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Aspect of Requirements analysis

* By OOAD

-Analysis by Use Case

-Two Caregories
-Functional Requirement
-Nonfunctional Requirement
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-Analysis by Event (Statement of purpose)

-Need to more clearly
in SASD, determines the I/O by ‘Statement of purpose’




* By OOAD
-Designed by Use Case

-Described by the relationship between Actor and Use Case
-Make a Use Case Diagram

* By SASD

-Designed by Input/Output
-First, clarify the input and output
-make a System Context Diagram



draw a use case diagram

Aspect of Initial Design
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Aspect of Design

* By OOAD
-Establish the relationship between Class
-Add attribute in Class
-Make Sequence Diagram
-Describe the relationship between Actor and Class by Use Case
-Based on a Sequence Diagram, make Operation contract
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Aspect of Design(2)

* By SASD
-Make Event List(Based on I/O)
-Make Data Flow Diagram
-Improvement based on 1/O
-Input, Process, Output
-Make Data Dictionary(Based on Event List)
-Make State Transition Diagram(for Control Process)
-Make Structured Chart



Aspect of Design(3)
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Private Opinion

* OOAD
-More flexible than SASD
ex)if program’s function is expanded, or program’s input is

changed, OOAD is can more flexibly response.
- Function segmentation can be easily by Use Case.
- Confirmed by performing repeat.
So, if the requirements is uncertain, it is good to use.
- but result is more complicated than SASD



Private Opinion(2)

* SASD
- Difficult to modify
ex)If program’s function is expanded, or program’s input is
changed, SASD is need to redesign.
- It need to simplify for improvement of DFD.
- SASD is progress by waterfall model.
So, It need to definite requirement for design.
- Result is more simple than OOAD

- It is so difficult to define a State Machine
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Private Opinion(3)

* OOAD is easier than SASD for modify. So, It is suitable
for frequently changing program like a Application.

* OOAD is suitable for imprecise requirements.

* SASD is harder than OOAD for modify. So, It is suitabl
e for unchangeable program like a system program or e
mbedded program.

» SASD suitable for definite requirements.



Epilogue

We are friendly with C++.

So we have feel a familiar with OOAD.

SASD is not familiar, we feel a relatively difficult.
But now we think, SASD have the advantage of
make a simple program.

Considering these points, we can design a program
more practicaly.



