a small �xed number of
values� This type has one additional abstract value to represent all the remaining values in
the original type�

For example� when verifying the correct transmission of byte i� we might reduce the
index type to just two values � i and a value representing all numbers not equal to i�
�which SMV denotes NaN� This is an abstraction� since NaN� when compared for equality
against itself� produces an undetermined value� In fact� here is a truth table of the equality
operator for the reduced type�

 i NaN

i � �

NaN � f���g

The program with the reduced index data type is an abstraction of the original program�
such that any property that is true of the abstract program is true of the original �though
the converse is not true�

����� A very simple example

Let	s return to our very simple example of transmitting a sequence of bytes �section ������
For reference� here is the speci�cation again�

scalarset BIT ����	

scalarset INDEX �����	

typedef BYTE array BIT of boolean	

module main���

�� the abstract model ��

bytes � array INDEX of BYTE	

next�bytes� �
 bytes	

�� the input and output signals ��

inp� out � struct�

valid � boolean	

idx � INDEX	

data � BYTE	

��

�

�� the refinement maps ��

layer spec� �

if�inp�valid� inp�data �
 bytes�inp�idx�	

if�out�valid� out�data �
 bytes�out�idx�	

�

And let	s use our original very trivial implementation�

init�out�valid� �
 �	

next�out� �
 inp	

�

That is� the output is just the input delayed by one time unit�
As before� let	s break the speci�cation up into cases� one for each index value�

forall �i in INDEX�

subcase spec�case�i� of out�data��spec for out�idx
 i	

If you run this example� and look in the cone pane� you	ll see that there are �ve state
variables in the cone for both inp�idx and out�idx� This is expected� since �ve bits are
needed to encode �� values� However� notice that for case i� if the index value at the output
is not equal to i� we don	t care what the output is� Our property spec case�i� only speci�es
the output at those times when out�idx
 i� We can therefore group all of the index values
not equal to i into a class� represented by a single abstract value �NaN� and expect that the
speci�cation might still be true� To do this� add the following declaration�

forall �i in INDEX�

using INDEX���i� prove out�data��spec�case�i�	

This tells SMV to reduce the data type INDEX to an astract type consisting of just the
value i and NaN �note� we don	t specify NaN explicitly� Now� open the new version� and
observe the cone� You	ll notice the state variables inp�idx and out�idx now require ony one
boolean variable each to encode them� since their type has been reduced to two values� Now
try verifying the property out�data��spec case���� The result is true� since the values we
reduced to the abstract value don	t actually matter for the particular case of the speci�cation
we are verifying�

Now� let	s suppose that we don	t know in advance what the size of the array of bytes will
be� Using data type reductions� we can prove the correctness of our implemenation for any
size array �including an in�nite array� To do this� change the declaration

scalarset INDEX �����	

to the following�

��

scalarset INDEX undefined	

This tells SMV that INDEX is a symmetric type� but doesn	t say exactly what the values
in the type are� In such a case� SMV must have a data type reduction for INDEX to prove
any properties� because it can only verify properties of �nite state systems� Now run the
new version� You	ll notice that the result is exactly the same as in the previous case� One
boolean variable is used to encode values of tye INDEX� and the speci�cation is found to be
true� In fact� in the previous case� SMV didn	t in any way use the fact that type INDEX was
declared to have the speci�c range ������ Thus it	s not surprising that when we remove
this information the result is the same� By using �nite state veri�cation techniques� we have
proved a property of a system with an in�nite number of states �and an in�nite number of
systems with �nite state spaces�

One might ask what would happen if� using a scalarset of unde�ned range� we ommitted
the data type reduction� Wouldn	t that give us an in�nite state veri�cation problem Try
removing the declaration

forall �i in INDEX�

using INDEX���i� prove out�data��spec�case�i�	

from the problem and run the resulting �le� You	ll observe that nothing has changed
from the previous case� Since SMV can	t handle unde�ned scalarsets without a data type
reduction� it guesses a reduction� It simply includes in the reduced type all the speci�c values
of the given type that appear in the property� In this case� there is only one� the index i�

����� A slightly larger example

Now� let	s reconsider the example from the previous section of an implementation with an
array of cells �section ������ For reference� here are the speci�cation and implementation�

�� the specification ��

layer spec� �

if�inp�srdy � inp�rrdy� inp�data �
 bytes�inp�idx�	

if�out�srdy � out�rrdy� out�data �
 bytes�out�idx�	

�

�� the implementation ��

cells � array CELL of struct�

valid � boolean	

idx � INDEX	

data � BYTE	

�

recv�cell� send�cell � CELL	

��

inp�rrdy �
 �cells�recv�cell��valid	

out�srdy �
 cells�send�cell��valid	

forall�i in CELL�init�cells�i��valid� �
 �	

default�

if�inp�srdy � inp�rrdy��

next�cells�recv�cell��valid� �
 �	

next�cells�recv�cell��idx� �
 inp�idx	

next�cells�recv�cell��data� �
 inp�data	

�

� in �

if�out�srdy � out�rrdy��

next�cells�send�cell��valid� �
 �	

�

�

out�idx �
 cells�send�cell��idx	

out�data �
 cells�send�cell��data	

Let	s make just one change to the source� we	ll rede�ne the scalarset types INDEX and
CELL to have unde�ned range�

scalarset INDEX undefined	

scalarset CELL undefined	

Since these types have unde�ned ranges� SMV will choose a data type reduction for use
�though� of course� we could specify one if we wanted to� Now� run this modi�ed version�
You	ll notice that in the properties pane� we have just one property to prove� as before�
out�data��spec case������� In the cone pane� obverve that the variables of type INDEX

and CELL have only one boolean variable encoding them �representing the value � and NaN�
In addition� only cell��� and byte��� appear� This is because SMV chose to reduce the
types INDEX and CELL to contain only those values appearing in the property being veri�ed�
which in this case are just the value � for both types� Con�rm that in fact the speci�cation
can be veri�ed using this reduction�

Note that the proof reduction that we used for the case of a �xed number of cells and
a �xed number of bytes� worked with no modi�cation when we switched to an arbitrary
number of bytes and cells�

These very simple examples provide a paradigm of the veri�cation of complex hardware
systems using SMV� One begins by writing re�nement maps� They speci�y the inputs and
outputs of the system in terms of a more abstract model� and possibly specify internal points
as well� to break the veri�cation problem into parts� The resulting properties are then broken
into cases� generally as a function of the di
erent paths that a data item may take from one
re�nement map to another� These cases are then reduced to a tractable number by symmetry
considerations� Finally� for each case� a data type reduction is chosen which reduces the large

��

�or even in�nite data types to a small �xed number of values� The resulting veri�cation
subproblems are then handled by symbolic model checking�

�� Proof by induction

Suppose now that we want to verify some property of a long sequence� For example� we
may have a counter in our design that counts up to a very large number� Such counters can
lead to ine�cient veri�cation in SMV because the state space is very deep� and as a result�
SMV	s breadth �rst search technique requires a large number of iterations to exhaustively
search the state space� However� the usual mathematic proof technique when dealing with
long sequences is proof by induction� For example� we might prove that a property holds
for � �the base case� and further that if it holds fr some arbitrary value i� then it holds for
i � �� We then conclude by induction that the property holds for all i�

Data type reductions provide a mechanism for inductive reasoning in SMV� To do this�
however� we need a data symmetric data type that allows adding and subtracting constants�
In SMV� such data types are called ordsets� An ordset is just like a scalarset� except the
restrictions on ordsets are slightly relaxed� If we delcare a type as follows�

ordset TYPE �������	

then� in addition to the operations allowable on scalarset types� the following are also legal�

�� x � � and x � ��

�� x
 � and x
 ����

where x is of type TYPE� That is� we can increment and decrement values of ordset types�
and also compare them with the extremal values of the type�

Induction is done in the following way� suppose we want to prove property p�i�� where i
is the induction paremeter� ranging over type TYPE� We use a data type reduction that maps
TYPE onto a set of four values� X�i���i�Y� Here the symbolic value X abstracts all the values
less that i��� and Y abstracts all the values greater than i� Incrementing a value in this
reduced type is de�ned as follows�

X � �
 �X�i���

�i��� � �
 i

i � �
 Y

Y � �
 Y

That is� adding one to a value less than i�� will result in either i�� or a value less that i���
Decrementing is similary de�ned� Any property provable in this abstract interpretation is
provable in the original� In addition� we can show that all the cases from i
 � up to i

""" are isomorphic� Thus it is su�cient to prove oly the cases i
 �� �� �� �����
As an example� suppose we hae a counter that starts from zero and increments once per

clock cycle� up to ����� We	d like to show that for any value i from � to ����� the counter
eventually reaches i� Here	s how we might set this up�

��

ordset TYPE �������	

module main��

�

x � TYPE	

�� the counter ��

init�x� �
 �	

next�x� �
 x � �	

�� the property ��

forall�i in TYPE�

p�i� � assert F �x
 i�	

�� the proof ��

forall�i in TYPE�

using p�i��� prove p�i�	

�

We prove each case p�i� using p�i���� That is� when proving the counter eventually reaches
i� we assume that it eventually reaches i��� �Note that technically� for the case i
 �� we
are asking SMV to use p����� but since this doesn	t exist� it is ignored�

SMV can verify that this proof is noncircular� Further� using its induction rule� it auto�
matically generates a data type reduction using the values i and i��� and it generates the
four cases we need to prove� p���� p���� ���� p������� To con�rm this� run the example�
and look in the properties ane� You should see the four aforementioned properties� Now
choose Verify All to verify that in fact the induction works� and that p�i� holds for all i�

����� Induction over in�nite sequences

Now� suppose we have a counter that ranges from zero to in�nity� We can still prove by
induction that any value i is eventually reached� To do this� we declare TYPE to be an ordset

without an upper bound�

ordset TYPE ���	

With this change� run the example� and notice that in the properties pane there are now
only three cases to prove� p���� p���� ���� We don	t have to prove the maximum value as
a special case� because there is no maximum value� Now choose Verify All to verify that
in fact the induction works� and that p�i� holds for all i� We	ve just proved a property of
an in�nite�state system by model checking�

��

����� A simple example

To see how we can use induction in practice� let	s return to our example of transmitting an
array of bytes� This time� however� we will assume that the bytes are in an in�ntie sequence�
They are received at the input in the order �� �� �� ��� and they must be transmitted to
the output in that order�

To begin with� let	s de�ne our types�

scalarset BIT ����	

typedef BYTE array BIT of boolean	

ordset INDEX ���	

Note that we de�ned INDEX as an ordset type� so we can prove properties by induction
over indices�

We begin with the original re�nement speci�cation� As in section ������ we encapsulate
it in a module� so we can reuse it for both input and output�

module byte�intf�bytes��

bytes � array INDEX of BYTE	

valid � boolean	

idx � INDEX	

data � BYTE	

layer spec�

if�valid� data �
 bytes�idx�	

�

To specify ordering we simply introduce a counter cnt that counts the number of bytes
received thus far� If there is valid data at the interface� we specify that the index of that
data is equal to cnt� Thus� add the following declarations to module byte intf�

cnt � INDEX	

init�cnt� �
 �	

if�valid� next�cnt� �
 cnt � �	

ordered� assert G �valid �� idx
 cnt�	

Note� we can include temporal properties� like the above property ordered inside modules�
Thus� for each instance of the interface de�nition� we	ll get one instance of this property� As
our �rst implementation� we	ll just use the trivial implementation that delays the input by
one clock cycle� Here	s what the main module looks like�

��

module main�bytes�inp�out��

bytes � array INDEX of BYTE	

input inp � byte�intf�bytes�	

output out � byte�intf�bytes�	

�� the abstract model ��

next�bytes� �
 bytes	

�� the implementation ��

init�out�valid� �
 �	

next�out�valid� �
 inp�valid	

next�out�data� �
 inp�data	

next�out�idx� �
 inp�idx	

�

To prove the correctness of the data output �with respect to the re�nement speci�cation�
we use the same proof as before � we split into cases based on the index of the output�

forall�i in INDEX�

subcase spec�case�i� of out�data��spec

for out�idx
 i	

Note that anything that can be done with a scalarset can also be done with an ordset�
So much for the data correctness � the interesting part is the correct ordering� For the

proof of the ordering property� we	re going to use induction over the value of the counter
cnt� The intuition here is that� if the output index equals the counter when the counter is i�
then at the next valid output the counter and index will both be one greater� and hence they
will be equal for cnt
 i � �� This assumes� of course� that the input values are ordered
correctly� To verify this� we must �rst break the output ordering property into cases based
on the value of �cnt�

forall�i in INDEX�

subcase ord�case�i� of out�ordered for out�cnt
 i	

Then� we prove case i using case i�� and the input ordering property� We leave
inp�ordering as an assumption�

forall�i in INDEX��

using ord�case�i���� inp�ordered prove ord�case�i�	

assume inp�ordered	

�

Now� run this example� and observe the properties pane� You	ll notice that we now have
three cases of the property out�data��spec case�i� to prove� i
 �� �� �� In fact� all of

��

these cases are isomorphic� but since INDEX is de�ned as an ordset rather than a scalarset�
SMV	s type checking rules don	t guarantee this� Thus� SMV will e
ectively prove the same
property three times� Fortunately� each case takes only a fraction of a second�

Now observe that we also have three cases of ord case�i� to prove� Select� for example�
property ord case��� from the properties pane and observe the cone� You	ll notice that
each value of type INDEX requires two boolean variables to encode it� This is because there
are four values in the reduced type� i��� i and two abstract values to represent the ranges
���i�� and i����infinity� Notice also that there are no data values in the cone� since
the indices do not depend on the data� Thus� we have e
ectively separated the problem of
correct ordering from correct delivery of data�

Now� try PropVerify all� All the cases should be veri�ed in less than a second�
A note� for ordsets� a data type reduction may be speci�ed� in lieu of SMV	s default�

The general form of the data type reduction for ordset types is�

TYPE �� � min��min�a� i�b��i�c� max�d��max�	

where min is the minimum value of TYPE� i is the induction parameter� and max is the
maximum value of TYPE� Thus� SMV allows us to use any �nite number of values around the
induction parameter i and the extremal values� In this case� the number of cases that need
to proved will be larger� however�

����� A circular bu	er

Now let	s consider transmission of an in�nite sequence of bytes again� but this time using
our array of cells as a circular bu
er �an implementation of a FIFO queue�

To begin with� we need to add handshaking to our interface de�nition� so add the following
to module byte intf�

srdy� rrdy � boolean	

valid �
 srdy � rrdy	

The signal srdy indicates that the sender is ready� while rrdy indicates the the receiver
is ready� The data are valid� by de�nition� when both are ready�

Now� as in section ���� we	ll use an array of �� cells� to hold our data items� So de�ne
the type CELL as�

ordset CELL �����	

The reason for making it an ordset type will become apparent later� Now� replace the
previous �trivial� implementation with the following�

cells � array CELL of struct�

valid � boolean	

idx � INDEX	

data � BYTE	

�

��

recv�cell� send�cell � CELL	

inp�rrdy �
 �cells�recv�cell��valid	

out�srdy �
 cells�send�cell��valid	

forall�i in CELL�init�cells�i��valid� �
 �	

default�

if�inp�valid��

next�cells�recv�cell��valid� �
 �	

next�cells�recv�cell��idx� �
 inp�idx	

next�cells�recv�cell��data� �
 inp�data	

�

� in �

if�out�valid��

next�cells�send�cell��valid� �
 �	

�

�

out�idx �
 cells�send�cell��idx	

out�data �
 cells�send�cell��data	

Note� recv cell is the cell we are receiving a byte into� and send cell is the cell we are
sending a byte from� We block our input �setting inp�rrdy to zero when the cell wwe are
receiving into is full� and block our output �setting out�srdy to zero when the cell we are
sending from is empty� When we receive into a cell� we set its valid bit to true� and when
we send from the cell� we clear its valid bit�

Up to this point� we haven	t said what policy is used to choose recv cell and send cell�
To make our bu
er ordered� we can use a round�robin policy� This means that each time we
receive a byte� we increment recv cell by one� and each time we send a byte� we increment
send cell by one� When either of these reaches its maximum value� it returns to zero� To
accomplish this� add to following code to the implementation�

init�recv�cell� �
 �	

if�inp�srdy � inp�rrdy�

next�recv�cell� �
 �recv�cell
 ��� � � � recv�cell ��	

init�send�cell� �
 �	

if�out�srdy � out�rrdy�

next�send�cell� �
 �send�cell
 ��� � � � send�cell ��	

Note that� since CELL is an ordset type� rather than a scalarset� it	s legal to compare
it against the maximum value ��� and set it back to the minumum value ��� If CELL were
a scalarset� it wouldn	t be legal to introduce any constants of the type�

Now that we have our implementation� lets prove both the correctness of the data output
and correctness of the ordering� The case splitting statement for data correctness is the

��

same as when we did this example in section ������ where we weren	t concerned with data
ordering�

forall�i in INDEX� forall�j in CELL�

subcase spec�case�i��j� of out�data��spec

for out�idx
 i � send�cell
 j	

That is� we consider separately the case of each byte index i� and the cell j that it is stored
in� That way� we only need to consider one cell in the aray at a time� Notice that adding
ordering does not change the proof of data correctness in any way�

Now for the ordering question� Again� we are going to use induction� The ordering
property says that when the output data are valid� the output index must be equal to are
count of the number of previous values� We	ll do the proof by induction over the value of the
counter� That is� we	ll assume that the index was correct when the count was i��� and then
prove that the index is correct when the count is i� This means that� as before� we have
to split cases based on cnt� However� in this case we also have to split cases on the cell in
which the current output value stored� Thus� we use the following case splitting declaration�

forall�i in INDEX� forall�j in CELL�

subcase ord�case�i��j� of out�ordered

for out�cnt
 i � send�cell
 j	

Now� the question is� what data type reduction to use for type CELL� We know we need
to use cell j� since that is the one holding the data item we are interested in� However� in
addition� we need to use the previous cell� The intuition behind this is as follows� We are
assuming that the output index is correct for byte i��� If byte i is stored in cell j� then
byte i�� is stored in cell j�� �which one exception� This means we need to inclde cell j���
Then� if cell j�� contains index i��� and the inputs are ordered� it follows that cell j will
contain index i� which is what we are trying to prove� Thus� we might use the data type
reduction�

CELL �� �j����j�

However� note that the exception to the above reasoning is the case j
 �� In this case� the
�previous� cell is cell ��� Since there	s no way �yet to write a special data type reduction for
this case� we	ll just include the value �� in our data type reduction for all the cases� Thus�
we write�

forall�i in INDEX� forall�j in CELL�

using CELL �� �j����j���� prove ord�case�i��j�	

Now comes the actual inductive step� we use the case cnt
 i�� to prove the case cnt

 i�

forall�i in INDEX� forall�j in CELL�

using ord�case�i���� inp�ordered prove ord�case�i��j�	

assume inp�ordered	

��

Notice that we use the entire array ord case�i��� �for all cells in this veri�cation� This
isn	t really necessary� since only the �previous cell� �j�� or �� is needed in any give case�
but its harmless� Note that we aren	t doing induction over the cell number� In fact� we can	t
do this� since the cells are used in a circular manner� This would result in a cycle in the
proof�

Now� run this example� and note the properties that appear in the properties pane� You	ll
observe that the property ord case�i��j� has to be proved for all the combinations of i

����� and j
 ������������ The reason we have extra cases to prove for the cell index j�
is that we included the maximum value �� in the data type reduction� SMV reasons that
the case j
�� might not be isomorphic to the case �j���� since we might compare j in some
way with the value ��� However� as you can observe by selecting �Prop�Verify All�� all of
these cases can be veri�ed quickly� This is because the number of state variables is small
after data type reductions�

Thus� we	ve proved that a circular bu
er implementation correctly transmits an in�nite
sequence of bytes using a given handshake protocol�

����� Abstract variables

Notice that the case of the circular bu
er� we don	t really have to send the byte indices�
since they can be inferred from the ordering property of the interface� The data output
doesn	t depend on them� Thus� in the actual implementation� we would leave out the idx

output of the bu
er� considering it only an �auxiliary� variable used in the veri�cation� This
use of �auxiliary state� added to the implementation gives us a convenient way to specify
interfaces as a function of abstract models� The auxiliary information tells us which object in
the abstract model is currently appearing at the interface� This in turn allows us to specify
what data should be appear at the interface as a function of the abstract model� In the next
section� we	ll see a slightly di
erent way to do this�

We can tell SMV that a given variable is part of the proof only� and not part of the actual
implementation� by declaring it as abstract� For example� in the byte intf module� we
would declare the idx component as�

abstract idx � INDEX	

SMV will verify for us that no actual implementation logic depends on this variable�
The abstract variables can thus be excised from the implementation while retaining all the
properties we	ve proved�

��� Instruction processors

Up to now� when discussing re�nement veri�cation� we	ve considered only the transfer of
data from one place to another� without actually operating on the data� Now we	ll have
a look at how to verify instruction set processors� that is� machines that input a sequence
of operations to be performed on some data structure� such as a register �le or a memory�
In this case� our abstract model is usually an �instruction set architecture� �ISA� This is
represented by a simple sequential machine the processes instructions on at a time� in the

��

order they are received� The implementation is usually a more complex machine that works
on more than one instruction at a time� This can be done� for example� by pipelining� or
out�of�order execution techniques�

The key to veri�cation of such designs in SMV is to break the problem up into individual
instructions� Usually� we break an instruction up into two parts� which correspond to two
lemmas int the proof� The �rst lemma is that all the operands fed to the function unit�s
are correct� according to the abstract model� The second is that all results produced by the
functional unit�s are correct �again� with respect to the abstract model� Needless to say�
we use lemma � to prove lemma �� and vice versa� The reason for breaking the probelm into
two lemmas is that the operand fetching operation and the functional unit operation are
somewhat di
erent in nature� so it	s convenient to separate the two issuues� so we can apply
a di
erent proof approach to each �much as we separated the issues of data correctness and
ordering in the circular bu
er�

Now� in order to specify that the operands and results are correct with respct to the
abstract model� we usually have to add some auxiliary information to the implementation
�see the previous section� In this case� we add to each instruction moving through the im�
plementation a few extra �elds to store the correct operands and results for that instruction�
as computed by the abstract model�

���� A very simple example

As a very simple example� let	s de�ne an instruction set architecture with just one instruction�
performed on values in a register �le� Each instruction has two source operands and a
destination operand� Thus� an opcode consists of three �elds � srca� srcb and dst� For
simplicity� we	ll make the operation addition� Here	s what the ISA model might look like�

scalarset REG undefined	

typedef WORD array ����� of boolean	

module main��

�

r � array REG of WORD	

srca� srcb� dst � REG	

opra� oprb� res � WORD	

opra �
 r�srca�	

oprb �
 r�srcb�	

res �
 opra � oprb	

next�r�dst�� �
 res	

�

We	ve declared a type REG to represent a register index� a type WORD to represent a data
word �in this case a �� bit word� Notice that REG is a unde�end scalarset� That is� we don	t
say� for the moment� how many registers there are�

��

Notice� also� that we	ve given names to the operand values opra and oprb� and to the
operation result res� It wasn	t necessary to do this� That is� we could have written�

next�res�dst�� �
 r�srca� � r�srcb�	

This would have been more concise� However� it	s convenient to give the intermediate
quantities names� since we will use these later in writing re�nement relations� Now let	s
implement this abstract model with a simple � stage pipeline� where the �srt stage fecthes
the operands� the second stage does the addition� and the third stage stores the result into
the register �le� The implementation has a reguster bypass path that forwards the results
directly from later stages of pipe to the operand fetch stage�

�� the implementation ��

�� implementation register file ��

ir � array REG of WORD	

�� pipe registers ��

stage� � struct �

valid � boolean	

dst � REG	

opra� oprb � WORD	

�

stage� � struct�

valid � boolean	

dst � REG	

res � WORD	

�

�� read stage � fetch operands with bypass ��

next�stage��opra� �

case�

stage��valid � srca
 stage��dst � alu�output	

stage��valid � srca
 stage��dst � stage��res	

default � ir�srca�	

�	

next�stage��oprb� �

case�

stage��valid � srcb
 stage��dst � alu�output	

stage��valid � srcb
 stage��dst � stage��res	

default � ir�srcb�	

��

�	

next�stage��dst� �
 dst	

init�stage��valid� �
 �	

next�stage��valid� �
 �	

�� alu stage� add operands ��

alu�output � WORD	

alu�output �
 stage��opra � stage��oprb	

next�stage��res� �
 alu�output	

next�stage��dst� �
 stage��dst	

init�stage��valid� �
 �	

next�stage��valid� �
 stage��valid	

�� writeback stage� store result in r ��

if�stage��valid�

next�ir�stage��dst�� �
 stage��res	

Note that each stage has a valid bit� which says whether there is an instruction in it�
Initially� these bits are zero�

Now� we would like to write two re�nement maps � one which de�nes the correct operand
values in stage� and the other which de�nes the correct result at the adder output� To
do this� we add some auxiliary state information to each stage tat remembers the correct
operand and result values for the given stage� as computed by the abstract model� Let	s add
the following component to stage� �

stage��aux � struct�

opra� oprb� res � WORD	

�

Now� let	s add some code to record the correct operand and result values for the �rst
stage�

next�stage��aux�opra� �
 opra	

next�stage��aux�oprb� �
 oprb	

next�stage��aux�res� �
 res	

That is� we simply record the abstract model	s values for opra� oprb and res� Note�
this is why we gave them explicit names in the abstract model� This is all the auxiliary
information we	ll need to state our re�nement relations� However� for e deeper pipeline�

��

we could just pass the auxiliary information down the pipe along with the instructions� as
follows�

next�stage��aux� �
 stage��aux	

���

Now� we can state the two re�nement maps in terms of the auxiliary state information�
For the operands� we specify that� if stage � has a valid instruction� then its operands are
equal to the correct operand values�

layer lemma�� �

if�stage��valid� stage��opra �
 stage��aux�opra	

if�stage��valid� stage��oprb �
 stage��aux�oprb	

�

For the ALU results� we specify that� if stage� has a valid instruction� then the ALU
output is equal to the correct result value�

layer lemma��

if�stage��valid� alu�output �
 stage��aux�res	

We would like to show� of course� the correct operands imply correct results� and con�
versely� correct results imply correct operands� However� since we have an arbitrary number
of registers to deal with� we	ll need to break lemma� into cases as a function of which register
is being read� The only problem we have in doing this is that we don	t know which registers
were the source operands for the instruction in stage one� because our implementation does
not store this information� This problem is easily solved� however� since we can store the
information in our auxiliary state� So let	s add two components to the auxiliary state�

next�stage��aux�srca� �
 srca	

next�stage��aux�srcb� �
 srcb	

Of course� we have to remember to declare these components in our auxiliary structure
�their type is REG� Now� we split the operand re�nement maps into cases based on which
are the actual source registers of the instruction in stage �� For the srca operand� we have�

forall�i in REG�

subcase lemma��i� of stage��opra��lemma� for stage��aux�srca
 i	

Similarly� for srcb� we have�

forall�i in REG�

subcase lemma��i� of stage��oprb��lemma� for stage��aux�srcb
 i	

This way� we only have to consider one register at a time� so we can reduce an arbitrary
number of registers to just one� for each case� Note� we don	t need to do this for lemma��
the result re�nement maps� since it doesn	t depend on the register �le� It depends only on
the operands�

Now we	re ready to prove the various cases of our lemmas� For lemma�� we say�

��

forall�i in REG�

using res��free� alu�output��lemma� prove stage���lemma��i�	

That is� we assume that the ALU ouput is correct� and show that �future operands we
obtain are correct� Notice that there are several paths that an ALU result might take to get
back to the operand registers in stage �� It might follow the bypass path� or it might get
stored in register i� Either way� it should agree with what the abstract model gets� Notice
also that the correct storage and forwarding of a result deosn	t depend on what the result
actually is� For this reason� we free the abstract model	s result res� This eliminates the
abstract model	s ALU from the cone�

To prove the result lemma �lemma�� we assume that operands entering the ALU are
correct�

using opra��free� oprb��free� stage���lemma�

prove alu�output��lemma�	

Note� in this case� we don	t care what the correct operands actually are � we only care that
the abstract model and the implementation agree on them �lemma�� Thus� we free opra

and oprb� and eliminate the abstract model register �le from the cone� This is important�
since this register �le is of unbounded size� and in this case we have no single register index
to which we can reduce the type REG�

Now� run this example� You	ll notice that there are �� instances to prove for each of

stage��opra�i���lemma����

stage��oprb�i���lemma����

alu�output�i���lemma�

where i is a bit index within a word� This is because SMV proves the re�nement maps for
each of the �� bits of the data path separately� Later we	ll see how to reduce this rather
large number of properties� For the moment� however� select property

stage��opra�����lemma����

and try to verify it� You should get a counterexample� In this counterexemple� the initial
value of r������ �a bit in the abstract register �le is zero� while the initial value of ir�����
�the corresponding bit in the implementation register �le is one� The problem here is that
the abstract model is underspeci�ed� Because we have speci�ed the initial state of the register
�le� it is nondeterministic� As a result of this� the abstract model and implementation have
diverged�

When there is a nondeterministic choice in an abstract model� we sometimes have to
provide a �witness function� for this choice� That is� as a function of the implementation
behavior� we plug in a suitable value in the abstract model� In this case� since the initial
value in the speci�cation is complete unde�ned� we are free to plug in any value we like� So
let	s write the following�

init�r� �
 ir	

��

That is� we just set the initial value of the abstract model register �le to be the same as
the initial value of the implementation register �le� You might be wondering why we have to
do this� That is� why can	t SMV �gure out what the correct initial value of the register �le
is� The answer is that it could� for any given property� However� it might use di
erent intial
values to prove di
erent properties� As a result� even though we would have �veri�ed� all
the properties� there would be no single choice that makes all the properties true� Thus� for
reasons of soundness� SMV requires you to �x the choice once and for all� and then veri�es
all the properties for the particular choice you make�

In any event� let	s open the new version� with the witness function� and try again to verify
stage��opra�����lemma����� You should �nd that the property is true� Look in the Cone
pane� and observe that it contains only �� boolean state variables� This is bacause we are
considering only registers r��� and ir���� and only bit � of the data path� We obtain only
bit � of the data path since neither the abstract model ALU nor the implementation ALU
is in the cone� The former was eliminated by freeing res� while the latter was eliminated by
using lemma� to drive the ALU output in the implementation�

Now select property alu output�����lemma�� The cone is rather large in this case ���
state variables because bit � depends in this case on all the other bits of the data path
through the ALU� �This is because bit � is the most signi�cant bit�and depeds on all the
others through the carry chain� However� notice the register �les are not in the cone in this
case� because we have freed opra and oprb� and we have driven the implementation operand
registers using lemma��

Go ahead and verify property alu output�����lemma�� You should �nd that it checks
fairy quickly in spite of the large number of state variables� This is because the ALU
operation is addition� and SMV succeeds in �nding an ordering of the BDD variables that
maes the addition function compact� In fact� select PropVerify All to verify all the
remaining properties� On my machine� this takes a little under eight seconds�

On the other hand� if we had had a multiplier in the ALU the story would have been
di
erent� This is because there is no BDD variable ordering that makes this function com�
pact� The veri�cation of multipliers is beyond the scope of this tutorial� There is� however�
a way of separating the problem of airthmentic veri�cation from the processor veri�cation
problem� In this way� we can verify the processor design independent of the ALU function�
Then we can plug in any ALU function we like�

���� Uninterpreted functions

Suppose that instead of specifying the exact function of the ALU in our abstract model� we
simply use a symbol f to denote this function� Suppose further that we use the same function
symbol in our implementation� and we are able to prove a re�nement relation between the
two� It would then follow that the re�nement holds for any concrete function we might want
to plug in place of f�

To represent such an uninterpreted function symbol in SMV� we simply introduce an
array to represent its lookup table� For example� if we have a function f that takes two WORD

arguments and produces a WORD result� we might write�

forall �a in WORD� forall �b in WORD�

��

f�a��b� � WORD	

or equivalently

f � array WORD of array WORD of WORD	

The only thing we need to know about function f is that it doesn	t change over time� To
declare this in SMV� we can simply write�

next�f� �
 f	

Now� to evaluate function f over two arguments a and b� we just look up the result in
the table� For example�

res �
 f�opra��oprb�	

The trick here is that� without a data type reduction for type WORD� the lookup table
for f will be of astronomical size� However� by case splitting� we can consider only the case
when the arguments are some �xed values� and the result of the function is some �xed value�
By doing this� we then have to consider only one element of the table for f at a time� This
is a good thing� but it requires that WORD be a symmetric type �a scalarset or an ordset�
so that we can reduced the very large numer of cases �here ��� � ��� � ��� to a tractable
number �for example� ��

So now let	s rewrite our example using an uninterpreted function symbol f for the ALU
function� First� let	s rede�ne type WORD to be a scalarset�

scalarset WORD undefined	

We don	t have to say what the range of the type is� Instead� we	ll verify our design for
any word size� Now� in the main module� let	s de�ne an uninterpreted function f�

f � array WORD of array WORD of WORD	

next�f� �
 f	

Finally� we	ll replace the ALU functions in both abstract model and implementation with
function f� In the abstract model� change

res �
 opra � oprab	

to

res �
 f�opra��oprb�	

In the implementation� change

alu�output �
 stage��opra � stage��oprb	

to

alu�output �
 f�stage��opra��stage��oprb�	

��

Now that we	ve modeled our problem with an uninterpreted function� we need to do a little
further case splitting� so that we only have to think about a few values of WORD at a time�

For the operand lemma� we	ll split cases on the cirrect operand value� That is� we	ll prove
that the operands we obtain are correct when the correct value is some �xe number j�

forall�i in REG� forall�j in WORD�

subcase lemma��i��j� of stage��opra��lemma�

for stage��aux�srca
 i � stage��aux�opra
 j	

�and similarly for oprb� For the results lemma� we want to consider only one entry in
the lookup table for f at a time� We	ll split our result re�nement map �lemma� into cases
based on the values of the two operands� and the value of function f for those two particular
values� Thus for example� we might verify that the alu output signal is correct only in the
particular case when opra
 � and oprb
 � and when f������
 �� Here is a suitable
case splitting declaration�

forall �a in WORD� forall�b in WORD� forall�c in WORD�

subcase lemma��a��b��c� of alu�output��lemma�

for stage��aux�opra
 a

� stage��aux�oprb
 b

� f�a��b�
 c	

Our using���prove declarations are exactly the same as before� except that they have added
parameters for the additional case splits�

forall�i in REG� forall�j in WORD�

using res��free� alu�output��lemma� prove stage���lemma��i��j�	

forall �a in WORD� forall�b in WORD� forall�c in WORD�

using opra��free� oprb��free� stage���lemma�

prove alu�output��lemma��a��b��c�	

Now� open the new version� For alu output��lemma��a��b��c�� there are six cases to
prove�

alu�output��lemma����������

alu�output��lemma����������

alu�output��lemma����������

alu�output��lemma����������

alu�output��lemma����������

alu�output��lemma����������

That is� SMV generates enough cases so that we see all the possible equality relationships
between a� b and c� of which there are � factorial� For lemma �� we now have just one case
each for opra and oprb� since there is only one parameter of type WORD�

��

Select property alu output��lemma���������� and look at the cone� You	ll notice that
only one element of the lookup table for f appears in the cone� f������� This is because �
is the only speci�c valued in the reduced type WORD� �SMV automatically chose a reduction
for us� including just those values that speci�cally appear in the property we	re proving�
Verify this property� It	s not surprising that the veri�cation is rather fast� since there are
only � state variables�

Now select property alu output��lemma����������� Notice that in this case we have
nine cases of f�a��b� in the cone �all the combinations of a�b
 ������ This is because
SMV isn	t smart enough to �gure out that the only element that actually matters is f�������
We could� if we wanted to� include a declaration to make the remaining values unde�ned�

forall �a in WORD� forall�b in WORD� forall�c in WORD�

using f��undefined� f�a��b� prove alu�output��lemma��a��b��c�	

This would reduce the number of state variables quite a bit� but it isn	t really necessary�
Even with the extraneous variables� the veri�cation is quite fast� as you may observe�

Finally� select PropVerify All to verify the remaining cases� We have now veri�ed our
trivial pipeline design for an arbitrary number of registers� an arbitrary word size� and an
arbitrary ALU function�

���� What about outputs�

Up to now� we	ve proved a certain relationship between the abstract model and the implemen�
tation� but we haven	t really proved that the circuit observably implements its speci�cation�
This is because the pipeline has no outputs� We could easily� however� give the processor
and output instruction �perhaps one that outputs the sum of two registers� In this case the
output of our pipeline would likely appear with some delay� relative to the speci�cation� This
means we would need to write a re�ement map for the pipeline output that delays the ab�
stract model output by some �xed amount� In this case� since the delay is �nitely bounded�
writing such a map is straightforward �we	ll leave it as an �exercise for the reader�� If there
isn	t a known �xed bound on the output delay� we might� for example� borrow a technique
from a previous section� That is� we could attach in index to each instruction� so that we
know which instruction	s value is appearing at any given time at the output� We could then
use induction� as before� to show that the output values appear in the correct order�

In any event� in the next section� we	ll see an example of a more interesting implementa�
tion� with an output�

���� An out�of�order instruction processor

The above may have seemed like a great deal of e
ort to verify such a simple design� However�
we will �nd that the proof becomes only incrementally more complex when we move to a
much more complex implementation � an instruction processor using Tomasulo	s algorithm�

��

"VIRTUAL" REGISTERS

"VIRTUAL
 OPERANDS"

VAL/TAG
VAL/TAG
VAL/TAG
VAL/TAG

OP, DST

VO1 VO2

RESERVATION
STATIONS

OP, DST

VO1 VO2

OP, DST

VO1 VO2

EU

EU

EU

TAGGED RESULTS

OPSINSTRUCTIONS

Figure �� Flow of instructions in Tomasulo	s algorithm

������ Tomasulo�s algorithm

Tomasulo	s algorithm allows execution of instructions in data��ow order� rather than sequen�
tial order� This can increase the throughput of the unit� by avoiding pipeline stalls� Each
pending instruction is held in a �reservation station� until the values of its operands become
available� then issued �out�of�order��

The �ow of instructions is pictured in �gure �� Each instruction� as it arrives� fetches
its operands from a special register �le� Each register in this �le holds either an actual
value� or a �tag� indicating the reservation station that will produce the register value
when it completes� The instruction and its operands �either values or tags are stored in a
reservation station �RS� The RS watches the results returning from the execution pipelines�
and when a result	s tag matches one of its operands� it records the value in place of the tag�
When the station has the values of both of its operands� it may issue its instruction to an
execution pipeline� When the tagged result returns from the pipeline� the RS is cleared� and
the result value� if needed� is stored in the destination register� However� if a subsequent
instruction has modi�ed the register tag� the result is discarded� This is because its value in
a sequential execution would be overwritten�

In addition to an ALU instruction� we include instructions that read register values to
an external output and write values from an external input� There is also a �stall� output�
indicating that an instruction cannot be received either because there is no available RSto
store it� or because the value of the register to be read to an output is not yet available�

������ The abstract model

As before� our abstract model is a simple machine that executes instructions in order as they
arrive� Additionally� in this case� it has the ability to stall� The choice of whether to stall or
not is nondeterministic�

As before� we make the register index values and data values unde�ned scalarsets�

scalarset WORD undefined	

scalarset REG undefined	

module main��

��

�

���

�

We de�ne an uninterpreted function f for the ALU�

f � array WORD of array WORD of WORD	

next�f� �
 f	

Here is the abstract model�

opin � �ALU�RD�WR�NOP�	 �� opcode input ��

srca�srcb�dst � REG	 �� source and dest indices input ��

din�dout � WORD	 �� data input and output ��

r � array REG of WORD	 �� the register file ��

opra�oprb�res � WORD	 �� operands and result ��

stallout � boolean	 �� stall output �nondeterministic� ��

�� the abstract model ��

layer arch�

if��stallout�

switch�opin��

ALU � �

opra �
 r�srca�	

oprb �
 r�srcb�	

res �
 f�opra��oprb�	

next�r�dst�� �
 res	

�

RD � �

dout �
 r�srca�	

�

WR � �

next�r�dst�� �
 din	

�

�

Note that we	ve put our speci�cation inside a layer called arch� so that we can re�ne the
data output signal dout in the implementation� Also note that since we haven	t speci�ed a
value for stallout it remains nondeterministic� In case of an ALU operation� our behavior
is as before� apply the ALU operation f to the two source operands� and store the result in
the register �le� In case of a RD operation� we read the srca operand from the register �le
and assign it to dout� the data output� In case of a WR opration� we store the value of the
data input� din� into the destination register� �Finally� in case of a NOP operation� we do
nothing�

��

������ Implementation

In the implemenation� we have two main data structures� the register �le and the array of
reservation stations� We de�ne these as follows�

ir � array REG of

struct�

resvd � boolean	

tag � TAG	

val � WORD	

�

st � array TAG of

struct�

valid � boolean	

opra� oprb � st�opr	

dst � REG	

issued � boolean	

�

Each register has a bit resvd� which is true when it is holding a tag �we say it is �reserved�
and false when it is holding a value� Each reservation station has a bit valid to indicate
is is holding a valid instruction� a bit issued to indicate its instruction has been issued to
an execution unit� and two operand �elds� opra and oprb� The operand type is de�ned as
follows�

typedef st�opr struct�

valid � boolean	

tag � TAG	

val � WORD	

�

Each operand has a bit valid� When valid is true� it holds a value� otherwise it holds a
tag� The type TAG is an index into the reservation station array� and is declared as follows�

scalarset TAG undefined	

The result bus is called pout and is declared as follows�

pout � struct�

valid � boolean	

tag � TAG	

val � WORD	

�

We also need arbitrary choices for the reservation station to store a new instruction into�
and the reservation to issue to an execution unit at any given time�

��

st�choice � TAG	

issue�choice � TAG	

Now� we begin with the implementation behavior� Initially� all the reservation stations
are empty� and all the registers are unreserved�

forall�i in TAG�

init�st�i��valid� �
 �	

forall�i in REG�

init�ir�i��resvd� �
 �	

There are three basic operations that occur on the register �le and reservation stations�

� incoming instructions stored in a RS�

� instruction issue to execution unit and

� instruction completion �writeback to register �le�

These three operations appear in the following default���in structure�

default

����instruction completion logic����

in default

����incoming instruction logic����

in

����instruction issue logic����

This is done to specify the relative priority of the three operations in case they write to
the same register at the same time� However� in principle they shouldn	t interfere with
eachother� except in one case where we need a register bypass�

Now� here is the implementation of instruction completion�

if�pout�valid��

forall�i in REG�

if�ir�i��resvd � ir�i��tag
 pout�tag��

next�ir�i��resvd� �
 �	

next�ir�i��val� �
 pout�val	

�

forall�i in TAG��

if��st�i��opra�valid � st�i��opra�tag
 pout�tag��

next�st�i��opra�valid� �
 �	

next�st�i��opra�val� �
 pout�val	

�

if��st�i��oprb�valid � st�i��oprb�tag
 pout�tag��

next�st�i��oprb�valid� �
 �	

next�st�i��oprb�val� �
 pout�val	

��

�

if�st�i��issued �� pout�tag
 i�

next�st�i��valid� �
 �	

�

�

The signal pout�tag tells us which instruction the returning result is for� We match it against
the tags in the register �le � if any reserved register has this tag� we store the returning value
in it� and mark it unreserved� Similarly� we match the tag against any reservation stations
that are valid � if one of the operands has this tag� we store the result in it� and mark it
valid� Finally� the reservation station whose index is pout�tag has now completed� so we
mark it invalid�

Now� here	s the code for incoming instructions� Note� we have to consider a special case
where an operand of the incoming instruction is returning on the result bus at precisely this
moment� In this case� we bypass the register �le and send the result dirctly to the reservation
station�

if��stallout�

switch�opin��

ALU � �

�� store the instruction in an RS ��

next�ir�dst��resvd� �
 �	

next�ir�dst��tag� �
 st�choice	

next�st�st�choice��valid� �
 �	

next�st�st�choice��issued� �
 �	

�� fetch the a operand �with bypass� ��

if�pout�valid � ir�srca��resvd � pout�tag
 ir�srca��tag��

next�st�st�choice��opra�valid� �
 �	

next�st�st�choice��opra�tag� �
 ir�srca��tag	

next�st�st�choice��opra�val� �
 pout�val	

� else �

next�st�st�choice��opra�valid� �
 �ir�srca��resvd	

next�st�st�choice��opra�tag� �
 ir�srca��tag	

next�st�st�choice��opra�val� �
 ir�srca��val	

�

�� fetch the a operand �with bypass� ��

if�pout�valid � ir�srcb��resvd � pout�tag
 ir�srcb��tag��

next�st�st�choice��oprb�valid� �
 �	

next�st�st�choice��oprb�tag� �
 ir�srcb��tag	

��

next�st�st�choice��oprb�val� �
 pout�val	

� else �

next�st�st�choice��oprb�valid� �
 �ir�srcb��resvd	

next�st�st�choice��oprb�tag� �
 ir�srcb��tag	

next�st�st�choice��oprb�val� �
 ir�srcb��val	

�

�

RD � dout �
 ir�srca��val	

WR � �

next�ir�dst��val� �
 din	

next�ir�dst��resvd� �
 �	

�

�

Note that when when fetching an operand from a reserved register� if the tag matches the
returning result on pout� we directly move the pout data into the operand �eld of the
reservation station� Otherwise� we move the contents of the register �whether a tag or a
value�

Finally� here is the code for instruction issue�

if�st�issue�choice��valid

� st�issue�choice��opra�valid

� st�issue�choice��oprb�valid

� �st�issue�choice��issued

� exe�rdy�

�

exe�valid �
 �	

next�st�issue�choice��issued� �
 �	

�

else exe�valid �
 �	

exe�tag �
 issue�choice	

exe�opra �
 st�issue�choice��opra�val	

exe�oprb �
 st�issue�choice��oprb�val	

�

If the RS chosen for issue has a valid instruction� and if both its operands are valid� and
if it is not already issued� and if an execution unit is available� we send an instruction to the
execution units� and mark the RS as issued�

There are two reasons why the above operations might result in a stall� the reservation
station chosen for an incoming instruction might be full� or the register chosen for reading
out might be reserved� Thus� here is the de�nition of stallout�

ASSIGN stallout �

��

opin
 ALU � st�st�choice��valid

 opin
 RD � ir�srca��resvd	

Now� for the execution units� we will use a fairly abstract model� Each execution unit
computes its result� and stores it for an arbitrary length of time� before signaling that it is
ready� Here is our data structure for an execution unit�

eu � array EU of struct�

valid� ready � boolean	

res � WORD	

tag � TAG	

�

We also need two arbitrary choices for execution units to receive the issued instruction�
and to send completed results to the result bus�

issue�eu� complete�eu � EU	

Initially� let	s use only one execution unit� to simplify the proof� Later� we	ll see how to
handle multiple execution units�

scalarset EU ����	

Here is the rest of the code for the execution unit�s�

exe�rdy�exe�valid � boolean	

exe�tag � TAG	

exe�opra� exe�oprb � WORD	

forall�i in EU�

init�eu�i��valid� �
 �	

default�

if��eu�issue�eu��valid��

next�eu�issue�eu��valid� �
 exe�valid	

next�eu�issue�eu��res� �
 f�exe�opra��exe�oprb�	

next�eu�issue�eu��tag� �
 exe�tag	

�

� in �

pout�valid �
 eu�complete�eu��valid � eu�complete�eu��ready	

pout�val �
 eu�complete�eu��res	

pout�tag �
 eu�complete�eu��tag	

if�pout�valid�

next�eu�complete�eu��valid� �
 �	

�

��

Initially� all the execution units are invalid� If the unit chosen for issue is not valid� we mark
it valid� and store in it the result of applying the function f to the two operands� We also
store the tag of the issuing instruction�

If the unit chosen for completion is valid and ready� we pass its result on to the result
bus �pout and mark it invalid� Note that ready is a completely nondeterministic bit here�
modeling an unknown delay in the execution unit� Also note that in practice� we would
de�ne some policy for choosing a unit to issue to and a unit to complete �presumably we do
not want to choose to issue to an already valid unit� for example� This would likely involve
introducing a priority encoder or round�robin policy� which would break the symmetry of
the EU type� Symmetry breaking is a topic for another section� however�

The last part of the implementation is the witness function for the initial state of the
abstract model register �le�

layer arch�

forall�i in REG�

init�r�i�� �
 ir�i��val	

������ Re�nement maps

As before� now that we have an abstract model and an implementation� we will write re�
�nement maps that relate the two� and then break these into cases that are small enough
problems to verify with model checking� Surprisingly� the re�nement maps that we will use
are almost identical to the ones we used for the simple pipeline� That is� we have one lemma
that states that operands obtained by the reservation stations are correct� and one that
states that results returning from the execution units are correct�

Also as before� to write these speci�cations� we will add some auxiliary state to the
implementation� to remember what the correct values of the operands and results are� Each
reservation station will have an auxiliary structure containing values for opra� oprb and res�
In addition� we	ll include the source register indices srca and srcb �recall that last time we
used these values for case splitting�

aux � array TAG of struct �

opra� oprb� res � WORD	

srca� srcb � REG	

�

Now� when we store an instruction in a reservation station� we want to record the correct
values from the abstract model into the auxiliary structure�

if��stallout � opin
 ALU��

next�aux�st�choice��opra� �
 opra	

next�aux�st�choice��oprb� �
 oprb	

next�aux�st�choice��res� �
 res	

next�aux�st�choice��srca� �
 srca	

next�aux�st�choice��srcb� �
 srcb	

�

��

Now that we	ve recorded the correct values� we can specify our re�nement maps� For the
operands �lemma� we state that if a given RS holds a valid operand� its value must match
the correct value� For the �a� operand� we have�

forall�k in TAG�

layer lemma� �

if�st�k��valid � st�k��opra�valid�

st�k��opra�val �
 aux�k��opra	

The �b� operand is similar� Now� for the result lemma �lemma� we state that� if a result
is returning on the result bus� tagged for a given reservation station� then its value is the
correct result for that reservation station�

forall �i in TAG�

layer lemma��i� �

if�pout�tag
 i � pout�valid�

pout�val �
 aux�i��res	

������ Case splitting

Now� let	s split our lemmas into cases� so that we only have to think about one possible path
for data to follow from one re�nement map to the other� We begin with the operand lemma�

Consider a result returning on the result bus� That result is the result value of a given
reservation station i� It then �possibly gets stored in a register j� Finally it gets read as
an operand for reservation station k� This suggests a case split which will reduce the size of
the veri�cation problem to just two reservation stations and one register� For each operand
arriving at reservation station k� we split cases based on the reservation station i that it
came from �this is the �tag� of the operand and the register j that it passed through �this
is the source operand index� srca or srcb� that we store in the auxiliary state for just this
purpose� We also want to split cases on the correct data value� since WORD is an unde�ned
scalarset type� Thus� here is the case splitting declaration for the �a� operand�

forall �i in TAG� forall �j in REG� forall �k in TAG� forall�c in WORD�

subcase lemma��i��j��c�

of st�k��opra�val��lemma�

for st�k��opra�tag
 i � aux�k��srca
 j � aux�k��opra
 c	

That is� we consider only the case where the tag �i�e� the producing reservationstation
is i� and source register is j and the correct value is c� The �b� operand is similar�

For the result lemma �lemma�� we consider a pair of operands that start in some reser�
vation station i and pass through execution unit j� Since i is a parameter of the lemma
already� we are left with just j to split cases on �this is the value of the signal complete eu�
However� we now also have three data values to split cases on� the two operands a and b�
and the result� c
 f�a��b�� As before� this will reduce the data type WORD and the table
f down to a tractable size� Thus� here is our case splitting declaration for lemma��

��

forall�i in TAG� forall�j in EU�

forall�a in WORD� forall�b in WORD� forall�c in WORD�

subcase lemma��i��j��a��b��c�

of pout�val��lemma��i�

for aux�i��opra
 a � aux�i��oprb
 b � f�a��b�
 c

� complete�eu
 j	

Finally� we have one last thing to prove� which is that the data output is correct according
to the architrectural model �layer arch� This is quite similar to the operand lemma� That
is� every data output value was produced as a result by some instruction and then stored in
the source register for the RD instruction� Therefore� when proving that data output values
are correct� we will split cases on the producing reservation station �this is obtained from the
tag of the source register and the source register index� In addition� as before� we consider
only the case where the correct value is some arbitary constant c�

forall �i in TAG� forall �j in REG� forall �k in TAG� forall�c in WORD�

subcase arch�i��j��c�

of dout��arch

for srca
 j � ir�j��tag
 i � r�j�
 c	

�����
 The proof

Now we procede to de�ne the abstractions used to prove the cases of the two lemmas� As
before� when proving lemma� we use lemma� and vice versa� Also as before� we free the
results in the abstract model when verifying operands� and free the operands when verifying
the results�

Here is the proof for the operand lemma lemma� and the data output �both of these
assume lemma��

forall �i in TAG� forall �j in REG� forall �k in TAG� forall�c in WORD�

using res��free� pout��free� pout�val��lemma��i�

prove st�k���lemma��i��j��c�� dout��arch�i��j��c�	

Notice the we also freed the signals in the pout bus �other than the value itself� which is
given by lemma�� so that none of the execution unit logic appears in the cone�

For the results lemma �lemma�� we take a similar tack� we use lemma� for the operands�
and otherwise free them in order to eliminate the operand fetch logic from the cone�

forall�i in TAG� forall�j in EU�

forall�a in WORD� forall�b in WORD� forall�c in WORD�

using opra��free� oprb��free� st�i���lemma�� f��undefined� f�a��b�

prove lemma��i��j��a��b��c�	

Notice we	ve set all the elements of the lookup table for f to unde�ned except for f�a��b�
since this is the only element of the table that matters to our particular case�

Now� open the �le� For st�k��opra�val��lemma��i��j��c�� the �a� operand correct�
ness lemma� you	ll notice we have two cases to prove�

��

st����opra�val��lemma����������

st����opra�val��lemma����������

This is because both i �the producer RS and k �the consumer RS are both of type
TAG� Thus SMV must verify one case where i
 k and one case where i �� k� All the other
cases are equivalent to one of these by permuting values of type TAG� Now� select property
st����opra�val��lemma���������� �this is the more interesting of the two cases� since it
involves two reservation stations� Now� look in the Cone pane� You should observe that
all of the state variables of type TAG �such as st����opra�tag require two bits to encode
them� This is because the type TAG has been reduced to three values� �� �� and an abstract
value representing all the other tags� On the other hand� register indices �such as srca
have been reduced to just two values� and hence are represented by a single boolean value�
These reductions were made by default� because we didn	t specify data type reductions for
the unde�ned scalarsets�

Notice also that we have freed signals in such a way as to cut o
 any connection to
the exectution units in the abstract model and the implementation� Thus� for example� the
function f does not appear in the cone� Finally� as a result of the data type reductions� we
have only register zero and RS	s zero and one in the Cone� Accesses to any other elements
of these arrays will yield the unde�ned value� The result of all these reductions is that the
cone contains only �� state bits� Try verifying the property� Because of the smal number of
state bits� it veri�es on my machine in a little under one second�

Now let	s consider the results lemma �lemma�� This appears as a collection of cases of
the form�

pout�val��lemma��i��j��a��b��c�

which states that results for RS i on the result bus pout are correct� in the case where
execution unit j is returning a result� the �a� operand is a� the �b� operand is b and the
f�a��b� �the correct result is c� Since a� b and c are all of te same type� we have �� � �
cases to prove�

pout�val��lemma����������������

pout�val��lemma����������������

pout�val��lemma����������������

pout�val��lemma����������������

pout�val��lemma����������������

pout�val��lemma����������������

This is enough to represent all the possible equality relatiopnships between a� b� and c� The
most di�cult case should be the last one� since it hase three di
erent values of type WORD�
In fact� if you select this property and look in the cone pane� you should observe that the
values of type WORD are reprsented by two boolean variables �enough to encode the values ��
��and �� plus an abstract value� In addition� because the index data types are reduced to
only those values occurring in the property� we have only one reservation station in the cone�
If we access any RS	s other than zero� we	ll get an unde�ned value� However� this should
not a
ect the truth of our property� since it only tests returning results that derive from

��

resrevation station zero� The other results will� of course� be incorrect in the reduced model�
but our property ignores them� You can validate this argument by selecting �Prop�Verify
pout�val!!lemma���"��"��"��"��"�� The property veri�es quite quickly� because there are only
�� state variables in the cone �it takes less than half a second on my machine�

Now choose �Prop�Verify All� to verify the remaining cases� It should take on the order
of �ve seconds to do this� We have veri�ed an out�of�order execution unit with an arbitrary
number of registers and reservation stations� an arbitrary size data word and an arbitrary
function� The basic strategy we used to do this was the same as for the simpler pipelined
unit�

�� Re�nement maps and auxiliary state� We broke the problem into two parts� by
writing re�nement maps that specify the correct values for the operands and results
obtained in the implementation� To do this� the correct values are obtained from the
abstract model� and stored in auxiliary state�

�� Path splitting� We broke the large data structures �the register �le and RS array
down into just a few components by splitting cases on the path taken by a data item
from one re�nement map to another�

�� Symmetry� The large number of cases produced by the above two steps are reduced
to a small �nite number by considerations of symmetry�

�� Data type reductions� After case splitting� we can reduce the large �or in�nite
types� such as data words� to small �nite types by grouping all the irrelevant values into
a single abstract value� A special case of this is the uninterpreted function abstraction�
in which we use a large table to represent and arbitrary function� but then split cases
in such a way that we use only one element of the table for each case� after the data
type reduction�

As a result of this strategy� the problem has been reduced to �� rather small �nite�state
lemmas�

������ Abstract counterexamples

Veriifcation runs that succeed are not generally very interesting� To convince yourself that
the above proof strategy actually works� you might wat to try introducing a bug into the
implementation to see what happens� For example� let	s remove the bypass logic from the
operand fetch to see what happens� Replace the following code�

�� fetch the a operand �with bypass� ��

if�pout�valid � ir�srca��resvd � pout�tag
 ir�srca��tag��

next�st�st�choice��opra�valid� �
 �	

next�st�st�choice��opra�tag� �
 ir�srca��tag	

next�st�st�choice��opra�val� �
 pout�val	

� else �

next�st�st�choice��opra�valid� �
 �ir�srca��resvd	

��

next�st�st�choice��opra�tag� �
 ir�srca��tag	

next�st�st�choice��opra�val� �
 ir�srca��val	

�

with this�

�� fetch the a operand �without bypass� ��

next�st�st�choice��opra�valid� �
 �ir�srca��resvd	

next�st�st�choice��opra�tag� �
 ir�srca��tag	

next�st�st�choice��opra�val� �
 ir�srca��val	

Now� open the modi�ed version and select �Prop�Verify All�� You should get a counterex�
ample for property

st����opra�val��lemma����������

This is what happens inthe counterexample� At step �� an instruction with destination
register �� and result � is loaded into RS �� At step � this is issued to an exectution unit�
and at step �� the result returns on the result bus �pout�val is true� At the same time� a new
instruction with �a� source register � is store in RS �� However� because we have removed
the bypass path� this instruction doesn	t notice that its operand is currently returnin on the
result bus� Thus� it gets a tag � instead of a value for its �a� operand� Now� in step �� a
new instruction is loaded into RS �� again with destination �� but this time with some value
other than zero as its result� Notice the the value of res �the abstract model result at step �
is NaN� In the reduced model� this represents any value other than zero� Then in step �� this
result returns on the result bus� with tag �� and thus gets fowarded to RS �� which is waiting
for tag �� Unfortunately� RS � is expecting a value of zero �see aux����opra� since it is really
waiting for the result of an earlier instruction with tag �� Thus our property is violated at
step �� the expected operand was zero� but the actual obtained operand �st����opra�val is
non�zero �represented by NaN� Even though the counterexample is abstract �i�e�� it contains
the abstract value NaN� it represents a class of real counterexamples �where� for example�
the value � is obtained instead of ��

In fact� the counterexample is abstract in another way� Notice that at step �� a result
returns on the the result bus pout�valid is true� even though the reservation station �st���
is not yet in the issued state� This is because the result bus is being driven by the re�nement
map lemma� rather than by the real execution unit� Our re�nement map didn	t specify that
a result would not return from an execution unit before it was issued� Interestingly� our
design for the reservation stations and register �le is su�ciently robust that a result arriving
early in this way does not cause us to obtain correct operands output incorrect values� Thus�
we are able to verify the implementation with rather �loose� re�nement maps� This is a case
of a more general phenomenon� the more robust the individual components of a design are�
the simpler are the re�nement maps�

��

������ Multiple execution units

Note �nally� that we have only veri�ed our implementation of Tomasulo	s algorithm for one
execution� We could easily enough verify our design for some small �nite number of units as
well� However� with multiple execution units� we can	t abstract away all the execution units
except the one we	re interest in� This is because one of these abstracted units might return
an incorrect tag� which would reset the state of our reservation station prematurely� You
can see observe this phenomen by changing the declaration of the type EU to the following�

scalarset EU ����	

Thus� we now have � execution units� If you open this modi�ed version� and try verifying
all the properties� you should obtain a counterexample for lemma�� in which reservation
station � issues an instruction to execution unit zero� but then some other execution unit
�which is abstracted by SMV	s default heuristics returns an unde�ned value as its tag�
causing the state of reservation station � to be corrupted�

We can �x this problem by forcing SMV not to abstract the control information in the
other execution units �though the data can still be left abstract� since we don	t care abut
it� To see this� change the proof declarion for lemma� to the following�

forall�i in TAG� forall�j in EU� forall�k in EU�

forall�a in WORD� forall�b in WORD� forall�c in WORD�

using opra��free� oprb��free� st�i���lemma�� f��undefined� f�a��b��

eu�k��tag� eu�k��ready� eu�k��valid

prove pout��lemma��i��j��a��b��c�	

The only change here is that we have said� for all execution units k� to include the
implementation de�nitions of tag� ready and valid� The overrides the daufult behavior�
which is to abstract these to undefined� Now� open this modi�ed version� and try verifying
all the properties� This should succeed� but take about a minute� instead of the �ve seconds
required for the one�EU version� The reason is that we have greatly increased the number
of state variables� If you select property pout��lemma����������������� you	ll notice that
the control bits of all the execution units are present in the cone� and as a result� the number
of state bits is increased to ���

As we have observed� the problem with eight execution units is still within the realm that
can be solved with BDD	s� However� if we want to verify the design for an arbitrary number
of execution units� we	ll need to deal with the problem of interference� the subject of the
next section�

����� Proving non�interference

Our problem in verifying Tomasulo	s algorithmwith an arbitrary number of execution units is
that we are forced consider only one execution unit at a time� in order to obtain a �nite�state
veri�cation problem� Thus� we consider the correctness only of the results of one particular
execution unit� When we perform this veri�cation� the other execution units are abstracted
to an unde�ned value Thus� although we are not concerned with the correctness of the data

��

values they produce� they may still upset the control state in the given reservation station
by returning spurious tags�

To rule out this possibility� we add a non�interference lemma� This states that while a
reservation station is expecting a result from a given execution unit� no other unit returns a
result for that particular RS� In general� such a lemma is needed whenever the state of one
system component might be corrupted by a spurious message from other components that
have been abstracted away�

In order to state the condition that a given reservation station does not receive an unex�
pected result� we �rst have to add some auxiliary state information to tell us which execution
unit the reservation station is actually expecting a result from� To do this� we add an addi�
tional �eld to the auxiliary state array�

forall �i in TAG�

aux�i��eu � TAG	

Now� each time that a given reservation station issues an instruction to an execution unit�
we record the index of that execution unit in the auxiliary state�

if�exe�valid�next�aux�issue�choice��eu� �
 issue�eu	

We can now state the non�interference lemma as follows�

lemma� � assert G �pout�valid �� �complete�eu
 aux�pout�tag��eu��	

That is� lemma� states that� at all times� if a result is returning on the pout bus� with a
given tag pout�tag� then the unit returning the result �complete eu must be the unit that
the indicated reservation station is waiting for �aux�pout�tag��eu�

Now� lets see if we can prove lemma�� The �rst thing we	ll have to do is to break the
lemma into cases� so we only have to consider one reservation station and one execution unit�
So let	s add the following case splitting declaration�

forall�i in TAG� forall�j in EU�

subcase lemma��i��j� of lemma� for pout�tag
 i � complete�eu
 j	

That is� we only consider the case where the returning result is for reservation station i and
the execution unit returning the result is j� With the above additions� open the �le� and
select property lemma�������� If you look in the cone pane� you should see that SMV has
automatically perfomed data type reductions� reducing TAG to just f��NaNg and EU to
��NaN� As a result� there are only � state variables �notice also that no data variables appear
in the cone� because lemma� is a control property� and does depend on any data variables�
However� if you try to verify the property� you	ll �nd that it	s false� The counterexample
shows a case where reservation station � is waiting for a result from execution unit �� but
instead� at state �� a result returns from some other execution unit �that is complete eu

 NaN� In other words� in trying to prove non�interference� we	ve run into an interference
problem� You might think that we are cought in an in�ntie regression here� However� in fact
all is not lost� This is because when proving a particular case of lemma� at time t� SMV will

��

allow us to assume the full lemma holds up to time t � �� In other words� we only have to
prove that execution unit � is not the em first execution unit to interfere� If this is true for
all execution units� we can then safely infer that no execution unit interferes� To tell SMV
to assume the full lemma up to time t� �� add the following declaration�

forall�i in TAG� forall�j in EU�

using �lemma�� prove lemma��i��j�	

The parentheses around lemma� tell SMV to make the weaker assumption that lemma� only
holds up to t� �� If we leave them out� SMV will complain that the proof is circular� With
this addition� open the �le� and try to prove lemma�������� This time it should be true�

Now that we	ve proved that other executions can	t interfere� let	s return to the proof of
lemma� �correctness of returning results� We want to prove that a result coming back on
the result bus is correct� assuming that no previous interference has occured� To do this�
add �lemma�� to the assumptions used to prove lemma�� You should get a declaration like
the following�

forall�i in TAG� forall�j in EU�

forall�a in WORD� forall�b in WORD� forall�c in WORD�

using opra��free� oprb��free� st�i���lemma��

f��undefined� f�a��b�� �lemma��

prove pout��lemma��i��j��a��b��c�	

Notice that we only assume the non�interference lemma up to time t � � when proving
lemma� up to time t� In fact� SMV won	t allow us to use lemma� up to time t� This is
because lemma� is a re�nement map� Thus� we might well choose to use it use it when proving
lemma�� which would result in a circularity� Fortunately� the weaker assumption is su�cient
to prove the lemma� To con�rm this� open the new version� and choose �Prop�Verify all��

With the addition of a non�interference lemma� we have now proved that our implemen�
tation of Tomasulo	s algorithm works for any word size� any ALU function� any number of
registers� any number of reservation stations� and any number of execution units�

���� Adding a reorder bu�er

Now� let	s modi�y the design to use a �reorder bu
er�� This means that instead of writing
results to the register �le when they are produced by an execution unit� we store them in a
bu
er� and write them back to the register �le in program order� This is usually done so that
the processor can be returned to a consistent state after an �exceptional� condition occurs�
such as an arithmetic over�ow� The simplest way to do this in the present implementation
is to store the result in an extra �eld res of the reservation station� and then modify the
allocation algorithm so that reservation stations are allocated and freed in round�robin order�
The result of an instruction is written to the register �le when its reservation station is freed�

To e
ect this change� add the following �elds to the reservation stat structure st�

completed � boolean	

res � WORD	

��

Also add a variable complete st to indicate which reservation station should be deallocated�

complete�st � TAG	

Now� change the instruction completion logic� so that� when a result appears on the the bus
pout� instead of storing it in the register �le� we store it in the res �eld of the reservation
station and set the completed bit� If the reservation station indicated by complete st has
its completed bit set� we store its result from the res �eld into the register �le� Thus� we
replace the instruction completeion logic with the following�

default �

�� result writeback logic ��

if�st�complete�st��valid � st�complete�st��completed��

forall�i in REG�

if�ir�i��resvd � ir�i��tag
 complete�st��

next�ir�i��resvd� �
 �	

next�ir�i��val� �
 st�complete�st��res	

�

next�st�complete�st��valid� �
 �	

�

� in default �

�� instruction completion logic ��

if�pout�valid��

forall�i in TAG��

if��st�i��opra�valid � st�i��opra�tag
 pout�tag��

next�st�i��opra�valid� �
 �	

next�st�i��opra�val� �
 pout�val	

�

if��st�i��oprb�valid � st�i��oprb�tag
 pout�tag��

next�st�i��oprb�valid� �
 �	

next�st�i��oprb�val� �
 pout�val	

�

if�st�i��issued �� pout�tag
 i��

next�st�i��completed� �
 �	

next�st�i��res� �
 pout�val	

�

�

�

� in ���

Finally� we have to make sure that a result sitting in the res �eld of a completed instruction�
but not yet written back to the register �le� gets forwarded to any new instructions that might
need it� Thus� for example� we change the operand fetch logic for the opra operand to the
following�

��

�� fetch the a operand �with bypass� ��

if�pout�valid � ir�srca��resvd � pout�tag
 ir�srca��tag��

next�st�st�choice��opra�valid� �
 �	

next�st�st�choice��opra�tag� �
 ir�srca��tag	

next�st�st�choice��opra�val� �
 pout�val	

� else if�ir�srca��resvd � st�ir�srca��tag��completed��

next�st�st�choice��opra�valid� �
 �	

next�st�st�choice��opra�tag� �
 ir�srca��tag	

next�st�st�choice��opra�val� �
 st�ir�srca��tag��res	

� else �

next�st�st�choice��opra�valid� �
 �ir�srca��resvd	

next�st�st�choice��opra�tag� �
 ir�srca��tag	

next�st�st�choice��opra�val� �
 ir�srca��val	

�

Here� we have inserted a clause so that� if register srca is holding a tag� pointing to a
completed reservation station� then we forward the res �eld of that reservation station as
opra operand� Change the oprb logic correspondingly�

Finally� we introduce logic for choosing the reservation station to allocate �st choice
and free �complete st� so that reservation stations are used in round�robin order�

�define NUM�RS ��

breaking�TAG��

init�st�choice� �
 �	

init�complete�st� �
 �	

if��stallout � opin
 ALU�

next�st�choice� �
 st�choice � � mod NUM�RS	

if�st�complete�st��valid � st�complete�st��completed�

next�complete�st� �
 complete�st � � mod NUM�RS	

Note� we chose here� arbitrarily� to use reservations stations numbered from � to �� in the
round�robin� Also note that since this logic breaks the symmetry of the type TAG� we have
to put it in a breaking clause� If a new instruction is stored in a reservation station� we
increment st choice modulo ��� Similarly� if a reservation station is freed �i�e�� the station
chosen to be freed is marked completed� then we increment complete st module ��� This
is done so that results of instructions are written to the register �le in the same order that
the instructions are received�

Now� open the new version and choose �Prop�Verify all�� You should �nd that all of
the properties are still true� That is� after this design change� the processor can be veri�ed
without modifying one line of the proof� This is because our three lemmas �for operands�
results and noninterference are not a
ected by the design change� Now� select an instance
of lemma�� and look in the cone pane� You will notice that the signals st choice and
complete st are free� This is because the assignments to these signals break the symmetry
of type TAG� and thus cannot be used to verify this property� as we are using a symmetry

��

reduction on type TAG� Thus� we have in fact veri�ed the correctness of our design	s data
output independent of the de�nition of these signals� and have not used in any way the fact
that these signals obey a round�robin policy� This should not be too surprising� as in the
previous version of the design� no particular ordering was used� If we were to introduce some
form of �exception�� however� that interrupts the instruction stream� we would presumably
need to use the round�robin policy to show that a consistent state is obtained after an
exception�

Nonetheless� the fact that our proof was una
ected by the design change illustrates an
important general point about compositional proofs� That is� our proof has the virtue that it
only speci�es the values of three key signals� the source operands in the reservation stations
�lemma�� the value on the result bus �lemma� and the tag on the result bus �lemma��
Since the function of these signals was not changed in adding the reorder bu
er� our proof
remained valid� In general� when designing a proof decomposition� it is best to do it in such
a way that as few signals as possible are referenced� In this way� the proof will be less likely
to be invalidated by localized design changes�

���� Proving liveness

Up to now� we	ve proved that our implementation of Tomasulo	s algorithm is a re�nement
of an abstract model �in this case a sequential implementation of the same instruction set�
However� we should note that a circuit that simply asserted the stall signal at every time
unit would also satisfy this speci�cation� Thus� we have shown that every behavior of the
implementation is correct� in the sense that no bad outputs are produced� but we haven	t
shown that the circuit necessarily does any actual work� To do this� we also need to prove
a liveness property�

The most obvious speci�cation for liveness of the implementation is that it always even�
tually does not stall� We will begin� however� by proving something stronger� that every
instruction eventually completes� Notice that this is a su�cient but not necessary condition
for liveness� That is� if an instruction	s result is never used as the source operand of a later
instruction� then that instruction	s failure to terminate would not cause any future stalls
of the machine� However� we would also like to make sure that no reservation station is
permanently lost as a resource� even if its result is never needed� Thus� we will prove that
whenever a reservation station is full� it eventually becomes empty�

The proof of liveness follows the same basic lines as the re�nement proof� That is� we
break the liveness problem into two lemmas� one for operands� and one for results� The �rst
lemma states that the operands of any given valid reservation station are always eventually
valid� The second lemma states that a result for a given valid reservation station always
eventually returns� As before� we construct a circular compositional proof� using operand
liveness to prove result liveness� and vice versa� We will also use the same path splitting
approach and data type reductions as in the re�nement proof�

The main di
erence from the re�nement proof is that we will need to �ll in more detail
about the resource allocation policies in order for the implemention liveness to be guaranteed�
Up to now� we have left a number of choices completely nondeterministic� for example� the
choice of which reservation station issue to an execution unit� However� in order to ensure
that every instruction eventually executes� we will require that this choice be made in a fair

��

way� Also� we will have to gauranteee that execution units always eventually �nish� On the
other hand� liveness does not depend in this case on data values� thus we will �nd that the
data path logic does not enter into the proof�

���� Liveness lemmas

To begin with� let	s take our implementation from the previous section and add two liveness
lemmas� The �rst states �in temporal logic that if a given reservation station holds a valid
instruction� then its operands �opra or oprb are eventually valid� Here is the lemma for
opra�

forall �i in TAG�

live�a�i� � assert G �st�i��valid �� F st�i��opra�valid�	

In other words� at all times� if rs�i� is valid� then eventually the opra operand of rs�i� is
valid� Write a similar lemma for the oprb operand�

Now� for the result liveness� lemma� we have�

forall �i in TAG�

live��i� � assert G �st�i��valid �� F �st�i��valid�	

That is� if rs�i� has a vaild instruction� then eventually the instruction completes� resulting
in rs�i� being invalid� Note� we could have stated that eventually the result bus has a valid
result with tag pout�tag
 i� The two are equivalent� since the reservation station goes to
the invalid state if and only if a corresponding result returns on the bus�

���� Path splitting

Now we consider the problem of proving the operand liveness lemma� As in the re�nement
proof� we observe that every operand consumed by a given reservation station i was produced
by some reservation station jand stored in some source register k� If we split cases on the
producer reservation station and the source register� we can show that the operand eventually
arrives in any one case� using just two reservation stations and one register in the proof� Thus�
add the following case splitting declaration for the opra operand�

forall�i in TAG� forall�j in TAG� forall�k in REG�

subcase live�a�i��j��k� of live�a�i�

for st�i��opra�tag
 j � aux�i��srca
 k	

Recall that st�i��opra�tag is the producer reservation station for the opra operand of
reservation station i� and aux�i��srca is the source register of the opra operand� which
we previously recorded in an auxiliary variable� Thus� the subcase live�a�i��j��k� states
that �at all times� if reservation station rs�i� is holding an instruction� whose opra operand
is to be produced by rs�j�� and stored in source register ir�k�� then eventually the opra

operand will become valid�
Note that in the re�nement proof� we also had to split cases on the data value� This

is unnecessary in the livenes proof� however� since liveness does not depend on data� Note�

��

also that we will have to assume that the producer reservation station eventually produces
a valid result� However� this is allowed by the circular compositional rule� as we will see in
the next section�

Now� for the results liveness lemma� we would like to prove that if a reservation station
holds an instruction� it will eventually terminate� As before� we would like to split cases on
the execution unit that produces the result� so that we can deal with an arbitrary number of
execution units� This presents a slight problem� however� since at the time the reservation
station becomes valid� the execution unit has not yet been chosen� In order to split cases�
we therefore need to refer to a future value of a variable� in particular� the value of the
execution unit choice at the time the instruction is issued� Fortunately� we can do this using
a temporal logic operator�

The temporal logic formula p when q is true at a given time if p holds at the �rst occasion
when q holds �and is taken to be true if q never holds� It is simply an abbreviation for � q

U �q � p��� SMV recognizes that at any given time� for any given variable v�

�v
 i� when q

must be true for some value of i in the range of v� This allows us to split cases on a future
value of a variable instead of the current� In this case� we can split the results lemma into
cases based on the the future choice of execution unit in the following way�

forall�i in TAG� forall�j in EU�

subcase live��i��j� of live��i�

for �aux�i��eu
 j� when st�i��issued	

That is� we split cases on the value of the variable aux�i��eu �the auxiliary variable that
records execution unit choice when the instruction is issued�

���
 The circular compositional proof

Now� in order to prove that an operand eventually arrives at a consumer reservation station�
we have to assume that the producer reservation station eventually yields a result� Similarly�
to prove the result of a reservation station is eventually produced� we must assume that its
operands eventually arrive�

While this argument is circular on its face� we can eliminate the circularity by introducing
a time delay� Thus� to prove that operands are live at time t� we assume that results are live
up to time t� �� This is su�cient� since if the consumer reservation station is valid at time
t� the producer reservation must have been valid at some time t � � or earlier �that is� the
producer instruction must have arrived at an eariler time than the consumer instruction�
In essence� we show that an operand of an instruction must eventually arrive assuming that
all instructions arriving at earlier times eventually terminate�

To implement this argument� use the following declarations�

forall �i in TAG� forall�j in TAG� forall�k in REG�

using pout��free� �live��j�� prove live�a�i��j��k�� live�b�i��j��k�	

forall �i in TAG� forall�j in EU�

using opra��free� oprb��free� live�a�i�� live�b�i�� prove live��i��j�	

��

That is� we assume that the producer reservation station j is live up to t� � when proving
the operands eventually arrive at the consumer� The time delay is indicated by putting the
assumption live��j� in parentheses� Then we can assume that operands are live up to time
t when proving results are live up to t� SMV will detect the cirularity� but notice that it is
broken by the time delay�

Note that� as in the re�nement proof� we free the result bus when verifying the operands
and free the operands when verifying the results� This breaks the system into two separate
parts for veri�cation�

���� Fairness

Now� open the new version� You should see several new properties in the properties pane�
instances of live�a� live�b and live�� Select� for example� live�a���������� This says
that operands are always eventually forwarded from producer �� via source register �� to
consumer �� It should verify correctly�

On the other hand� try to verify live�������� which states that results for reservation
station � always eventually arrive when using execution unit �� For this property you should
get a counterexample� where the reservation station is loaded with an instruction� obtains
both its operands� and then waits forever to be issued to an execution unit� Note that
many reasons are possible for this� For example� we have not speci�ed issue choice� which
indicates the reservation station chosen for issue to an execution unit� Thus it is possible
that reservation � is never chosen �a failure of fairness of the arbiter� Or� it is possible that
reservation station � is chosen� but never at a moment that there is an available execution
unit� Or� it is possible that issue eu� which chooses an execution unit never choses an
available� or that there is never an available unit because no execution unit ever terminates�
Or� because we are using an abstraction where all execution units except for eu��� are
abstracted away �because of the default data type reduction� it is possible that issue eu

always choose a unit other than zero� and this unit� being abstracted away� always claims to
be busy �in fact� this is the counterexample that I got�

For the moment� let	s rule out all these possibilities by simply assuming that an instruc�
tion does not remain unissued forever with its operands ready� Later� when we actually
implement a policy for issue choice and issue eu� we	ll discharge this assumption� Here
is one way to state this assumption�

forall �i in TAG� �

issue�fair�i� � assert G F �st�ready�i� �� st�issue�i��	

assume issue�fair�i�	

�

That is� it is not possible that a reservation station remains ready and not issued� We de�ne
these terms as follows�

forall�i in TAG� �

st�ready�i�� st�issue�i� � boolean	

st�ready�i� �
 st�i��valid � st�i��opra�valid � st�i��oprb�valid � �st�i��issued	

st�issue�i� �
 issue�choice
 i � exe�rdy	

��

�

Now� add issue fair�i� to the assumptions used to prove live��i��j�� With this addi�
tion� try again to verify live�������� You should get another counterexample� this time
where an instruction does get issued to execution unit �� but the execution unit never
completes� To correct this problem� let	s add the assumption that execution units always
eventually complete�

forall�i in EU��

eu�fair�i� � assert G �eu�i��valid �� F �eu�i��valid�	

assume eu�fair�i�	

�

That is� we assume that if an execution unit becomes valid �contains an instruction� it even�
tually becomes invalid �completes� We	ll have to discharge this assumption later when we
�ll in the details of the execution units and the completion arbitration� Add the assumption
eu fair�j� to those used to prove live��i��j�� Now� try again to verify live��������
You should �nd the property true� Now try �Prop�Verify all�� All the properties should
be true� although the system will warn that there are unproved assumptions �the properties
issue fair and eu fair�

���� Implementing the issue arbiter

Now we come to the problem of implementing an issue arbiter that guarantees the property
issue fair� That is� we want to choose issue choice in such a way that every ready
instruction is eventually issued� One way to do this is by using a rotating priority scheme� In
this scheme� one requester �reservation station is assigned highest priority� If this requester
is rejected �i�e�� requests but is not acknowledged� it retains the highest priority� Otherwise�
priority rotates to the next requester� In this way� we can guarantee that� if a resource
�execution unit always eventually becomes available� then all requesters will eventually be
served �or withdraw their request� Here is an implementation of the issue arbiter �we leave
the choice nondeterministic in the case where the high priority requester is not requesting�

issue�prio � TAG	

if�st�ready�issue�prio��

issue�choice �
 issue�prio	

else issue�choice �
 �i � i in TAG�	

breaking�TAG�

if���st�ready�issue�prio� � �exe�rdy��

next�issue�prio� �
 issue�prio � � mod TAGS	

Note that by incrementing issue prio� we break the symmetry of the type TAG� This means
we have to enclose the assignment within a breaking�TAG� declaration� so disable type check�
ing of type TAG� Further� we now have to explicitly declare the number TAGS of reservation
stations� So let	s change the declaration of type TAG to the following�

��

scalarset TAG ����TAGS���	

De�ne TAGS to be some reasonable value �say ��� Similarly� set some reasonable number
of execution units �say �� Now� we need also to de�ne a policy for choosing an available
execution unit for issue� The simplest way to do this is to specify a nondeterministic choice
among all the available �non�valid execution units�

issue�eu �
 �i �� �eu�i��valid � i in EU�	

Now� remove the statement

assume issue�fair�i�	

and add instead�

breaking�TAG� breaking�EU� forall�i in TAG�

using

st�ready��free� exe�rdy��free� eu��free

prove issue�fair�i�	

Note� the breaking statements are used so that we can use assignments in the proof that
break they symmetry of these types� Note also that we free the input signals of the arbiter#
the arbiter should satisfy the fairness property for all possible inputs�

� Synchronous Verilog

Those familiar with the Verilog modeling language may �nd it easier to write models for
SMV in Synchronous Verilog �SV� This language is syntactically only a slight variation of
the Verilog language� However its semantics is not based on an event queue model� as in
Verilog� Rather� SV is a synchronous language� in the same family as Esterel� Lustre� and
SMV� Because SV provides a functional description of a design rather than an operational
description of how to simulate it� SV is better suited than Verilog to such applications as
hardware synthesis� cycle�based �functional simulation and model checking� Nonetheless�
the meaning of most SV programs should be readily apparent to one familiar with modeling
in Verilog�

�� Basic concepts

����� Synchrony

SV is a synchronous language� This means that all statements in SV �except the wait

statement execute in exactly zero time� For example� consider the following simple program�

module main��	

wire x�y�z	

��

always

begin

x
 y	

end

always

begin

y
 z	

end

endmodule

In SV� the two always blocks execute exactly simultaneously� in zero time� As a result� the
assignments x
 y and y
 z can be viewed as simultaneous equations� Therefore� it is true
at all times that x
 z� Because values on wires propagate in exactly zero time� there is no
need for a notion of a triggering �event�� That is� we need not �and may not write

always #�y�

begin

x
 y	

end

In SV� any change in y is always re�ected instantaneously in x�
As in other synchronous languages� the instantaneous propagation of signals can lead to

�paradoxes�� For example� if we write

wire x�y	

always

begin

x
 y	

end

always

begin

y
 $x	

end

then we have two simultaneous equations with no solution� On the other hand� in this case�

wire x�y	

always

begin

x
 y	

end

��

always

begin

y
 x	

end

we have simultaneous equations with two solutions� x
 �� y
 � and x
 �� y
 �� In a
hardware implementation� these cases would correspond to combinational cycles in the logic�
There are a number of ways of dealing with such cycles� However� we will leave the behavior
in such cases unde�ned� The SMV system simply disallows combinational cycles�

����� Wires and registers

There are two distinct classes of signals in SV� wires and signals� These di
er in two respects�
First� a wire has no memory� It does not maintain its previous state in the case it is not
assigned� Rather� the value of an unassigned wire is unde�ned� A register on the other
hand will maintain its previous state when unassigned� Second� a value assigned to a wire
propagates in exactly zero time� On the other hand� a register entails exactly one unit of
delay� a value assigned to a register becomes visible exactly one time unit later�

For example� suppose we have�

wire x	

reg y	

always

begin

x
 y	

end

always

begin

y
 z	

end

The net result of this code is that the value of x lags the value of z by exactly one time
unit� Note that although the result of an assignment to a register becomes visible one time
unit later� the assignment statement itself executes in zero time� For example� consider the
following block of code�

wire x�z	

reg y	

always

begin

y
 z	

x
 y	

end

��

The e
ect of this code is that at all times x
 z� whereas the register y lags x and z by one
time unit� That is� within the always block� all statements except wait statements appear
to execute in zero time� Thus� the assignment y
 z executes in zero time� setting the value
of y and then this value is assigned to x� again in zero time� However� an observer outside
the always block sees the value of y with one time unit of delay� Another example�

reg ������ y	

initial y
 �	

always

begin

y
 y � �	

y
 y � �	

end

In this case� the observed sequence of values of y is ��������� � � � That is� the always block
executes both assignment statements in exactly zero time� in e
ect adding � to y� This e
ect
is seen outside the block one time unit later�

����� Wait statements

The only statement that takes time in SV is the wait statement� A statement of the form

wait�cond�

causes a delay until the condition cond is true� but always delays at least one time unit�
Thus� wait��� always waits exactly one time unit� For example�

wire x	

always

begin

x
 �	

wait���	

x
 �	

end

results in the observed sequence of values ��������� � � for x� Note that a new iteration of an
always block begins exactly one time unit after the previous iteration terminates�

����� Loops

A loop of the form

while�cond�

block

��

executes block as long as the condition cond is true� If cond is false� it falls through to the
next statement in exactly zero time� The last statement of block must be a wait statement�
As an example�

reg ����� x	

initial x
 �	

always

begin

while�x � ��

begin

x
 x � �	

wait���	

end

x
 �	

end

results in the sequence ������������� � � for x�
A for loop� on the other hand� must have static upper and lower bounds� and is unrolled

at compile time� Thus� for example�

for�i
 �	 i � �	 i
 i � ��

block�i�

is exactly equivalent to

block���	

block���	

block���	

block���	

The block in this case need not contain a wait statement�

����� Conditionals

The conditional statement of the form

if�cond�

block�

else

block�

executes block� if cond is true� and block� if cond is false� The evaluation of the condition
takes exactly zero time�

��

����
 Resolution

In a case where more than one value is assigned to a signal at exactly the same time� then
the following resolution rule applies�

� If all assigned values are equal� then the signal is assigned the common value�

� If any assigned values are unequal� then the signal is assigned X �the unde�ned value�

This rule can be used� for example� to model a tristate bus� For example�

always

begin

if�enable�� bus
 data�	

end

always

begin

if�enable�� bus
 data�	

end

In this case� when only one of the two enable signals is true� then the bus is equal to the
corresponding data signal� If both enables are true and the data values are the same� then
bus
 data�
 data�� Else bus
 X�

����� Embedded assertions

An assertion of the form

assert label� cond	

will evaluate cond whenever it executes �in zero time� If cond is ever false� the property
named label is reported to be false� These assertions can be veri�ed formally by SMV�

�� Example � tra�c light controller

This example is a controller that operates the tra�c lights at an intersection where two�way
street running north and south intersects a one�way street running east� The goal is to design
the controller so that collisions are avoided� and no tra�c waits at a red light forever�

The controller has three tra�c sensor inputs� N Sense� S Sense and E Sense� indicating
when a car is present at the intersection traveling in the north� south and east directions
respectively� There are three outputs� N Go� S Go and E Go� indicating that a green light
should be given to tra�c in each of the three directions�

module main�N�SENSE�S�SENSE�E�SENSE�N�GO�S�GO�E�GO�	

input N�SENSE� S�SENSE� E�SENSE	

output N�GO� S�GO� E�GO	

��

wire N�SENSE� S�SENSE� E�SENSE	

reg N�GO� S�GO� E�GO	

In addition� there are �ve internal registers� The register NS Lock is set when tra�c is
enabled in the north or south directions� and prevents east�going tra�c from being enabled�
Similarly EW LOCK is set when tra�c is enabled in the east direction� and prevents north or
south�going tra�c from being enabled� The three bits N Req� S Req� E Req are used to latch
the tra�c sensor inputs�

reg NS�LOCK� EW�LOCK� N�REQ� S�REQ� E�REQ	

The registers are initialized as follows�

initial begin

N�REQ
 �	 S�REQ
 �	 E�REQ
 �	

N�GO
 �	 S�GO
 �	 E�GO
 �	

NS�LOCK
 �	 EW�LOCK
 �	

end

Always� if any of the sense bits are true� we set the corresponding request bit�

always begin if �$N�REQ � N�SENSE� N�REQ
 �	 end

always begin if �$S�REQ � S�SENSE� S�REQ
 �	 end

always begin if �$E�REQ � E�SENSE� E�REQ
 �	 end

The code to operate the north�going light is then as follows�

always begin

if �N�REQ�

begin

wait �$EW�LOCK�	

NS�LOCK
 �	

N�GO
 �	

wait �$N�SENSE�	

if �$S�GO� NS�LOCK
 �	

N�GO
 �	

N�REQ
 �	

end

end

That is� when a north request is detected� we wait for the EW lock to be cleared� then
set the NS lock� and switch on the north light� Note� these last two assignments occur
simultaneously� since they execute in zero time� Then we wait for the north sensor to be o
�
indicating there is no more tra�c in the north direction� We then clear the NS lock� but
only if the south light is currently o
� Otherwise� we might cause a collision of south and
east tra�c� Finally� we switch o
 the north light and clear the north request �ag� Note� the
last two actions occur simultaneously with switching o
 the lock� so there is no danger of
having the lock o
 but the light on�

The code for the south light is similar�

��

always begin

if �S�REQ�

begin

wait �$EW�LOCK�	

NS�LOCK
 �	 S�GO
 �	

wait �$S�SENSE�	

if �$N�GO� NS�LOCK
 �	

S�GO
 �	 S�REQ
 �	

end

end

Finally� here is the code for the east light�

always begin

if �E�REQ�

begin

EW�LOCK
 �	

wait �$NS�LOCK�	

E�GO
 �	

wait �$E�SENSE�	

EW�LOCK
 �	 E�GO
 �	 E�REQ
 �	

end

end

This di
ers slightly from the north and south cases� When an east request is detected� we
set the EW lock� and then wait for the NS lock to be cleared� turn on the light� wait for the
tra�c sensor to clear� and �nally� clear lock� light and request�

There are two kinds of speci�cation we would like to make about the tra�c light con�
troller� The �rst is called �mutex�� and states that lights in cross directions are never on at
the same time�

always begin

assert mutex� $�E�GO � �S�GO N�GO��	

end

This assert statement executes at every time unit� and fails if the east light is on at the same
time as either the north or the south lights�

Second� we have �liveness� speci�cations� For each direction� we specify that if the tra�c
sensor is on for a given direction� then the corresponding light is eventually on� thus no tra�c
waits forever at a red light�

always begin

if �E�SENSE� assert E�live� eventually E�GO	

if �S�SENSE� assert S�live� eventually S�GO	

if �N�SENSE� assert N�live� eventually N�GO	

end

��

Notice that since assert statements execute in zero time� each of these statements executes
once every time unit� Further� this shows the use if the �eventually� operator in an assertion�
This is equivalent to the temporal logic operator F� For example� if at any time the assertion
E live executes� then E GO must eventually be true�

Our tra�c light controller is designed so that it depends on drivers not waiting forever
at a green light� We want to verify the above properties given that this assumption holds�
To do this� we write some �fairness constraints�� as follows�

always begin

assert E�fair� eventually $�E�GO � E�SENSE�	

assert S�fair� eventually $�S�GO � S�SENSE�	

assert N�fair� eventually $�N�GO � N�SENSE�	

end

Each of these assertions states that� always eventually� it is not the case that a car is at a
green light� To tell SMV to assume these �fairness� properties when proving the �liveness�
properties� we say�

using N�fair� S�fair� E�fair prove N�live� S�live� E�live	

assume E�fair� S�fair� N�fair	

endmodule

In e
ect� we are telling SMV to ignore any execution traces where one of these assumptions
is false� The fairness constraints themselves will simply be left unproved� Now� open this
�le and try to verify the property mutex� The result should be �false�� and in the �Trace�
panel� you should see a counterexample trace in which the north light goes o
 exactly at the
time when the south light goes on� In this case� the north light controller is trying to set the
NS lock bit at exactly the same time that the south light is trying to clear it� The result of
this is unde�ned� hence SMV attempts to verify both cases� It reports the case where the
NS lock bit is cleared� which allows the east light to go on� violating the mutex property�

To �x this problem� let	s insure that this situation doesn	t arise by making the south light
wait to go on if the north light is currently going o
� Change the code for the north light
controller to the following �and make the corresponding change in the south light controller�

always begin

if �N�REQ�

begin

wait �$EW�LOCK � $�S�GO � $S�SENSE��	

NS�LOCK
 �	

N�GO
 �	

wait �$N�SENSE�	

if �$S�GO� NS�LOCK
 �	

N�GO
 �	

N�REQ
 �	

end

end

��

Open this new version and verify the property mutex� It should be true� Now try to verify
N live� It should come up false� with a counterexample showing a case where both the north
and south lights are going o
 at exactly the same time� In this case neither the north code
nor the south code clears the lock� because each thinks that the other light is still on� As a
result� the lock remains on� which prevents an east request from being served� This leaves
the EW lock set forever� hence the controller is deadlocked� and remains in the same state
inde�nitely �note the �repeat signs� on the last state�

To �x this problem� we	ll have the north controller switch o
 the lock when the south light
is either o
� or going o
 �and make the corresponding change to the south light controller�
Here is the new code for the north controller�

always begin

if �N�REQ�

begin

wait �$EW�LOCK � $�S�GO � $S�SENSE��	

NS�LOCK
 �	 N�GO
 �	

wait �$N�SENSE�	

if �$S�GO $S�SENSE� NS�LOCK
 �	

N�GO
 �	 N�REQ
 �	

end

end

Open this new version and verify the properties mutex� N live� S live and E live� They
should all be true� Note that if you try to verify the fairness constraints N fair� S fair

and E fair� they will come up false� These are unprovable assumptions that we made in
designing the controller� However� if we used the controller module in a larger circuit� we
could �and should verify that the environment we put the controller into actually satis�es
these properties� In general� it	s best to avoid unproved assumptions if possible� since if any
of these assumptions is actually false� all the properties we �proved� are invalid�

�� Example � bu�er allocation controller

This example is designed to control the allocation and freeing of bu
ers in� for example�
a packet router� It will demonstrate how to embed assertions within Synchronous Verilog
control constructs� such as if and while in order to specify temporal properties� without
using temporal logic�

The controller keeps an array of �busy� bits� one for each available data bu
er� The busy
bit is true when the bu
er is in use� and false otherwise� An input alloc indicates a request
to allocate a new bu
er for use� If there is a bu
er available� the controller outputs the index
of this bu
er on a signal alloc addr� If there is no bu
er available� it asserts an output
nack� To make the circuit a little more interesting� we	ll add a counter that keeps track of
the number of busy bits that are set� Thus nack is asserted when the count is equal to the
total number of bu
ers� To begin with� we	ll de�ne the number of bu
ers to be ��� using a
macro de�nition� We also need to de�ne the log of this number� to indicate the number of
bits in the bu
er addresses�

��

%define SIZE ��

%define LOG�SIZE �

module main�alloc�nack�alloc�addr�free�free�addr�	

input alloc	

output nack	

output ��%LOG�SIZE������ alloc�addr	

input free	

input ��%LOG�SIZE������ free�addr	

reg busy����%SIZE � ���	

reg count�%LOG�SIZE���	

initial begin

busy
 �	

count
 �	

end

Here is the logic for the counter and the nack signal� Notice� we add one to the counter when
there is an allocation request and nack is not asserted� We subtract one from the counter
when there is a free request� and the bu
er being freed is actually busy� Note� if we didn	t
check to see that the freed bu
er is actually busy� the counter could get out of sync with the
busy bits�

always begin

nack
 alloc � �count

 %SIZE�	

count
 count � �alloc � �nack� � �free � busy�free�addr��	

end

Next we handle the setting and clearing of the busy bits�

always begin

if�free� busy�free�addr�
 �	

if�alloc � �nack� busy�alloc�addr�
 �	

end

Note� that if a bu
er is both freed and allocated at the same time� the net result is that its
busy bit is set� Finally� we choose a bu
er to allocate using a priority encoder� Our priority
encoder is implemented as follows�

always begin

for�i
 �%SIZE � ��	 i �
 �	 i
 i � ��

if ��busy�i�� alloc�addr
 i	

end

Note� the entire for loop executes in zero time� Also� in the case when all bu
ers are busy�
alloc addr is not assigned� and thus remains unde�ned �since it is a wire� not a register�

Now� we consider the problem of specifying the bu
er allocator� We will write a separate
speci�cation for each bu
er� stating that the given bu
er is never allocated twice without

��

being freed in the interim� This is a technique known as �decomposition�� that is� breaking
a complex speci�cation of a system into smaller parts that can be veri�ed separately� To
make it simpler to state the speci�cation� it helps to de�ne some additional signals� a bit
allocd�i� to indicate that bu
er i is currently being allocated� and a bit freed�i� to
indicate that bu
er i is currently being freed�

wire ����%SIZE � ��� allocd� freed	

for�i
 �	 i � %SIZE	 i
 i ���

always

begin

allocd�i�
 alloc � �nack � alloc�addr

 i	

freed�i�
 free � free�addr

 i	

end

Note� we used a for constructor to make an instance of these de�nitions for each bu
er i�
To write the speci�cation that a bu
er is not allocated twice� we simply write a block of
code that waits for the given bu
er to be asserted� then while it is not freed� asserts that it
must not be allocated again� At the end� when the bu
er is freed� we also assert that it is
not simultaneously allocated again� Note that we have given both these assertions the same
label safe�i�� Thus� a failure in either case will cause a failure of safe�i��

for�i
 �	 i � %SIZE	 i
 i � ��

always begin

if �allocd�i�� begin

wait���	

while��freed�i�� begin

assert safe�i�� �allocd�i�	

wait���	

end

assert safe�i�� �allocd�i�	

end

end

Now� let	s verify this speci�cation� Open the �le and verify the property safety���� It
should be true� You might want to modify the code so that the counter is decremented
whenever free is asserted �whether or not the busy bit is set for the freed bu
er� If you
try to verify this version you will �nd that in fact the property safety��� false� and get a
counterexample showing a case where the counter gets out of sync�

��

