
Finite Models

(c) 2007 Mauro Pezzè & Michal Young Ch 5, slide 1

Learning objectivesLearning objectives

• Understand goals and implications of finite • Understand goals and implications of finite
state abstraction
L h t d l t l fl ith • Learn how to model program control flow with
graphs

• Learn how to model the software system
structure with call graphs

• Learn how to model finite state behavior with
finite state machines

(c) 2007 Mauro Pezzè & Michal Young Ch 5, slide 2

Properties of ModelsProperties of Models

• Compact: representable and manipulable in a reasonably compact Compact: representable and manipulable in a reasonably compact
form
– What is reasonably compact depends largely on how the model will be

usedused

• Predictive: must represent some salient characteristics of the
modeled artifact well enough to distinguish between good and bad
outcomes of analysis
– no single model represents all characteristics well enough to be useful for all

kinds of analysis

• Semantically meaningful: it is usually necessary to interpret
analysis results in a way that permits diagnosis of the causes of
failure

• Sufficiently general: models intended for analysis of some
important characteristic must be general enough for practical use
in the intended domain of application

(c) 2007 Mauro Pezzè & Michal Young Ch 5, slide 3

in the intended domain of application

Graph Representations: directed graphsGraph Representations: directed graphs

• Directed graph:• Directed graph:
– N (set of nodes)

E (relation on the set of nodes) edges– E (relation on the set of nodes) edges

Nodes: {a, b, c} a{ , , }
Edges: {(a,b), (a, c), (c, a)}

b

b a c

b c

(c) 2007 Mauro Pezzè & Michal Young Ch 5, slide 4

Graph Representations: labels and codeGraph Representations: labels and code

• We can label nodes with the names or descriptions of • We can label nodes with the names or descriptions of
the entities they represent.
– If nodes a and b represent program regions containing p p g g g

assignment statements, we might draw the two nodes and an
edge (a,b) connecting them in this way:

x = y + z;y ;

 f()a = f(x);

(c) 2007 Mauro Pezzè & Michal Young Ch 5, slide 5

Multidimensional Graph RepresentationsMultidimensional Graph Representations

• Sometimes we draw a single diagram to • Sometimes we draw a single diagram to
represent more than one directed graph,
drawing the shared nodes only onceg y
– class B extends (is a subclass of) class A
– class B has a field that is an object of type Cj yp

extends relation
NODES = {A, B, C}

a
{ , , }

EDGES = {(A,B)}

includes relation
bNODES = {A, B, C}

EDGES = {(B,C)}

b c

(c) 2007 Mauro Pezzè & Michal Young Ch 5, slide 6

Finite Abstraction of BehaviorFinite Abstraction of Behavior
an abstraction function suppresses some details of program execution

⇒
it lumps together execution states that differ with respect to the

suppressed details but are otherwise identicalpp

(c) 2007 Mauro Pezzè & Michal Young Ch 5, slide 7

(Intraprocedural) Control Flow Graph(Intraprocedural) Control Flow Graph

• nodes = regions of source code (basic blocks)• nodes = regions of source code (basic blocks)
– Basic block = maximal program region with a single entry and

single exit point
– Often statements are grouped in single regions to get a

compact model
Sometime single statements are broken into more than one – Sometime single statements are broken into more than one
node to model control flow within the statement

• directed edges = possibility that program execution g p y p g
proceeds from the end of one region directly to the
beginning of another

(c) 2007 Mauro Pezzè & Michal Young Ch 5, slide 8

Example of Control Flow GraphExample of Control Flow Graph
public static String collapseNewlines(String argStr)

{{
char last = argStr.charAt(0);
StringBuffer argBuf = new StringBuffer();

for (int cIdx = 0 ; cIdx < argStr.length(); cIdx++)for (int cIdx 0 ; cIdx argStr.length(); cIdx)
{

char ch = argStr.charAt(cIdx);
if (ch != '\n' || last != '\n')
{{

argBuf.append(ch);
last = ch;

}
}}

return argBuf.toString();
}

(c) 2007 Mauro Pezzè & Michal Young Ch 5, slide 9

Linear Code Sequence and Jump (LCSJ)Linear Code Sequence and Jump (LCSJ)
Essentially subpaths of the control flow graph from one

branch to another

From Sequence of basic blocs To {

public static String collapseNewlines(String argStr)

b2

b1

branch to another

q
Entry b1 b2 b3 jX
Entry b1 b2 b3 b4 jT

 char last = argStr.charAt(0);
 StringBuffer argBuf = new StringBuffer();

 for (int cIdx = 0 ;

cIdx < argStr.length();

TrueFalse

b3

Entry b1 b2 b3 b4 b5 jE
Entry b1 b2 b3 b4 b5 b6 b7 jL
jX b8 ret

{
 char ch = argStr.charAt(cIdx);
 if (ch != '\n'

True

TrueFalse

 || last != '\n')

False

b4

b5

jX

jT jX b8 ret
jL b3 b4 jT
jL b3 b4 b5 jE

{
 argBuf.append(ch);
 last = ch;
 }

True

False

|| ast)

b6jE

j j
jL b3 b4 b5 b6 b7 jL

}
cIdx++)

return argBuf.toString();
 }

b7

b8 jL

(c) 2007 Mauro Pezzè & Michal Young Ch 5, slide 10

Interprocedural control flow graphInterprocedural control flow graph

• Call graphs• Call graphs
– Nodes represent procedures

• Methods• Methods
• C functions
• ...

– Edges represent calls relation

(c) 2007 Mauro Pezzè & Michal Young Ch 5, slide 11

Overestimating the calls relationOverestimating the calls relation
The static call graph includes calls through dynamic

public class C {
public static C cFactory(String kind) {

bindings that never occur in execution.

public static C cFactory(String kind) {
if (kind == "C") return new C();
if (kind == "S") return new S();
return null;

}
void foo() {

System.out.println("You called the parent's method");
}
public static void main(String args[]) {

(new A()).check();
}

} A.check()}
class S extends C {

void foo() {
System.out.println("You called the child's method");

}
}
class A {

()

class A {
void check() {

C myC = C.cFactory("S");
myC.foo();

}
}

C.foo() S.foo() CcFactory(string)

(c) 2007 Mauro Pezzè & Michal Young Ch 5, slide 12

Contex Insensitive Call graphsContex Insensitive Call graphs

public class Context {p {
public static void main(String args[]) {

Context c = new Context();
c.foo(3);
c.bar(17); main();

}

void foo(int n) {
int[] myArray = new int[n]; [] y y [];
depends(myArray, 2) ;

}

void bar(int n) {

C.foo C.bar

() {
int[] myArray = new int[n];
depends(myArray, 16) ;

}
C.depends

void depends(int[] a, int n) {
a[n] = 42;

}
}

p

(c) 2007 Mauro Pezzè & Michal Young Ch 5, slide 13

}

Contex Sensitive Call graphsContex Sensitive Call graphs

public class Context {p {
public static void main(String args[]) {

Context c = new Context();
c.foo(3);
c.bar(17);

main
();

}

void foo(int n) {
int[] myArray = new int[n]; [] y y [];
depends(myArray, 2) ;

}

void bar(int n) {

C.foo(3) C.bar(17)

() {
int[] myArray = new int[n];
depends(myArray, 16) ;

}
C.depends(int(3),a,2) C.depends (int(3),a,2)

void depends(int[] a, int n) {
a[n] = 42;

}
}

C.depends(int(3),a,2) C.depends (int(3),a,2)

(c) 2007 Mauro Pezzè & Michal Young Ch 5, slide 14

}

Context Sensitive CFG
exponential growth

A

B C
1 context A

B

D

C

E
2 contexts AB AC

D

F

E

G
4 contexts ABD ABE ACD ACE

F

H

G

I
8 contexts …

I

J
16 calling contexts …

(c) 2007 Mauro Pezzè & Michal Young Ch 5, slide 15

J

Finite state machinesFinite state machines
• finite set of states (nodes)

• set of transitions among states (edges)

Graph representation (Mealy machine) Tabular representation

LF CR EOF otherLF CR EOF other

e e/emit e/emit d/- w/append

/ it / it d/ it / dw e/emit e/emit d/emit w/append

l e/- d/- w/append

(c) 2007 Mauro Pezzè & Michal Young Ch 5, slide 16

Using Models to Reason about System
Properties

(c) 2007 Mauro Pezzè & Michal Young Ch 5, slide 17

Abstraction FunctionAbstraction Function

(c) 2007 Mauro Pezzè & Michal Young Ch 5, slide 18

SummarySummary

• Models must be much simpler than the artifact • Models must be much simpler than the artifact
they describe to be understandable and
analyzableanalyzable

• Must also be sufficiently detailed to be useful
• CFG are built from software
• FSM can be built before software to

documentintended behavior

(c) 2007 Mauro Pezzè & Michal Young Ch 5, slide 19

