200412299
200412320

'f

Aspect of Requirements analysis

* By OOAD

-Analysis by Use Case

-Two Caregories
-Functional Requirement
-Nonfunctional Requirement

QBY Al D

L A

-Analysis by Event (Statement of purpose)

-Need to more clearly
in SASD, determines the I/O by ‘Statement of purpose’

* By OOAD
-Designed by Use Case

-Described by the relationship between Actor and Use Case
-Make a Use Case Diagram

* By SASD

-Designed by Input/Output
-First, clarify the input and output
-make a System Context Diagram

draw a use case diagram

Aspect of Initial Design

/‘-_ﬁ-\‘
b

(iput ot floor) ;
o/ e e O
/ cale path (f___‘_-_*_
—]_ e /“‘-—a’\—/\ Cottoore) L
@/ \ Thems -
L’”' 4 \\\ {_ inputnumber covins)
s __‘_’/
\‘\ \.‘ 3
\‘\\ \\ display condition floor) { display condition cavins
\ \ \L’/
Y
\ \“. N
"\ \ 4
|

\

>

\.\‘ { input open 3\ —————>{ opendoor }
VS SRR L 3

(input emergency }————=>{__ report emergency gt melght

Sy /

; : P
\ { put close ————————>{_dosedoar
| N

VS

Front Sensor Input
Left Sensor Input

Direction

Right Sensor Input

Dust Sensor Input

RVC
Control

Cleaner

Aspect of Design

* By OOAD
-Establish the relationship between Class
-Add attribute in Class
-Make Sequence Diagram
-Describe the relationship between Actor and Class by Use Case
-Based on a Sequence Diagram, make Operation contract

'f

Aspect of Design(2)

* By SASD
-Make Event List(Based on I/O)
-Make Data Flow Diagram
-Improvement based on 1/O
-Input, Process, Output
-Make Data Dictionary(Based on Event List)
-Make State Transition Diagram(for Control Process)
-Make Structured Chart

Aspect of Design(3)

arbodl

VToFSeseponsion: ateoar, waighs dokln, devcton boo) vl

5.Cale path

A =

1 flag=CheckStateafcaving

2 [if flag_input is trug or flagis vald] : tempArray=LoadCavirFloor()

3 tengirray (tempArray) -

a: mml?uagmmmnay}: |
: i
5 :Cahhwl?mmﬂwav)

VS

2 40 2R ot Lk
azemzy Sgmy H

2 2wy
2 gez gma Ny L

son
eny

meimenien |

|

ke

Private Opinion

* OOAD
-More flexible than SASD
ex)if program’s function is expanded, or program’s input is

changed, OOAD is can more flexibly response.
- Function segmentation can be easily by Use Case.
- Confirmed by performing repeat.
So, if the requirements is uncertain, it is good to use.
- but result is more complicated than SASD

Private Opinion(2)

* SASD
- Difficult to modify
ex)If program’s function is expanded, or program’s input is
changed, SASD is need to redesign.
- It need to simplify for improvement of DFD.
- SASD is progress by waterfall model.
So, It need to definite requirement for design.
- Result is more simple than OOAD

- It is so difficult to define a State Machine

———

Private Opinion(3)

* OOAD is easier than SASD for modify. So, It is suitable
for frequently changing program like a Application.

* OOAD is suitable for imprecise requirements.

* SASD is harder than OOAD for modify. So, It is suitabl
e for unchangeable program like a system program or e
mbedded program.

» SASD suitable for definite requirements.

Epilogue

We are friendly with C++.

So we have feel a familiar with OOAD.

SASD is not familiar, we feel a relatively difficult.
But now we think, SASD have the advantage of
make a simple program.

Considering these points, we can design a program
more practicaly.

