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Why Data Flow Models?Why Data Flow Models?

• Models from Chapter 5 emphasized control• Models from Chapter 5 emphasized control
• Control flow graph, call graph, finite state machines

• We also need to reason about dependence• We also need to reason about dependence
• Where does this value of x come from?
• What would be affected by changing this? • What would be affected by changing this? 
• ... 

• Many program analyses and test design Many program analyses and test design 
techniques use data flow information
– Often in combination with control flowOften in combination with control flow

• Example:  “Taint” analysis to prevent SQL injection attacks
• Example:  Dataflow test criteria (Ch.13)
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Learning objectivesLearning objectives

• Understand basics of data-flow models and the • Understand basics of data flow models and the 
related concepts (def-use pairs, dominators…)

• Understand some analyses that can be • Understand some analyses that can be 
performed with the data-flow model of a 
programp g
– The data flow analyses to build models
– Analyses that use the data flow modelsy

• Understand basic trade-offs in modeling data 
flow
– variations and limitations of data-flow models and 

analyses, differing in precision and cost
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Def-Use Pairs (1)Def-Use Pairs (1)

• A def-use (du) pair associates a point in a program • A def-use (du) pair associates a point in a program 
where a value is produced with a point where it is used

• Definition: where a variable gets a valueDefinition: where a variable gets a value
– Variable declaration  (often the special value “uninitialized”)
– Variable initialization
– Assignment
– Values received by a parameter 

U  i  f  l  f   i bl• Use: extraction of a value from a variable
– Expressions

Conditional statements– Conditional statements
– Parameter passing
– Returns
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Def-Use PairsDef Use Pairs

...
if (...) { if (...) {

... 

Definition: 
x = ... ; 

... 
} x = ... 

if (...) {
x gets a 
value

}
y = ... + x + ... ; 

... 
Use: the value

y = + x +

Use: the value 
of x is 

extractedDef-Use
path y  ... + x + ...

... 
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Def-Use Pairs (3)Def Use Pairs (3)

/**  Euclid's algorithm */
public class GCD 
{ 
public int gcd(int x, int y) {

int tmp;               // A: def x, y, tmp              
while (y != 0) {     // B: use y

tmp = x % y;     // C: def tmp; use x, y
                 // D  d f   x = y;               // D: def x; use y

y = tmp;           // E: def y; use tmp
}
return x;              // F: use xreturn x;              // F: use x

}
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Def-Use Pairs (3)Def-Use Pairs (3)

• A definition clear path is a path along the CFG • A definition-clear path is a path along the CFG 
from a definition to a use of the same variable 
without* another definition of the variable without another definition of the variable 
between

If  instead  another definition is present on the path  – If, instead, another definition is present on the path, 
then the latter definition kills the former

• A def use pair is formed if and only if there is a • A def-use pair is formed if and only if there is a 
definition-clear path between the definition 
and the useand the use

*There is an over-simplification 
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Definition-Clear or KillingDefinition-Clear or Killing

       // A  d f x = ...     // A: def x
q = ...  
x = y;     //  B: kill x, def x
z   x =

... 
Definition: x 
gets a valueA

z = ... 
y = f(x);  // C: use x

x = ... 

... 

gets a value

Definition: x gets

x = y 

Definition: x gets 
a new value, old 

value is killedB
Path A..C is 
not definition-clear

Use: the value 
of x is

... 

f( )C

Path B..C is 
definition-clear of x is 

extractedy = f(x)C
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(Direct) Data Dependence Graph(Direct) Data Dependence Graph
• A direct data dependence graph is:

– Nodes: as in the control flow graph (CFG)
– Edges: def-use (du) pairs, labelled with the variable name

D d  Dependence 
edges show this 
x value could be 
the unchanged the unchanged 
parameter or 

could be set at 
line D

(Fi 6 3 80)

line D
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Control dependence (1)Control dependence (1)
• Data dependence: Where did these values come from?

C l d d  Whi h  l  h h  • Control dependence: Which statement controls whether 
this statement executes? 
– Nodes: as in the CFGNodes: as in the CFG
– Edges: unlabelled, from entry/branching points to controlled 

blocks
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DominatorsDominators
• Pre-dominators in a rooted, directed graph can be 

used to make this intuitive notion of “controlling used to make this intuitive notion of “controlling 
decision” precise.

• Node M dominates node N if every path from the root Node M dominates node N if every path from the root 
to N passes through M. 
– A node will typically have many dominators, but except for the 

root  there is a unique immediate dominator of node N which root, there is a unique immediate dominator of node N which 
is closest to N on any path from the root, and which is in turn 
dominated by all the other dominators of N. 
Because each node (except the root) has a unique immediate – Because each node (except the root) has a unique immediate 
dominator, the immediate dominator relation forms a tree.

• Post-dominators: Calculated in the reverse of the 
control flow graph, using a special “exit” node as the 
root.
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Dominators (example)Dominators (example)

• A pre-dominates all nodes; A

B

• A pre dominates all nodes; 
G post-dominates all 
nodesB

C E

• F and G post-dominate E
• G is the immediate post-

D F

p
dominator of B
– C does not post-dominate B

G

• B is the immediate pre-
dominator of G

F d  t d i t  G– F does not pre-dominate G
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Control dependence (2)Control dependence (2)

• We can use post-dominators to give a more precise • We can use post dominators to give a more precise 
definition of control dependence:
– Consider again a node N that is reached on some but not all g

execution paths.
– There must be some node C with the following property: 

C has at least two successors in the control flow graph (i e  it • C has at least two successors in the control flow graph (i.e., it 
represents a control flow decision); 

• C is not post-dominated by N 
• there is a successor of C in the control flow graph that is post-

dominated by N.  

– When these conditions are true, we say node N is control-, y
dependent on node C.

• Intuitively: C was the last decision that controlled whether N 
executed
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Control DependenceControl Dependence

A

B

Execution of F is 
not inevitable at BB

C E
Execution of F is 
inevitable at E

D F

inevitable at E

G F is control-dependent on B,
the last point at which its

execution was not inevitable
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Data Flow Analysis

Computing data flow informationp g
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Calculating def-use pairsCalculating def-use pairs

• Definition-use pairs can be defined in terms of paths in the Definition use pairs can be defined in terms of paths in the 
program control flow graph:
– There is an association (d,u) between a definition of variable v at d 

and a use of variable v at u iff and a use of variable v at u iff 
• there is at least one control flow path from d to u 
• with no intervening definition of v. 

h  ( i   hi  d fi iti t )   – vd reaches u (vd is a reaching definition at u).  
– If a control flow path passes through another definition e of the same 

variable v, ve kills vd at that point.

• Even if we consider only loop-free paths, the number of paths in a 
graph can be exponentially larger than the number of nodes and 
edges. edges. 

• Practical algorithms therefore do not search every individual path. 
Instead, they summarize the reaching definitions at a node over all 
the paths reaching that node
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Exponential paths 
(even without loops)

A B C D E F G V

2 paths from A to B

4 from A to C
Tracing each path is 
not efficient, and we 
can do much better

8 from A to D

16 from A to E

can do much better.

...

128 paths from A to V
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DF AlgorithmDF Algorithm

• An efficient algorithm for computing reaching An efficient algorithm for computing reaching 
definitions (and several other properties) is based on 
the way reaching definitions at one node are related to 
th  hi g d fi iti  t  dj t d   the reaching definitions at an adjacent node.  

• Suppose we are calculating the reaching definitions of 
node n  and there is an edge (p n) from an immediate node n, and there is an edge (p,n) from an immediate 
predecessor node p.  
– If the predecessor node p can assign a value to variable v, then  

th  d fi iti  h    W   th  d fi iti  i  the definition vp reaches n.  We say the definition vp is 
generated at p.

– If a definition vp of variable v reaches a predecessor node p, 
d if  i  t d fi d t th t d  (i  hi h    th  and if v is not redefined at that node (in which case we say the 

vp is killed at that point), then the definition is propagated on 
from p to n.
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Equations of node E (y = tmp)Equations of node E (y = tmp)
public class GCD  { 
public int gcd(int x, int y) {

int tmp;               // A: def x, y, tmp             
while (y != 0) {     // B: use y

tmp = x % y;     // C: def tmp; use x, y
                 // D  d f   

Calculate reaching 
definitions at E in 
terms of its x = y;               // D: def x; use y

y = tmp;           // E: def y; use tmp
}
ret rn ;              // F: se 

terms of its 
immediate 
predecessor D

return x;              // F: use x
}

Reach(E) = ReachOut(D)
ReachOut(E) = (Reach(E) \ {yA}) ∪ {yE}
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Equations of node B (while (y != 0))Equations of node B (while (y != 0))
public class GCD  { 
public int gcd(int x, int y) {

int tmp;               // A: def x, y, tmp              
while (y != 0) {     // B: use y

This line has two 
predecessors:

tmp = x % y;     // C: def tmp; use x, y
x = y;               // D: def x; use y
y = tmp;           // E: def y; use tmp

}

predecessors: 
Before the loop,
end of the loop

}
return x;              // F: use x

}

• Reach(B) = ReachOut(A) ∪ ReachOut(E)
R hO (A)  (A)  {   }• ReachOut(A) = gen(A) = {xA, yA, tmpA}

• ReachOut(E) = (Reach(E) \ {yA}) ∪ {yE}
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General equations for Reach analysisGeneral equations for Reach analysis

Reach(n) =  ∪ ReachOut(m)
m pred(n)m∈pred(n)

ReachOut(n) = (Reach(n) \ kill (n)) ∪ gen(n)

gen(n) = { vn | v is defined or modified at n }
kill(n)  { v | v is defined or modified at x  x≠n }kill(n) = { vx | v is defined or modified at x, x≠n }
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Avail equationsAvail equations

Avail (n) =  ∩ AvailOut(m) 
m pred(n)m∈pred(n)

AvailOut(n) = (Avail (n) \ kill (n)) ∪ gen(n)

gen(n) = { exp | exp is computed at n }
kill(n)  { exp | exp has variables assigned at n }kill(n) = { exp | exp has variables assigned at n }
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Live variable equationsLive variable equations

Live(n) = ∪ LiveOut(m) 

m∈succ(n)

LiveOut(n) = (Live(n) \ kill (n)) ∪ gen(n)

gen(n) = { v | v is used at n }
kill( )  {    i  difi d   }kill(n) = { v | v is modified at n }
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Classification of analysesClassification of analyses

• Forward/backward: a node’s set depends on that of its • Forward/backward: a node s set depends on that of its 
predecessors/successors

• Any-path/all-path: a node’s set contains a value iff it is Any path/all path: a node s set contains a value iff it is 
coming from any/all of its inputs

Any-path (∪) All-paths (∩)

For ard (pred) Reach A ailForward (pred) Reach Avail

Backward (succ) Live “inevitable”Backward (succ) Live inevitable
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Iterative Solution of Dataflow EquationsIterative Solution of Dataflow Equations

• Initialize values (first estimate of answer)• Initialize values (first estimate of answer)
– For “any path” problems, first guess is “nothing” 

(empty set) at each node( p y )
– For “all paths” problems, first guess is “everything” 

(set of all possible values = union of all “gen” sets)
• Repeat until nothing changes

– Pick some node and recalculate (new estimate)

This will converge on a “fixed point” solution 
h    l l i  d  h  where every new calculation produces the 

same value as the previous guess.
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Worklist Algorithm for Data FlowWorklist Algorithm for Data Flow

See figures 6.6, 6.7 on pages 84, 86 of Pezzè & YoungSee figures 6.6, 6.7 on pages 84, 86 of Pezzè & Young
One way to iterate to a fixed point solution.
General idea: 
• Initially all nodes are on the work list, and have default values 

– Default for “any-path” problem is the empty set, default for “all-path” 
problem is the set of all possibilities (union of all gen sets)problem is the set of all possibilities (union of all gen sets)

• While the work list is not empty
– Pick any node n on work list; remove it from the list
– Apply the data flow equations for that node to get new values
– If the new value is changed (from the old value at that node), then 

• Add successors (for forward analysis) or predecessors (for backward 
analysis) on the work list

• Eventually the work list will be empty (because new computed 
values = old values for each node) and the algorithm stops. 
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Cooking your own: From Execution to 
Conservative Flow Analysis

• We can use the same data flow algorithms to • We can use the same data flow algorithms to 
approximate other dynamic properties

Gen set will be “facts that become true here”– Gen set will be “facts that become true here”
– Kill set will be “facts that are no longer true here”

Fl  ti  ill d ib  g ti– Flow equations will describe propagation

• Example:  Taintedness (in web form processing)
– “Taint”:  a user-supplied value (e.g., from web form) 

that has not been validated
G    hi  l  f   d  – Gen: we get this value from an untrusted source 
here
Kill:  we validated to make sure the value is proper
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Cooking your own analysis (2)Cooking your own analysis (2)

• Flow equations must be Monotonic: y > x implies f(y) ≥ f(x)Flow equations must be 
monotonic
– Initialize to the bottom 

element of a lattice of 

(where f is application of the flow
equations on values from successor

element of a lattice of 
approximations

– Each new value that 
h  t   th  

or predecessor nodes, and “>” is
movement up the lattice)

changes must move up the 
lattice

• Typically: Powerset yp y
lattice
– Bottom is empty set, top is 

universeuniverse
– Or empty at top for all-

paths analysis
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Data flow analysis with arrays and pointersData flow analysis with arrays and pointers

• Arrays and pointers introduce uncertainty: • Arrays and pointers introduce uncertainty: 
Do different expressions access the same 
storage?storage?
– a[i] same as a[k] when i = k

a[i] same as b[i] when a  b (aliasing)– a[i] same as b[i] when a = b (aliasing)

• The uncertainty is accomodated depending to 
th  ki d f l ithe kind of analysis
– Any-path: gen sets should include all potential 

li  d kill t h ld i l d  l  h t i  aliases and kill set should include only what is 
definitely modified
All path: vice versa
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Scope of Data Flow AnalysisScope of Data Flow Analysis

• Intraprocedural• Intraprocedural
– Within a single method or procedure

• as described so far• as described so far

• Interprocedural
A  l th d  ( d l )  d– Across several methods (and classes) or procedures

• Cost/Precision trade-offs for interprocedural 
analysis are critical, and difficult
– context sensitivity
– flow-sensitivity
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Context SensitivityContext Sensitivity

bar() {foo() { bar() {
sub() {

foo() {
(call) (call)

sub() sub()

}

}

}

(return) (return)

} }

A context-sensitive (interprocedural) analysis
distinguishes sub() called from foo()distinguishes sub() called from foo()
from sub() called from bar();
A context-insensitive (interprocedural) analysis
does not separate them, as if foo() could call sub()
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does not separate them, as if foo() could call sub()
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Flow SensitivityFlow Sensitivity

• Reach  Avail  etc  were flow-sensitive  • Reach, Avail, etc. were flow sensitive, 
intraprocedural analyses
– They considered ordering and control flow decisionsThey considered ordering and control flow decisions
– Within a single procedure or method, this is (fairly) 

cheap — O(n3) for n CFG nodes
• Many interprocedural flow analyses are flow-

insensitive
– O(n3) would not be acceptable for all the statements 

in a program!
Though O(n3) on each individual procedure might be ok• Though O(n3) on each individual procedure might be ok

– Often flow-insensitive analysis is good enough ... 
consider type checking as an example
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SummarySummary

• Data flow models detect patterns on CFGs:Data flow models detect patterns on CFGs:
– Nodes initiating the pattern
– Nodes terminating it
– Nodes that may interrupt it

• Often, but not always, about flow of information 
(dependence)(dependence)

• Pros:
– Can be implemented by efficient iterative algorithmsp y g
– Widely applicable (not just for classic “data flow” properties)

• Limitations:
U bl  t  di ti i h f ibl  f  i f ibl  th– Unable to distinguish feasible from infeasible paths

– Analyses spanning whole programs (e.g., alias analysis) must 
trade off precision against computational cost
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