Dependence and Data Flow Models

Why Data Flow Models?

- Models from Chapter 5 emphasized control
 - Control flow graph, call graph, finite state machines
- We also need to reason about dependence
 - Where does this value of x come from?
 - What would be affected by changing this?
 - ...
- Many program analyses and test design techniques use data flow information
 - Often in combination with control flow
 - Example: "Taint" analysis to prevent SQL injection attacks

• Example: Dataflow test criteria (Ch.13)

Learning objectives

- Understand basics of data-flow models and the related concepts (def-use pairs, dominators...)
- Understand some analyses that can be performed with the data-flow model of a program
 - The data flow analyses to build models
 - Analyses that use the data flow models
- Understand basic trade-offs in modeling data flow
 - variations and limitations of data-flow models and analyses, differing in precision and cost

Def-Use Pairs (1)

- A def-use (du) pair associates a point in a program where a value is produced with a point where it is used
- Definition: where a variable gets a value
 - Variable declaration (often the special value "uninitialized")
 - Variable initialization
 - Assignment
 - Values received by a parameter
- Use: extraction of a value from a variable
 - Expressions
 - Conditional statements
 - Parameter passing

Returns

Def-Use Pairs

SOFTWARE TESTING AND ANALYSIS

Def-Use Pairs (3)

Def-Use Pairs (3)

- A definition-clear path is a path along the CFG from a definition to a use of the same variable without* another definition of the variable between
 - If, instead, another definition is present on the path, then the latter definition kills the former
- A def-use pair is formed if and only if there is a definition-clear path between the definition and the use

*There is an over-simplification here, which we will repair later.

Definition-Clear or Killing

(Direct) Data Dependence Graph

- A direct data dependence graph is:
 - Nodes: as in the control flow graph (CFG)
 - Edges: def-use (du) pairs, labelled with the variable name

Control dependence (1)

- Data dependence: Where did these values come from?
- Control dependence: Which statement controls whether this statement executes?
 - Nodes: as in the CFG
 - Edges: unlabelled, from entry/branching points to controlled blocks

SOFTWARE TESTING

Dominators

- Pre-dominators in a rooted, directed graph can be used to make this intuitive notion of "controlling decision" precise.
- Node M dominates node N if every path from the root to N passes through M.
 - A node will typically have many dominators, but except for the root, there is a unique immediate dominator of node N which is closest to N on any path from the root, and which is in turn dominated by all the other dominators of N.
 - Because each node (except the root) has a unique immediate dominator, the immediate dominator relation forms a tree.
- Post-dominators: Calculated in the reverse of the control flow graph, using a special "exit" node as the root.

Dominators (example)

- A pre-dominates all nodes;
 G post-dominates all nodes
- F and G post-dominate E
- G is the immediate postdominator of B
 - C does *not* post-dominate B
- B is the immediate predominator of G
 - F does *not* pre-dominate G

Control dependence (2)

- We can use post-dominators to give a more precise definition of control dependence:
 - Consider again a node N that is reached on some but not all execution paths.
 - There must be some node C with the following property:
 - C has at least two successors in the control flow graph (i.e., it represents a control flow decision);
 - C is not post-dominated by N
 - there is a successor of C in the control flow graph that is postdominated by N.
 - When these conditions are true, we say node N is controldependent on node C.
 - Intuitively: C was the last decision that controlled whether N executed

Control Dependence

SOFTWARE TESTING AND ANALYSIS

Data Flow Analysis

Computing data flow information

Calculating def-use pairs

- Definition-use pairs can be defined in terms of paths in the program control flow graph:
 - There is an association (d,u) between a definition of variable v at d and a use of variable v at u iff
 - there is at least one control flow path from d to u
 - with no intervening definition of v.
 - v_d reaches u (v_d is a reaching definition at u).
 - If a control flow path passes through another definition e of the same variable v, v_e kills v_d at that point.
- Even if we consider only loop-free paths, the number of paths in a graph can be exponentially larger than the number of nodes and edges.
- Practical algorithms therefore do not search every individual path. Instead, they summarize the reaching definitions at a node over all
 the paths reaching that node.

Exponential paths (even without loops)

2 paths from A to B

4 from A to C

8 from A to D

16 from A to E

•••

128 paths from A to V

Tracing each path is not efficient, and we can do much better.

DF Algorithm

- An efficient algorithm for computing reaching definitions (and several other properties) is based on the way reaching definitions at one node are related to the reaching definitions at an adjacent node.
- Suppose we are calculating the reaching definitions of node n, and there is an edge (p,n) from an immediate predecessor node p.
 - If the predecessor node p can assign a value to variable v, then the definition v_p reaches n. We say the definition v_p is generated at p.
 - If a definition v_p of variable v reaches a predecessor node p, and if v is not redefined at that node (in which case we say the v_p is killed at that point), then the definition is propagated on from p to n.

SOFTWARE TESTING AND ANALYSIS

Equations of node E (y = tmp)

Reach(E) = ReachOut(D) ReachOut(E) = (Reach(E) \ { y_A }) \cup { y_E }

Equations of node B (while (y != 0))

- Reach(B) = ReachOut(A) ∪ ReachOut(E)
- ReachOut(A) = gen(A) = $\{x_A, y_A, tmp_A\}$
- ReachOut(E) = (Reach(E) \ $\{y_A\}$) \cup $\{y_E\}$

General equations for Reach analysis

Reach(n) =
$$\bigcup$$
 ReachOut(m)
m \in pred(n)

ReachOut(n) = (Reach(n) \ kill (n)) \cup gen(n)

gen(n) = { $v_n | v$ is defined or modified at n } kill(n) = { $v_x | v$ is defined or modified at x, x≠n }

Avail equations

Avail (n) =
$$\bigcap$$
 AvailOut(m)
m \in pred(n)

AvailOut(n) = (Avail (n) \ kill (n)) \cup gen(n)

gen(n) = { exp | exp is computed at n }
kill(n) = { exp | exp has variables assigned at n }

Live variable equations

Live(n) =
$$\bigcup$$
 LiveOut(m)
m \in succ(n)

LiveOut(n) = (Live(n) \setminus kill (n)) \cup gen(n)

gen(n) = { v | v is used at n }
kill(n) = { v | v is modified at n }

Classification of analyses

- Forward/backward: a node's set depends on that of its predecessors/successors
- Any-path/all-path: a node's set contains a value iff it is coming from any/all of its inputs

	Any-path (∪)	All-paths (∩)
Forward (pred)	Reach	Avail
Backward (succ)	Live	"inevitable"

SOFTWARE TESTING AND ANALYSIS

Iterative Solution of Dataflow Equations

- Initialize values (first estimate of answer)
 - For "any path" problems, first guess is "nothing" (empty set) at each node
 - For "all paths" problems, first guess is "everything" (set of all possible values = union of all "gen" sets)
- Repeat until nothing changes
 - Pick some node and recalculate (new estimate)

This will converge on a "fixed point" solution where every new calculation produces the same value as the previous guess.

Worklist Algorithm for Data Flow

See figures 6.6, 6.7 on pages 84, 86 of Pezzè & Young One way to iterate to a fixed point solution.

General idea:

- Initially all nodes are on the work list, and have default values
 - Default for "any-path" problem is the empty set, default for "all-path" problem is the set of all possibilities (union of all gen sets)
- While the work list is not empty
 - Pick any node n on work list; remove it from the list
 - Apply the data flow equations for that node to get new values
 - If the new value is changed (from the old value at that node), then
 - Add successors (for forward analysis) or predecessors (for backward analysis) on the work list
- Eventually the work list will be empty (because new computed values = old values for each node) and the algorithm stops.

Cooking your own: From Execution to Conservative Flow Analysis

- We can use the same data flow algorithms to approximate other dynamic properties
 - Gen set will be "facts that become true here"
 - Kill set will be "facts that are no longer true here"
 - Flow equations will describe propagation
- Example: Taintedness (in web form processing)
 - "Taint": a user-supplied value (e.g., from web form) that has not been validated
 - Gen: we get this value from an untrusted source here

Kill: we validated to make sure the value is proper

Cooking your own analysis (2)

- Flow equations must be monotonic
 - Initialize to the bottom element of a lattice of approximations
 - Each new value that changes must move up the lattice
- Typically: Powerset lattice
 - Bottom is empty set, top is universe
 - Or empty at top for allpaths analysis

SOFTWARE TESTING AND ANALYSIS

(c) 2007 Mauro Pezzè & Michal Young

Monotonic: y > x implies $f(y) \ge f(x)$

(where f is application of the flow equations on values from successor or predecessor nodes, and ">" is movement up the lattice)

Data flow analysis with arrays and pointers

- Arrays and pointers introduce uncertainty: Do different expressions access the same storage?
 - a[i] same as a[k] when i = k
 - a[i] same as b[i] when a = b (aliasing)
- The uncertainty is accomodated depending to the kind of analysis
 - Any-path: gen sets should include all potential aliases and kill set should include only what is definitely modified

- All-path: vice versa

Scope of Data Flow Analysis

- Intraprocedural
 - Within a single method or procedure
 - as described so far
- Interprocedural
 - Across several methods (and classes) or procedures
- Cost/Precision trade-offs for interprocedural analysis are critical, and difficult
 - context sensitivity
 - flow-sensitivity

OFTWARE TESTING

Context Sensitivity

A **context-sensitive** (interprocedural) analysis distinguishes sub() called from foo() from sub() called from bar(); A **context-insensitive** (interprocedural) analysis

does not separate them, as if foo() could call sub() and sub() could then return to bar()

OFTWARE TESTIN

Flow Sensitivity

- Reach, Avail, etc. were flow-sensitive, in<u>traprocedural analyses</u>
 - They considered ordering and control flow decisions
 - Within a single procedure or method, this is (fairly) cheap $O(n^3)$ for n CFG nodes
- Many in<u>ter</u>procedural flow analyses are flowinsensitive
 - O(n³) would not be acceptable for all the statements in a program!
 - Though O(n³) on each individual procedure might be ok
 - Often flow-insensitive analysis is good enough ... consider type checking as an example

Summary

- Data flow models detect patterns on CFGs:
 - Nodes initiating the pattern
 - Nodes terminating it
 - Nodes that may interrupt it
- Often, but not always, about flow of information (dependence)
- Pros:
 - Can be implemented by efficient iterative algorithms
 - Widely applicable (not just for classic "data flow" properties)
- Limitations:
 - Unable to distinguish feasible from infeasible paths
 - Analyses spanning whole programs (e.g., alias analysis) must trade off precision against computational cost

OFTWARE TESTIN