
Finite State Verification

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 1

Learning objectivesLearning objectives

• Understand the purpose and appropriate uses of • Understand the purpose and appropriate uses of
finite-state verification (fsv)

Understand how fsv mitigates weaknesses of testing– Understand how fsv mitigates weaknesses of testing
– Understand how testing complements fsv

U d t d d li f f b l • Understand modeling for fsv as a balance
between cost and precision

• Distinguish explicit state enumeration from
analysis of implicit models
– And understand why implicit models are sometimes

(but not always) more effective

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 2

Limits and trade-offsLimits and trade-offs

• Most important properties of program execution • Most important properties of program execution
are undecidable in general
Fi it t t ifi ti t ti ll • Finite state verification can automatically
prove some significant properties of a finite

d l f th i fi it ti model of the infinite execution space
– balance trade-offs among

li f i b h k d• generality of properties to be checked
• class of programs or models that can be checked
• computational effort in checking• computational effort in checking
• human effort in producing models and specifying properties

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 3

Resources and resultsResources and results
Properties to
be proved

complex
symbolic execution

and formal reasoning

finite statefinite state
verification

applies techniques fromapplies techniques from
symbolic execution
and formal verification
to models that abstract

control
and data flow

the potentially infinite state space
of program behavior
into finite representations

Computational
costhighlow

simple

and data flow
models

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 4

highlow

Cost trade-offsCost trade-offs

• Human effort and skill are required Human effort and skill are required
– to prepare a finite state model
– to prepare a suitable specification for automated analysis

• Iterative process:
– prepare a model and specify properties

attempt verification – attempt verification
– receive reports of impossible or unimportant faults
– refine the specification or the model

• Automated step
– computationally costly

• computational cost impacts the cost of preparing model and • computational cost impacts the cost of preparing model and
specification, which must be tuned to make verification feasible

– manually refining model and specification less expensive with
near-interactive analysis tools

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 5

near-interactive analysis tools

Analysis of modelsy

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 6

Applications for Finite State VerificationApplications for Finite State Verification

• Concurrent (multi threaded distributed)• Concurrent (multi-threaded, distributed, ...)
– Difficult to test thoroughly (apparent non-

determinism based on scheduler); sensitive to determinism based on scheduler); sensitive to
differences between development environment and
field environment

– First and most well-developed application of FSV

• Data modelsData models
– Difficult to identify “corner cases” and interactions

among constraints, or to thoroughly test thema o g co st a ts, o to t o oug ly test t e

• Security
– Some threats depend on unusual (and untested) use

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 7

– Some threats depend on unusual (and untested) use

Defining the global state space –
Concurrent system example

• Deriving a good finite state model is hard• Deriving a good finite state model is hard
• Example: finite state machine model of a

 ith lti l th d f t lprogram with multiple threads of control
– Simplifying assumptions

 d i i d h b f h d• we can determine in advance the number of threads
• we can obtain a finite state machine model of each thread
• we can identify the points at which processes can interact• we can identify the points at which processes can interact

– State of the whole system model
= tuple of states of individual process modelsp p

– Transition = transition of one or more of the
individual processes, acting individually or in concert

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 8

State space exploration –
Concurrent system example

• Specification: an on-line purchasing system
– In-memory data structure initialized by reading

configuration tables at system start-up
– Initialization of the data structure must appear atomic
– The system must be reinitialized on occasion
– The structure is kept in memory

• Implementation (with bugs):
– No monitor (Java synchronized): too expensive*
– Double-checked locking idiom* for a fast system

*Bad decision, broken idiom ... but extremely hard to find the
b th h t ti

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 9

bug through testing.

Concurrent system example –
implementationimplementation

class Table1 {
private static Table1 ref = null;
private boolean needsInit = true;

public void reinit()
{ needsInit = true; }

private boolean needsInit = true;
private ElementClass []
theValues;
private Table1() { }

private synchronized void
initialize() {
. . .

needsInit = false;

public static Table1 getTable1() {
if (ref == null)

{ synchedInitialize(); }

}

public int lookup(int i) {
if (needsInit) {

synchronized(this) {{ sy c ed t a e(); }
return ref;

}

i i h i d id

synchronized(this) {
if (needsInit) {

this.initialize();
}

}
private static synchronized void

synchedInitialize() {
if (ref == null) {

ref = new Table1();

}
return theValues[i].getX()
+ theValues[i].getY();

}
ref.initialize();

}
}

. . .
}

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 10

AnalysisAnalysis

• Start from models of individual threads• Start from models of individual threads
• Systematically trace all the possible

i t l i f th dinterleavings of threads
• Like hand-executing all possible sequences of execution,

but automatedbut automated

... begin by constructing a finite state machine
model of each individual thread ...

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 11

A finite state machine model for each thread

(a)
lookup()

(x)
reinit()lookup()

needsInit==true

(b)

reinit()

needsInit=true

(y)

obtain lock

(c)

E

needsInit==false
(d)

modifyingneedsInit==false

needsInit==true

(e)

needsInit=false

(f)
reading

release lock

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 12

E

AnalysisAnalysis

• Java threading rules:• Java threading rules:
– when one thread has obtained a monitor lock

the other thread cannot obtain the same lock– the other thread cannot obtain the same lock

• Locking
– prevents threads from concurrently calling initialize
– Does not prevent possible race condition between

th d ti th l k th dthreads executing the lookup method

• Tracing possible executions by hand is
completely impractical

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 13

Express the model in Promela
proctype Lookup(int id) {

if :: (needsInit) ->
...

if :: (needsInit)
atomic { ! locked -> locked = true; };
if :: (needsInit) ->

assert (! modifying);
needsinit==true

assert (! modifying);
modifying = true;
/* Initialization happens here */

dif i f l
acquire lock

modifying = false ;
needsInit = false;

:: (! needsInit) -> ...
skip;

fi;
locked = false ;

fi;
assert (! modifying);}

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 14

Run Spin; Inspect OutputRun Spin; Inspect Output
Spinp
• Depth-first search of possible executions of the model
• Explores 10 states and 51 state transitions in 0.16 seconds

Fi d f 17 t iti f th i iti l t t f th • Finds a sequence of 17 transitions from the initial state of the
model to a state in which one of the assertions in the model
evaluates to false

Depth=10 States=51 Transitions=92 Memory=2.302
pan: assertion violated !(modifying) (at depth 17)p (y g) (p)
pan: wrote pan_in.trail
(Spin Version 4.2.5 -- 2 April 2005)
…
0.16 real 0.00 user 0.03 sys

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 15

Interpret the traceInterpret the trace
proc 3 (lookup) proc 1 (reinit) proc 2 (lookup)

public init lookup(int i)
if (needsInit) {

synchronized(this) {
if (needsInit) {

(a)
(b)
(c)
(d)

this.initialize();
}

}
}

()
(e)

public void reinit()
{ needsInit = true; }

(x)
(y)

public init lookup(int i)
if (needsInit) {

(a)
(b)

Read/write
Race condition

States (f) and (d)

…
return

theValues[i].getX()
+ theValues[i].getY();

}

(f)

if (needsInit) {
synchronized(this) {

if (needsInit) {
this.initialize();

...

(b)
(c)
(d)

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 16

States (f) and (d)

The Promela (Spin) modeling languageThe Promela (Spin) modeling language

• A set of processes described by process types• A set of processes described by process types
– Can model threads (Java), processes (Unix), devices,

resources etcresources, etc.

• C-like syntax, with guarded commands
i t t t– expression -> statements

• guarded; not the same as if (expression) { statements };

atomic { statements }– atomic { statements }
• treat as a single, atomic step (without interleaving)

– do od if fi do ... od, if ... fi
• with multiple :: alternatives, chosen non-deterministically

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 17

Safety and liveness propertiesSafety and liveness properties

• Safety: bad things should not happen• Safety: bad things should not happen
– e.g., two processes should not modify a variable at

the same time the same time.
– Easy to specify in Promela with assert(...)

Liveness: good things should eventually happen• Liveness: good things should eventually happen
– e.g., if I push the button, eventually the elevator

should arriveshould arrive
– Can be specified in temporal logic; more expensive

to checkto check
– Fairness (I should get lucky now and then) is an

important and common class of liveness properties

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 18

important and common class of liveness properties

The state explosion problemThe state explosion problem

Dining philosophers - looking for deadlock with SPINDining philosophers looking for deadlock with SPIN

5 phils+forks 145 states5 phils+forks 145 states
deadlock found

10 phils+forks 18 313 states10 phils+forks 18,313 states
error trace too long to be useful

15 phils+forks 148 897 states15 phils+forks 148,897 states
error trace too long to be useful

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 19

The model correspondence problemThe model correspondence problem

• verify correspondence between model and • verify correspondence between model and
program:

extract the model from the source code with – extract the model from the source code with
verified procedures

• blindly mirroring all details ⇒ state space explosion blindly mirroring all details ⇒ state space explosion
• omitting crucial detail ⇒ “false alarm” reports

– produce the source code automatically from the p y
model

• most applicable within well-understood domains

– conformance testing
• good tradeoff

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 20

Granularity of modelingy g

(a) (a)

t=i;

(w)

u=i;

(w)

(b)

t=i;

(x)

u=i;

i = i+1

(c)

t=t+1;

(y)

u=u+1;i = i+1

()

i=t;

(y)

i=u;

(d)

E E

(d)

E

(z)(z)

E

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 21

E E EE

Analysis of different modelsy
RacerP RacerQ

(a)we can find the
t = i;

(a)

t = t+1;
(b)

we ca d t e
race only with
fine-grain models ;

u = i;
(w)

u = u+1;
(x)

(c)

i = u;
(y)

i = t;
(c)

(d) (z)

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 22

Looking for the appropriate granularityLooking for the appropriate granularity

• Compilers may rearrange the order of instruction• Compilers may rearrange the order of instruction
– a simple store of a value into a memory cell may be compiled

into a store into a local register, with the actual store to
memory appearing later (or not at all)

– Two loads or stores to different memory locations may be
reordered for reasons of efficiencyreordered for reasons of efficiency

– Parallel computers may place values initially in the cache
memory of a local processor, and only later write into a

 memory area

• Even representing each memory access as an individual
action is not always sufficient!action is not always sufficient!

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 23

ExampleExample

• Suppose we use the double check idiom only for • Suppose we use the double-check idiom only for
lazy initialization
It ld till b b t• It would still be wrong, but…

• it is unlikely we would discover the flaw
through finite state verification:
– Spin assumes that memory accesses occur in the

order given in the Promela program, and ...
– we code them in the same order as the Java

 b t program, but …
– Java does not guarantee that they will be executed

in that order

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 24

in that order

Intensional modelsIntensional models

• Enumerating all reachable states is a limiting Enumerating all reachable states is a limiting
factor of finite state verification

• We can reduce the space by using intensional We can reduce the space by using intensional
(symbolic) representations:
– describe sets of reachable states without

enumerating each one individually
• Example (set of Integers)

characteristic
function

– Enumeration {2, 4, 6, 8, 10, 12, 14, 16, 18}
– Intensional rep. {x∈N|x mod 2 =0 and 0<x<20}

Intensional models do not necessarily grow with the
size of the set they represent

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 25

size of the set they represent

A useful intensional model: OBDDA useful intensional model: OBDD

• Ordered Binary Decision DiagramsOrdered Binary Decision Diagrams
– A compact representation of Boolean functions

• Characteristic function for transition relationsCharacteristic function for transition relations
– Transitions = pairs of states
– Function from pairs of states to Booleans:p

• True if the there is a transition between the pair

– Built iteratively by breadth-first expansion of the
t t state space:
• creating a representation of the whole set of states

reachable in k+1 steps from the set of states reachable in kp
steps

• the OBDD stabilizes when all the transitions that can occur
in the next step are already represented in the OBDD

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 26

p y p

From OBDDs to Symbolic CheckingFrom OBDDs to Symbolic Checking

• An intensional representation is not enough• An intensional representation is not enough
• We must have an algorithm for determining whether

that set satisfies the property we are checkingthat set satisfies the property we are checking
example:
• OBDD to represent • OBDD to represent

– the transition relation of a set of communicating state machines
– a class of temporal logic specification formulas

• Combine OBDD representations of model and
specification to produce a representation of just the set
of transitions leading to a violation of the specification
– If the set is empty, the property has been verified

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 27

Represent transition relations as
Boolean functions

a ⇒ b and c
not(a) or (b and c)

a
F Tnot(a) or (b and c)

the BDD is a decision tree
b

the BDD is a decision tree
that has been transformed
into an acyclic graph by

F T

cmerging nodes leading to
identical subtrees

c
F T

F T

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 28

Representing transition relations as
Boolean functions

A Assign a label to
a (x0=0) x0

0 1

(A) (C)

A. Assign a label to
each state

B Encode transitions

s0 (00)

b (x0=1)

0 1

x1
0 1

x1
0 1B. Encode transitions

C. The transition
tuples correspond

s1 (01)

x2
0 1

x2
0 1

b (x0=1)

tuples correspond
to paths leading
to true; all other

0 1

x3
0 1

x3
0 1

s2 (10)

x3
0 1

paths lead to false

0 0 0 00

x1 x2 x3 x4 x0 x4
0 1

x4
0 1

(B)

0 0 0 0 0

0 0 0 1 1

f t t t t t

0 1 1 0 1

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 29

F T
sym from state to state

Intensional vs explicit representationsIntensional vs explicit representations

• Worst case:• Worst case:
given a large set S of states

a representation capable of distinguishing each a representation capable of distinguishing each
subset of S
cannot be more compact on averagecannot be more compact on average
than the representation that simply lists elements of
the chosen subset the chosen subset.

• Intensional representations work well when
they exploit structure and regularity of the they exploit structure and regularity of the
state space

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 30

Model refinementModel refinement

• Construction of finite state modelsConstruction of finite state models
– balancing precision and efficiency

• Often the first model is unsatisfactory • Often the first model is unsatisfactory
– report potential failures that are obviously

impossibleimpossible
– exhaust resources before producing any result

Minor differences in the model can have large • Minor differences in the model can have large
effects on tractability of the verification
procedureprocedure

• finite state verification as iterative process

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 31

Iterative processIterative process

construct anconstruct an
initial model

attempt verification

exhausts
computational

resources

spurious
results

abstract the model

resources

make the modelabstract the model
further

make the model
more precise

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 32

Refinement: Adding details to the modelRefinement: Adding details to the model

M |= P initial (coarse grain) modelM1 |= P initial (coarse grain) model
(the counter example that violates P is possible in M1,
but does not correspond to an execution of the real program)

M2 |= P refined (more detailed) model
(the counter example is not possible in M2 but a new counter
examples violates M2 but does not correspond to an execution of examples violates M2 but does not correspond to an execution of
the real program)

....
Mk |= P

(the counter example that violates P in Mk corresponds to an
ti i th l) execution in the real program)

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 33

Example: Boolean programsExample: Boolean programs

• Initial Boolean programt al oolea p og a
– omits all variables
– branches if, while,.. refer to a dummy Boolean variable whose

value is unknown

• Refined Boolean program
dd ONLY B l i bl ith ig t d t t– add ONLY Boolean variables, with assignments and tests

• Example: pump controller
a counter-example shows that the waterLevel variable cannot – a counter-example shows that the waterLevel variable cannot
be ignored

– a refined Boolean program adds a Boolean variable
corresponding to a predicate in which waterLevel is tested
(waterLevel < highLimit) rather than adding the variable
waterLevel itself

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 34

Another refinement approach:
add premises to the property

initial (coarse grain) model
M |= P
add a constraint C1 that eliminates the bogus

behaviorbehavior
M |= C1 ⇒ P
M | (C and C) PM |= (C1 and C2) ⇒ P
.... until the verification succeeds or produces a

l d lvalid counter example

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 35

Other Domains for Finite-State
Verification

• Concurrent systems are the most common • Concurrent systems are the most common
application domain
B t th l i i l (t ti • But the same general principle (systematic
analysis of models, where thorough testing is
i ti l) h th li tiimpractical) has other applications

• Example: Complex data models
– Difficult to consider all the possible combinations of

choices in a complex data model

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 36

Data model verification and relational algebraData model verification and relational algebra

• Many information systems are characterized by • Many information systems are characterized by
– simple logic and algorithms

complex data structures– complex data structures

• Key element of these systems is the data model
(UML l d bj t di OCL ti)(UML class and object diagrams + OCL assertions)
= sets of data and relations among them
Th h ll i h • The challenge is to prove that
– individual constraint are consistent and
– together they ensure the desired properties of the

system as a whole

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 37

Example: a simple web siteExample: a simple web site
Signature = Sets + Relations

A t f di id d t i t d t i t d i t• A set of pages divided among restricted, unrestricted, maintenance
pages
– unrestricted pages: freely accessible
– restricted pages: accessible only to registered users
– maintenance pages: inaccessible to both sets of users

• A set of users: administrator, registered, and unregistered, g , g
• A set of links relations among pages

– private links lead to restricted pages
– public links lead to unrestricted pagespublic links lead to unrestricted pages
– Maintenance links lead to maintenance pages

• A set of access rights relations between users and pages
i t d l t i t d – unregistered users can access only unrestricted pages

– registered users can access both restricted and unrestricted pages
– administrator can access all pages including maintenance pages

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 38

Complete a specification with constraintsComplete a specification with constraints

Example constraints for the web site:Example constraints for the web site:
• Exclude self loops from links relations
• Allow at most one type of link between two

pages
– NOTE: relations need not be symmetric:

<A, B> ≠ <B, A>

• Web site must be connected
• ...

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 39

The data model for the simple web siteThe data model for the simple web site

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 40

Relational algebra to reason about sets
and relations

• set union and set intersection obey many of the same • set union and set intersection obey many of the same
algebraic laws as addition and subtraction of integers:
– commutative law

A ∪ B = B ∪ A
A ∩ B = B ∩ A

– associative law

(A ∪ B) ∪ C = A ∪ (B ∪ C)
(A ∩ B) ∩ C = A ∩ (B ∩ C)

– distributive law

A ∩ (B ∪ C) = (A ∩ B) ∩ (A ∩ C)
– ...

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 41

A relational algebra specification (Alloy): PageA relational algebra specification (Alloy): Page

module WebSite

// Pages include three disjoint sets of links
sig Page {disj linksPriv, linksPub, linksMain: set Page }

signature:
Set Page

sig Page {disj linksPriv, linksPub, linksMain: set Page }

// Each type of link points to a particular class of page
fact connPub {all p:Page, s: Site | p.linksPub in s.unres }

constraints
Introduce
relations

fact connPriv {all p:Page, s: Site | p.linksPriv in s.res }
fact connMain {all p:Page, s: Site | p.linksMain in s.main }

// Self loops are not allowed// Self loops are not allowed
fact noSelfLoop {no p:Page| p in p.linksPriv+p.linksPub+p.linksMain }

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 42

A relational algebra specification: UserA relational algebra specification: User

// Users are characterized by the set of pages that they can access
sig User {pages: set Page }
// Users are partitioned into three sets
part sig Administrator, Registered, Unregistered extends User {}
// Unregistered users can access only the home page and unrestricted pages// Unregistered users can access only the home page, and unrestricted pages
fact accUnregistered {
all u: Unregistered, s: Site|u.pages = (s.home+s.unres)
}
// Registered users can access the home page,restricted and unrestricted pages
fact accRegistered {
all u: Registered, s: Site|u.pages = (s.home+s.res+s.unres)
}}
// Administrators can access all pages
fact accAdministrator {
all u: Administrator, s: Site|
u.pages = (s.home+s.res+s.unres+s.main)
}

Constraints map
users to pages

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 43

users to pages

Analyze relational algebra specificationsAnalyze relational algebra specifications

• Overconstrained specifications are not satisfiable by Overconstrained specifications are not satisfiable by
any implementation,

• Underconstrained specifications allow undesirable
implementations

• Specifications identify infinite sets of solutions
 ... so ...

Properties of a relational specification are undecidable
A (counter) example that invalidates a property can be • A (counter) example that invalidates a property can be
found within a finite set of small models

... so so ...
We can verify a specification over a finite set of
solutions by limiting the cardinality of the sets

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 44

Checking a finite set of solutionsChecking a finite set of solutions

• If an example is found:• If an example is found:
– There are no logical contradictions in the model

The solution is not overconstrained– The solution is not overconstrained

• If no counterexample of a property is found:
– no reasonably small solution (property violation)

exists
BUT NOT th t NO l ti i t– BUT NOT that NO solution exists

• We depend on a “small scope hypothesis”: Most bugs that
can cause failure with large collections of objects can also can cause failure with large collections of objects can also
cause failure with very small collections (so it’s worth
looking for bugs in small collections even if we can’t afford
to look in big ones)

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 45

to look in big ones)

Analysis of the web site specificationAnalysis of the web site specification

run init for 5

// can unregistered users

Cardinality limit:
Consider up to

5 objects of each type// can unregistered users
// visit all unrestricted pages?
assert browsePub {
all p: Page s: Site|

Property to be
checkedall p: Page, s: Site|

p in s.unres implies s.home in p.* linksPub
}
h k b P b f 3

checked

check browsePub for 3

*
Transitive closure
(including home)

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 46

Analysis resultAnalysis result

User 2 Site 0 Counterexample:User_2

pages

Site_0

home unres

Counterexample:
• Unregistered User_2

cannot visit the
t i t d 2

Page_1 res

unrestricted page page_2
• The only path from the

home page to page_2
pages

Page 0

linksPriv

linksPub

unres
p g p g

goes through the
restricted page page_0

• The property is violated g _

linksPub

• The property is violated
because unrestricted
browsing paths can be
interrupted by restricted

Page_2
interrupted by restricted
pages or pages under
maintenance

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 47

Correcting the specificationCorrecting the specification

• We can eliminate the problem by eliminating public • We can eliminate the problem by eliminating public
links from maintenance or reserved pages:

fact descendant {
all p:Pages, s:Site|p in s.main+s.res

i li li k li k bimplies no p. links.linkPub
}

Analysis would find no counterexample of cardinality 3• Analysis would find no counterexample of cardinality 3
• We cannot conclude that no larger counter-example

exists but we may be satisfied that there is no reason exists, but we may be satisfied that there is no reason
to expect this property to be violated only in larger
models

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 48

SummarySummary

• Finite state verification is complementary to • Finite state verification is complementary to
testing

Can find bugs that are extremely hard to test for– Can find bugs that are extremely hard to test for
• example: race conditions that happen very rarely, under

conditions that are hard to control

– But is limited in scope
• cannot be used to find all kinds of errors

• Checking models can be (and is) automated
• But designing good models is challenging• But designing good models is challenging

• Requires careful consideration of abstraction, granularity,
and the properties to be checked. Often requires a cycle of

(c) 2007 Mauro Pezzè & Michal Young Ch 8, slide 49

model / check / refine until a useful result is obtained.

