
Dependence and Data Flow Models

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 1

Why Data Flow Models?Why Data Flow Models?

• Models from Chapter 5 emphasized control• Models from Chapter 5 emphasized control
• Control flow graph, call graph, finite state machines

• We also need to reason about dependence• We also need to reason about dependence
• Where does this value of x come from?
• What would be affected by changing this? • What would be affected by changing this?
• ...

• Many program analyses and test design Many program analyses and test design
techniques use data flow information
– Often in combination with control flowOften in combination with control flow

• Example: “Taint” analysis to prevent SQL injection attacks
• Example: Dataflow test criteria (Ch.13)

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 2

Learning objectivesLearning objectives

• Understand basics of data-flow models and the • Understand basics of data flow models and the
related concepts (def-use pairs, dominators…)

• Understand some analyses that can be • Understand some analyses that can be
performed with the data-flow model of a
programp g
– The data flow analyses to build models
– Analyses that use the data flow modelsy

• Understand basic trade-offs in modeling data
flow
– variations and limitations of data-flow models and

analyses, differing in precision and cost

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 3

Def-Use Pairs (1)Def-Use Pairs (1)

• A def-use (du) pair associates a point in a program • A def-use (du) pair associates a point in a program
where a value is produced with a point where it is used

• Definition: where a variable gets a valueDefinition: where a variable gets a value
– Variable declaration (often the special value “uninitialized”)
– Variable initialization
– Assignment
– Values received by a parameter

U i f l f i bl• Use: extraction of a value from a variable
– Expressions

Conditional statements– Conditional statements
– Parameter passing
– Returns

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 4

Def-Use PairsDef Use Pairs

...
if (...) { if (...) {

...

Definition:
x = ... ;

...
} x = ...

if (...) {
x gets a
value

}
y = ... + x + ... ;

...
Use: the value

y = + x +

Use: the value
of x is

extractedDef-Use
path y ... + x + ...

...

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 5

Def-Use Pairs (3)Def Use Pairs (3)

/** Euclid's algorithm */
public class GCD
{
public int gcd(int x, int y) {

int tmp; // A: def x, y, tmp
while (y != 0) { // B: use y

tmp = x % y; // C: def tmp; use x, y
 // D d f x = y; // D: def x; use y

y = tmp; // E: def y; use tmp
}
return x; // F: use xreturn x; // F: use x

}

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 6

Figure 6.2, page 79

Def-Use Pairs (3)Def-Use Pairs (3)

• A definition clear path is a path along the CFG • A definition-clear path is a path along the CFG
from a definition to a use of the same variable
without* another definition of the variable without another definition of the variable
between

If instead another definition is present on the path – If, instead, another definition is present on the path,
then the latter definition kills the former

• A def use pair is formed if and only if there is a • A def-use pair is formed if and only if there is a
definition-clear path between the definition
and the useand the use

*There is an over-simplification

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 7

p
here, which we will repair later.

Definition-Clear or KillingDefinition-Clear or Killing

 // A d f x = ... // A: def x
q = ...
x = y; // B: kill x, def x
z x =

...
Definition: x
gets a valueA

z = ...
y = f(x); // C: use x

x = ...

...

gets a value

Definition: x gets

x = y

Definition: x gets
a new value, old

value is killedB
Path A..C is
not definition-clear

Use: the value
of x is

...

f()C

Path B..C is
definition-clear of x is

extractedy = f(x)C

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 8

(Direct) Data Dependence Graph(Direct) Data Dependence Graph
• A direct data dependence graph is:

– Nodes: as in the control flow graph (CFG)
– Edges: def-use (du) pairs, labelled with the variable name

D d Dependence
edges show this
x value could be
the unchanged the unchanged
parameter or

could be set at
line D

(Fi 6 3 80)

line D

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 9

(Figure 6.3, page 80)

Control dependence (1)Control dependence (1)
• Data dependence: Where did these values come from?

C l d d Whi h l h h • Control dependence: Which statement controls whether
this statement executes?
– Nodes: as in the CFGNodes: as in the CFG
– Edges: unlabelled, from entry/branching points to controlled

blocks

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 10

DominatorsDominators
• Pre-dominators in a rooted, directed graph can be

used to make this intuitive notion of “controlling used to make this intuitive notion of “controlling
decision” precise.

• Node M dominates node N if every path from the root Node M dominates node N if every path from the root
to N passes through M.
– A node will typically have many dominators, but except for the

root there is a unique immediate dominator of node N which root, there is a unique immediate dominator of node N which
is closest to N on any path from the root, and which is in turn
dominated by all the other dominators of N.
Because each node (except the root) has a unique immediate – Because each node (except the root) has a unique immediate
dominator, the immediate dominator relation forms a tree.

• Post-dominators: Calculated in the reverse of the
control flow graph, using a special “exit” node as the
root.

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 11

Dominators (example)Dominators (example)

• A pre-dominates all nodes; A

B

• A pre dominates all nodes;
G post-dominates all
nodesB

C E

• F and G post-dominate E
• G is the immediate post-

D F

p
dominator of B
– C does not post-dominate B

G

• B is the immediate pre-
dominator of G

F d t d i t G– F does not pre-dominate G

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 12

Control dependence (2)Control dependence (2)

• We can use post-dominators to give a more precise • We can use post dominators to give a more precise
definition of control dependence:
– Consider again a node N that is reached on some but not all g

execution paths.
– There must be some node C with the following property:

C has at least two successors in the control flow graph (i e it • C has at least two successors in the control flow graph (i.e., it
represents a control flow decision);

• C is not post-dominated by N
• there is a successor of C in the control flow graph that is post-

dominated by N.

– When these conditions are true, we say node N is control-, y
dependent on node C.

• Intuitively: C was the last decision that controlled whether N
executed

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 13

executed

Control DependenceControl Dependence

A

B

Execution of F is
not inevitable at BB

C E
Execution of F is
inevitable at E

D F

inevitable at E

G F is control-dependent on B,
the last point at which its

execution was not inevitable

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 14

Data Flow Analysis

Computing data flow informationp g

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 15

Calculating def-use pairsCalculating def-use pairs

• Definition-use pairs can be defined in terms of paths in the Definition use pairs can be defined in terms of paths in the
program control flow graph:
– There is an association (d,u) between a definition of variable v at d

and a use of variable v at u iff and a use of variable v at u iff
• there is at least one control flow path from d to u
• with no intervening definition of v.

h (i hi d fi iti t) – vd reaches u (vd is a reaching definition at u).
– If a control flow path passes through another definition e of the same

variable v, ve kills vd at that point.

• Even if we consider only loop-free paths, the number of paths in a
graph can be exponentially larger than the number of nodes and
edges. edges.

• Practical algorithms therefore do not search every individual path.
Instead, they summarize the reaching definitions at a node over all
the paths reaching that node

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 16

the paths reaching that node.

Exponential paths
(even without loops)

A B C D E F G V

2 paths from A to B

4 from A to C
Tracing each path is
not efficient, and we
can do much better

8 from A to D

16 from A to E

can do much better.

...

128 paths from A to V

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 17

DF AlgorithmDF Algorithm

• An efficient algorithm for computing reaching An efficient algorithm for computing reaching
definitions (and several other properties) is based on
the way reaching definitions at one node are related to
th hi g d fi iti t dj t d the reaching definitions at an adjacent node.

• Suppose we are calculating the reaching definitions of
node n and there is an edge (p n) from an immediate node n, and there is an edge (p,n) from an immediate
predecessor node p.
– If the predecessor node p can assign a value to variable v, then

th d fi iti h W th d fi iti i the definition vp reaches n. We say the definition vp is
generated at p.

– If a definition vp of variable v reaches a predecessor node p,
d if i t d fi d t th t d (i hi h th and if v is not redefined at that node (in which case we say the

vp is killed at that point), then the definition is propagated on
from p to n.

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 18

Equations of node E (y = tmp)Equations of node E (y = tmp)
public class GCD {
public int gcd(int x, int y) {

int tmp; // A: def x, y, tmp
while (y != 0) { // B: use y

tmp = x % y; // C: def tmp; use x, y
 // D d f

Calculate reaching
definitions at E in
terms of its x = y; // D: def x; use y

y = tmp; // E: def y; use tmp
}
ret rn ; // F: se

terms of its
immediate
predecessor D

return x; // F: use x
}

Reach(E) = ReachOut(D)
ReachOut(E) = (Reach(E) \ {yA}) ∪ {yE}

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 19

Equations of node B (while (y != 0))Equations of node B (while (y != 0))
public class GCD {
public int gcd(int x, int y) {

int tmp; // A: def x, y, tmp
while (y != 0) { // B: use y

This line has two
predecessors:

tmp = x % y; // C: def tmp; use x, y
x = y; // D: def x; use y
y = tmp; // E: def y; use tmp

}

predecessors:
Before the loop,
end of the loop

}
return x; // F: use x

}

• Reach(B) = ReachOut(A) ∪ ReachOut(E)
R hO (A) (A) { }• ReachOut(A) = gen(A) = {xA, yA, tmpA}

• ReachOut(E) = (Reach(E) \ {yA}) ∪ {yE}

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 20

General equations for Reach analysisGeneral equations for Reach analysis

Reach(n) = ∪ ReachOut(m)
m pred(n)m∈pred(n)

ReachOut(n) = (Reach(n) \ kill (n)) ∪ gen(n)

gen(n) = { vn | v is defined or modified at n }
kill(n) { v | v is defined or modified at x x≠n }kill(n) = { vx | v is defined or modified at x, x≠n }

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 21

Avail equationsAvail equations

Avail (n) = ∩ AvailOut(m)
m pred(n)m∈pred(n)

AvailOut(n) = (Avail (n) \ kill (n)) ∪ gen(n)

gen(n) = { exp | exp is computed at n }
kill(n) { exp | exp has variables assigned at n }kill(n) = { exp | exp has variables assigned at n }

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 22

Live variable equationsLive variable equations

Live(n) = ∪ LiveOut(m)

m∈succ(n)

LiveOut(n) = (Live(n) \ kill (n)) ∪ gen(n)

gen(n) = { v | v is used at n }
kill() { i difi d }kill(n) = { v | v is modified at n }

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 23

Classification of analysesClassification of analyses

• Forward/backward: a node’s set depends on that of its • Forward/backward: a node s set depends on that of its
predecessors/successors

• Any-path/all-path: a node’s set contains a value iff it is Any path/all path: a node s set contains a value iff it is
coming from any/all of its inputs

Any-path (∪) All-paths (∩)

For ard (pred) Reach A ailForward (pred) Reach Avail

Backward (succ) Live “inevitable”Backward (succ) Live inevitable

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 24

Iterative Solution of Dataflow EquationsIterative Solution of Dataflow Equations

• Initialize values (first estimate of answer)• Initialize values (first estimate of answer)
– For “any path” problems, first guess is “nothing”

(empty set) at each node(p y)
– For “all paths” problems, first guess is “everything”

(set of all possible values = union of all “gen” sets)
• Repeat until nothing changes

– Pick some node and recalculate (new estimate)

This will converge on a “fixed point” solution
h l l i d h where every new calculation produces the

same value as the previous guess.

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 25

Worklist Algorithm for Data FlowWorklist Algorithm for Data Flow

See figures 6.6, 6.7 on pages 84, 86 of Pezzè & YoungSee figures 6.6, 6.7 on pages 84, 86 of Pezzè & Young
One way to iterate to a fixed point solution.
General idea:
• Initially all nodes are on the work list, and have default values

– Default for “any-path” problem is the empty set, default for “all-path”
problem is the set of all possibilities (union of all gen sets)problem is the set of all possibilities (union of all gen sets)

• While the work list is not empty
– Pick any node n on work list; remove it from the list
– Apply the data flow equations for that node to get new values
– If the new value is changed (from the old value at that node), then

• Add successors (for forward analysis) or predecessors (for backward
analysis) on the work list

• Eventually the work list will be empty (because new computed
values = old values for each node) and the algorithm stops.

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 26

values old values o eac ode) a d t e algo t stops.

Cooking your own: From Execution to
Conservative Flow Analysis

• We can use the same data flow algorithms to • We can use the same data flow algorithms to
approximate other dynamic properties

Gen set will be “facts that become true here”– Gen set will be “facts that become true here”
– Kill set will be “facts that are no longer true here”

Fl ti ill d ib g ti– Flow equations will describe propagation

• Example: Taintedness (in web form processing)
– “Taint”: a user-supplied value (e.g., from web form)

that has not been validated
G hi l f d – Gen: we get this value from an untrusted source
here
Kill: we validated to make sure the value is proper

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 27

– Kill: we validated to make sure the value is proper

Cooking your own analysis (2)Cooking your own analysis (2)

• Flow equations must be Monotonic: y > x implies f(y) ≥ f(x)Flow equations must be
monotonic
– Initialize to the bottom

element of a lattice of

(where f is application of the flow
equations on values from successor

element of a lattice of
approximations

– Each new value that
h t th

or predecessor nodes, and “>” is
movement up the lattice)

changes must move up the
lattice

• Typically: Powerset yp y
lattice
– Bottom is empty set, top is

universeuniverse
– Or empty at top for all-

paths analysis

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 28

Data flow analysis with arrays and pointersData flow analysis with arrays and pointers

• Arrays and pointers introduce uncertainty: • Arrays and pointers introduce uncertainty:
Do different expressions access the same
storage?storage?
– a[i] same as a[k] when i = k

a[i] same as b[i] when a b (aliasing)– a[i] same as b[i] when a = b (aliasing)

• The uncertainty is accomodated depending to
th ki d f l ithe kind of analysis
– Any-path: gen sets should include all potential

li d kill t h ld i l d l h t i aliases and kill set should include only what is
definitely modified
All path: vice versa

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 29

– All-path: vice versa

Scope of Data Flow AnalysisScope of Data Flow Analysis

• Intraprocedural• Intraprocedural
– Within a single method or procedure

• as described so far• as described so far

• Interprocedural
A l th d (d l) d– Across several methods (and classes) or procedures

• Cost/Precision trade-offs for interprocedural
analysis are critical, and difficult
– context sensitivity
– flow-sensitivity

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 30

Context SensitivityContext Sensitivity

bar() {foo() { bar() {
sub() {

foo() {
(call) (call)

sub() sub()

}

}

}

(return) (return)

} }

A context-sensitive (interprocedural) analysis
distinguishes sub() called from foo()distinguishes sub() called from foo()
from sub() called from bar();
A context-insensitive (interprocedural) analysis
does not separate them, as if foo() could call sub()

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 31

does not separate them, as if foo() could call sub()
and sub() could then return to bar()

Flow SensitivityFlow Sensitivity

• Reach Avail etc were flow-sensitive • Reach, Avail, etc. were flow sensitive,
intraprocedural analyses
– They considered ordering and control flow decisionsThey considered ordering and control flow decisions
– Within a single procedure or method, this is (fairly)

cheap — O(n3) for n CFG nodes
• Many interprocedural flow analyses are flow-

insensitive
– O(n3) would not be acceptable for all the statements

in a program!
Though O(n3) on each individual procedure might be ok• Though O(n3) on each individual procedure might be ok

– Often flow-insensitive analysis is good enough ...
consider type checking as an example

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 32

yp g p

SummarySummary

• Data flow models detect patterns on CFGs:Data flow models detect patterns on CFGs:
– Nodes initiating the pattern
– Nodes terminating it
– Nodes that may interrupt it

• Often, but not always, about flow of information
(dependence)(dependence)

• Pros:
– Can be implemented by efficient iterative algorithmsp y g
– Widely applicable (not just for classic “data flow” properties)

• Limitations:
U bl t di ti i h f ibl f i f ibl th– Unable to distinguish feasible from infeasible paths

– Analyses spanning whole programs (e.g., alias analysis) must
trade off precision against computational cost

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 33

