Software Engineering

Part 6. Managing People
- Quality Management
- Process Improvement
- Configuration Management

Ver. 1.6

X This lecture note is based on materials from Ian Sommerville 2006.

Lecturer: JUNBEOM YOO
jbyoo@konkuk.ac.kr
http://dslab.konkuk.ac.kr

Chapter 27.
Quality Management

\7

nlf\:hf“l'l 'aY e
UIJCULLIVEDS

To introduce the quality management process and key quality
management activities

To explain the role of standards in quality management

To explain the concept of a software metric, predictor metrics and control
metrics

* To explain how measurement may be used in assessing software quality
and the limitations of software measurement

;'I'\Al A n I I \l “A
Iitware uaili

Ly vianage

E§

CA
QU

« Concerned with ensuring that the required level of quality is achieved in
a software product.

— Involves defining appropriate quality standards and procedures, and ensuring
that these are followed.

— Should aim to develop a 'quality culture’ where quality is seen as everyone’s
responsibility.

e Quality ?

— Means a product should meet its specification.

e Quality problems in software systems

— There is a tension between customer quality requirements (efficiency,
reliability, ...) and developer quality requirements (maintainability, reusability, ...)

— Some quality requirements are difficult to specify in an unambiguous way.
— Software specifications are usually incomplete and often inconsistent.

0
<

I'I'\l F v\ m
L

d y LO |||p omise

Cannot wait for specifications to be improved before paying attention to
quality management.

We must put quality management procedures into place to improve
quality in spite of imperfect specification.

Scope of guality Management

— Quality management is particularly important for large complex systems. The
quality documentation is a record of progress and supports continuity of
development as the development team changes.

— For smaller systems, quality management needs less documentation and
should focus on establishing a quality culture.

§
)
—t
r,
<

k<
E

C)
D
(D
n

Quality assurance
— Establish organisational procedures and standards for quality.

Quality planning

— Select applicable procedures and standards for a particular project and
modify these as required.

Quality control

— Ensure that procedures and standards are followed by the software
development team.

Quality management should be separate from project management to
ensure independence.

Niixlitv, NMana~narmant arnA CAffiarrra MavialAnrmAaAant
\{ dlll.y ivid |dyC|||C IL dllU oVl LvvdlC LJCVClUIJlllC 1L
Software development D1 D2 D3 D4 D5
process
M () () () .
U/ o/ ./ ./ T\ i

Quality management
process

v
Standards and Quality Plan
procedures

Quality review reports

DA

rrocess anda AUCT

II\I
rro all

aY
udlily

« The quality of a developed product is influenced by the quality of the
production process.

— Important in software development as some product quality attributes are
hard to assess.

« However, there is a very complex and poorly understood relationship
between software processes and product quality.

n ' aValfaYel @
FITULCOO~™

\l

vy

I~ U Ali+
Jd al

Y
\{

« There is a straightforward link between process and product in
manufactured goods, but more complex for software.

— Application of individual skills and experience is particularly imporant in
software development.

— External factors such as the novelty of an application or the need for an
accelerated development schedule may impair product quality.

e Must be careful not to impose inappropriate process standards.

Define Develop Assess product
process product quality
Improve Standardize
process porcess

Konkuk University

II I \l At“t“ll 2l 2 Valeal -~ N IJ C‘I"‘\ A"\ A
dilly AooUuldlliLc dilu oldl Naaras

0
KU

« Standards are the key to effective quality management.
— May be international, national, organizational or project standards.
— Encapsulations of best practice

e Product standards
— define characteristics that all components should exhibit, e.g. a common
programming style.
» Process standards

— define how the software process should be enacted.

—J
-5
o
)
—

Q)
>
Q.
Y
=

o

0)
M
N
N
N
—
Q)
D)
Q.
Q)
)
QO
N

Product standards Process standards

Design review form

Requirements document structure

Method header format

Java programming style

Project plan format

Change request form

Design review conduct

Submission of documents to CM

Version release process

Project plan approval process

Change control process

Test recording process

Konkuk University

11

Fopiems witn >tanaaras

They may not be seen as relevant and up-to-date by software engineers.
They often involve too much bureaucratic form filling.

If they are unsupported by software tools, tedious manual work is often
involved to maintain the documentation associated with the standards.

+AAF\\,M+
talilUdiU> LU/C

C"\ -~ - 7N\ N\
Sldliud CVCIUMITICTTIL

« Standard development involves practitioners in development.
— Engineers should understand the rationale underlying the standard.

« Standard should be reviewed regularly.

— Standards can quickly become outdated and this reduces their credibility
amongst practitioners.

« Detailed standards should have associated tool support.
— Excessive clerical work is the most significant complaint against standards.

T
1

O

CA ONNN
oOU JUUU

« An international set of standards for quality management.

— Applicable to a range of organizations from manufacturing to service
industries.

« SO 9001

— Applicable to organisations which design, develop and maintain products.

— A generic model of the quality process that must be instantiated for each
organization using the standard.

O
O
©
-,
S

 —

Management responsibility Quality system

Control of non-conforming products

Design control

Handling, storage, packaging and delivery Purchasing

Purchaser-supplied products
Process control

Inspection and test equipment
Contract review

Document control

Internal quality audits

Servicing

Product identification and traceability
Inspection and testing

Inspection and test status

Corrective action

Quiality records

Training

Statistical techniques

Konkuk University

15

T n 7~
10U Ul |

O

NN £ +
UUU C© I L

Ca

|

C A+
S Cl L

e Quality standards and procedures should be documented in an
organizational quality manual.

* An external body may certify that an organization’s quality manual
conforms to ISO 9000 standards.

« Some customers require suppliers to be ISO 9000 certified.

ISO 9000

Quality Models

instantiated as

Organizational documents Organization
Quality Manual Quality Process

is used to develop instantiated as

Project 1 Project 2 Project 3

Project Quality

Quality Plan Quality Plan Quality Plan Management

supports
Konkuk University 16

[’ Y

At C
adallUll O

gl

al

7\ 1 IMf\If'\'l' 'I'ﬁlf'\A At“
UCUIIICITIL Ladl iU UuoS

Particularly important - documents are the tangible manifestation of the
software.

Documentation process standards

— Concerned with how documents should be developed, validated and
maintained.

Document standards
— Concerned with document contents, structure, and appearance.

Document interchange standards
— Concerned with the compatibility of electronic documents.

Stage 1:
Creation

Stage 2:
Polishing

Stage 3:
Production

)
U
-
O
0O
M
n
n

ION

Incorporate
Review draft review
comments

Re-draft
document

Create initial
draft

Approved document

Check final
draft

Produce final
draft

Proofread text

Approved document

Produce print
masters

Layout text Review layout Print copies

Konkuk University 18

el

al

7 1 IMI\V‘\"‘ C'I"'\If'\fd At“
UCUIIICTIL oOolallU UuoS

Document identification standards
— How documents are uniquely identified.

Document structure standards
— Standard structure for project documents

Document presentation standards
— Define fonts and styles, use of logos, etc.

Document update standards
— Define how changes from previous versions are reflected in a document.

'aVYel Bl a'2a2Val s ‘l' T 'I'I\ If'\ ”I\ A"\ A
ocument Lntercna "ngyc NAaras

« Document interchange standards allow electronic documents to be
exchanged, mailed, etc.

— Needed to define conventions for their use e.g. use of style sheets and
macros.

* Need for archiving.

— The lifetime of word processing systems may be much less than the lifetime
of the software being documented.

— An archiving standard may be defined to ensure that the document can be
accessed in future.

I I \ /' 4
dll

@

0
u

e Quality plans
— Set out the desired product qualities and how these are assessed.
— Defines the most significant quality attributes.
— Should define the quality assessment process.
— Set out which, where and when organizational standards be applied.

e Quality plan structure
— Product introduction
— Product plans
— Process descriptions
— Quality goals
— Risks and risk management

* Quality plans should be short, succinct documents
— If they are too long, no-one will read them.

Konkuk University

Portability

Usability

Reusability

Efficiency:

Learnability,

22

0
u

I I \ /' 4
dll

CC ~AntrAl
_YK._U ILI |

O

Quality control involves checking the software development process to
ensure that procedures and standards are being followed.

Two approaches to quality control
— Quality reviews
— Automated software assessment and software measurement

nl I \I DA\III\\AI("
Uadlity REVIEWS

Quality reviews are the principal method of validating the quality of a
process or of a product.

* A group examines part or all of a process or system and its
documentation to find potential problems.

« Different types of review with different objectives
— Inspections : for defect removal (product)
— Reviews : for progress assessment (product and process)
— Quality reviews (product and standards).

Property Principal Purpose

Design or
Program
Inspections

Progress
Reviews

Quality
Reviews

To detect detailed errors in the requirements, design or code. A checklist of possible
errors should drive the review.

To provide information for management about the overall progress of the project.
This is both a process and a product review and is concerned with costs, plans and
schedules.

To carry out a technical analysis of product components or documentation to find

mismatches between the specification and the component design, code or
documentation and to ensure that defined quality standards have been followed.

Konkuk University

25

nl I \I DA\I:I\\AI("
Uadlity REVIEWS

Quality reviews carefully examine part or all of a software system and its
associated documentation.

— Code, designs, specifications, test plans, standards, etc. can all be reviewed.

— Software or documents may be 'signed off' at a review which signifies that
progress to the next development stage has been approved by management.

Any documents produced in the process may be reviewed.

Review teams should be relatively small and reviews should be fairly
short.

Records should always be maintained of quality reviews.

\ 7 \AIJ fllh '

Df\ 1 A f"l':f\ e
N\CVICVV TUIlICLIVUIIS
e Quality function

— Part of the general quality management process

* Project management function
— Provide information for project managers.

« Training and communication function
— Product knowledge is passed between development team members.

\ 7 \AIJ

Df\ 1 A\ Df\f‘l II'I'
NCVICVV I\NCOUIL

S

« Comments made during the review should be classified
— No action : No change to the software or documentation is required.
— Refer for repair : Designer or programmer should correct an identified fault.

— Reconsider overall design : The problem identified in the review impacts other
parts of the design. Some overall judgement must be made about the most
cost-effective way of solving the problem.

* Requirements and specification errors may have to be referred to the
client.

Software Measurement and Metrics

« Software measurement is concerned with deriving a numeric value for an
attribute of a software product or process.

— Allows for objective comparisons between techniques and processes.

« Although some companies have introduced measurement programs,
most organizations still don't make systematic use of software
measurement.

« Few established standards in this area.

Software Metric

« Any type of measurement which relates to a software system, process or
related documentation
— Lines of code in a program
— The Fog index
— Number of person-days required to develop a component

— etc

« Allow the software and the software process to be quantified.
— May be used to predict product attributes
— May be used to control the software process.
— Can be used for general predictions.
— Can be used to identify anomalous components.

U
-5

D

Q.

(@

—t
@)

=S

Q)

)
Q.
M)

)
—
-

O

O

Software
Process

Control

Measurements

Measurement

>
~—

<

M
—
-5

2}
wn

Software
Product

Predictor
Measurements

Decisions

Konkuk University

31

A I v\

LFICS AS III|J

IVietll

« A software property can be measured.

» The relationship exists between what we can measure and what we want
to know. We can only measure internal attributes but are often more
interested in external software attributes.

« This relationship has been formalized and validated.

« It may be difficult to relate what can be measured to desirable external
quality attributes.

Number of procedure

parameters

Maintainability \

’ Cyclomatic complexity

Reliability

Program size
in lines of code

Portability

Number of error messages

Usability

Length of use manual

Konkuk University 33

“A 1 1 VAN

IVvIiICdSUICITICIHIL T

rOCesSS

« A software measurement process may be a part of a quality control

process.

— Data collected during this process should be maintained as an organizational

resource.

— Once a measurement database has been established, comparisons across

projects become possible.

Choose
measurements to
be made

Select

components to
be assessed

Analyze
anomalous
components

Identify
anomalous
measurements

Measure
component
characteristics

Konkuk University 34

Ldld _UIJICCLIVII

« A metrics programme should be based on a set of product and process
data.

« Data should be collected immediately (not in retrospect) and, if possible,
automatically.

« Three types of automatic data collection
— Static product analysis
— Dynamic product analysis
— Process data collation

1 1V \ 7

Ldld ALLUIdLly

d

 Don't collect unnecessary data

— The questions to be answered should be decided in advance and the required
data identified.

« Tell people why the data is being collected.
— It should not be part of personnel evaluation.

« Don't rely on memory
— Collect data when it is generated not after a project has finished.

0
-
o

(@)

—
~
Y

<

M
—
-5

O
n

A quality metric should be a predictor of product quality.

Classes of product metric

— Dynamic metrics : Collected by measurements made of a program in
execution.

— Static metrics : Collected by measurements made of the system
representations

— Dynamic metrics help assess efficiency and reliability.
— Static metrics help assess complexity, understandability and maintainability.

N

n\llf'\"\m. If'\IJ "\‘I':ﬁ 7\
L/ U daliC |VIC

P C+ i
_YIICIIIIIL dall DL LIICOD

« Dynamic metrics are closely related to software quality attributes

— Relatively easy to measure the response time of a system (performance
attribute) or the number of failures (reliability attribute).

« Static metrics have an indirect relationship with quality attributes

— Need to try and derive a relationship between these metrics and properties
such as complexity, understandability and maintainability.

CA'F'I‘\AI’\ N\
SUILVWdAIC

Software Description
Metric i

Fan-in / Fan-
out

Length of code

Cyclomatic
complexity

Length of

identifiers

Depth of
conditional

nesting

Fog index

Aivi~+ NMAatvri~c
U L IVICLIILYS

Produc

Fan-in is a measure of the number of functions or methods that call some other
function or method (say X). Fan-out is the number of functions that are called by
function X. A high value for fan-in means that X is tightly coupled to the rest of the
design and changes to X will have extensive knock-on effects. A high value for fan-
out suggests that the overall complexity of X may be high because of the
complexity of the control logic needed to coordinate the called components.

This is a measure of the size of a program. Generally, the larger the size of the code
of a component, the more complex and error-prone that component is likely to be.
Length of code has been shown to be one of the most reliable metrics for
predicting error-proneness in components.

This is a measure of the control complexity of a program. This control complexity
may be related to program understandability. I discuss how to compute cyclomatic
complexity in Chapter 22.

This is a measure of the average length of distinct identifiers in a program. The
longer the identifiers, the more likely they are to be meaningful and hence the more
understandable the program.

This is a measure of the depth of nesting of if-statements in a program. Deeply
nested if statements are hard to understand and are potentially error-prone.

This is a measure of the average length of words and sentences in documents. The

higher the value for the Fog index, the more difficult the document is to understand.

Konkuk University

39

UL UI

Object-Oriented Description
Metric >

This represents the number of discrete levels in the inheritance tree where sub-classes
Depth of inherit attributes and operations (methods) from super-classes. The deeper the inheritance
inheritance tree tree, the more complex the design. Many different object classes may have to be
understood to understand the object classes at the leaves of the tree.

Antad N
CliLcu

I\+If'
IVIC LI

CS

S

This is directly related to fan-in and fan-out as described above and means essentially the
Method fan- . . . e
same thing. However, it may be appropriate to make a distinction between calls from

Ly i-a other methods within the object and calls from external methods.

This is the number of methods that are included in a class weighted by the complexity of
Weiahted each method. Therefore, a simple method may have a complexity of 1 and a large and
9 complex method a much higher value. The larger the value for this metric, the more

mathadc nar
R complex the object class. Complex objects are more likely to be more difficult to
class : . :

understand. They may not be logically cohesive so cannot be reused effectively as super-
classes in an inheritance tree.

Number of This is the number of operations in a super-class that are over-ridden in a sub-class. A

overriding high value for this metric indicates that the super-class used may not be an appropriate
operations parent for the sub-class.

Konkuk University 40

|’

“A 1 1 VAN If'\'l' A N
L Alld

'aleaYe 7\ I\l
IVICdAOoOUICIIICTI | I

y

SIS
« It is not always obvious what data means

— Analysing collected data is very difficult.

« Professional statisticians should be consulted if available.
« Data analysis must take local circumstances into account.

a2V a'a \7

C -~ -
SUllirtialy

Software quality management is concerned with ensuring that software
meets its required standards.

e Quality assurance procedures should be documented in an organizational
quality manual.

« Software standards are an encapsulation of best practice.
« Reviews are the most widely used approach for assessing software quality.

« Software measurement gathers information about both the software
process and the software product.

« Product quality metrics should be used to identify potentially
problematical components.

« There are no standardized and universally applicable software metrics.

Konkuk University

43

Chapter 28.
Process Improvement

\7

nlf\:hf“l'l 'aY e
UIJCULLIVEDS

To explain the principles of software process improvement

To explain how software process factors influence software quality and
productivity

To explain how to develop simple models of software processes

« To explain the notion of process capability and the CMMI process
improvement model

n o Valea
r1TULC

I‘ Tm 'aA\Wial a'a)
1

'aY's 'Y o ‘l'
HIMPTOVCETTITHIL

« Understanding existing processes and introducing process changes to
improve product quality, reduce costs or accelerate schedules.

* Most process improvement work so far has focused on defect reduction.
This reflects the increasing attention paid by industry to quality.

« However, other process attributes can also be the focus of improvement.

Process Description
Attributes i

Understandability
Visibility
Supportability
Acceptability
Reliability
Robustness
Maintainability

Rapidity

To what extent is the process explicitly defined and how easy is it to understand the
process definition?

Do the process activities culminate in clear results so that the progress of the process is
externally visible?

To what extent can CASE tools be used to support the process activities?

Is the defined process acceptable to and usable by the engineers responsible for
producing the software product?

Is the process designed in such a way that process errors are avoided or trapped before
they result in product errors?

Can the process continue in spite of unexpected problems?

Can the process evolve to reflect changing organisational requirements or identified
process improvements?

How fast can the process of delivering a system from a given specification be completed?

Konkuk University 47

Der~
ro

v\ raA\Wia

cess Illlp ove

§

(_D
r_-'l-
M)
<
O

M

Process measurement

— Attributes of the current process are measured. These are a baseline
for assessing improvements.

Process analysis

— The current process is assessed and bottlenecks and weaknesses are
identified.

Process change

— Changes to the process that have been identified during the analysis
are introduced.

Measure

Konkuk University

48

Dy
Pl

I I \ /' 4
dll

<y

rocess anda rroauct \{

Process quality and product quality are closely related.

— The quality of the product depends on its development process.

A good process is usually required to produce a good product.
— For manufactured goods, process is the principal quality determinant.
— For design-based activity, other factors are also involved especially the
capabilities of the designers.

Process

Quality

Development
Technology

Product
Quality

Cost, Time and
Schedule

Konkuk University 50

I I \ /' 4 E
dll I

n -\ — 7\ o~
Quaiity ractors

For large projects with ‘average’ capabilities, the development process
determines product quality.

For small projects, the capabilities of the developers is the main
determinant.

* The development technology is particularly significant for small projects.

« In all cases, if an unrealistic schedule is imposed then product quality will
suffer.

D
r

el

ULCOS UidoolliICdlivli

Informal
— No detailed process model.
— Development team chose their own way of working.

Managed
— Defined process model which drives the development process.

Methodical
— Processes supported by some development method such as the RUP,

Supported

— Processes supported by automated CASE tools.

D
>

el

ULCOS LUITIVILC

Process used should depend on type of product being developed
— For large systems, management is usually the principal problem so we need a
strictly managed process.
— For smaller systems, more informality is possible.

No uniformly applicable process which should be standardized within an
organisation
— High costs may be incurred if you force an inappropriate process on a

development team.
— Inappropriate methods can also increase costs and lead to reduced quality.

Y,
-
@
0O)
M
W
W
C
o
%
-
—

©
©
O

Informal Managed Methodical Improving
Process Process Process Process

- conf : - Analvsis and

eneric
Tools

Specialized

Management Management Design
9 9 '9 Tool

Tools Tools Workbenches

Konkuk University 54

nlﬁf\f‘hf‘f‘ “AI\"\(“I III"AMI\V'\'I'
FIUCCOO IVICASUICITICTIL

« Wherever possible, quantitative process data should be collected

— However, where organizations do not have clearly defined process standards,
this is very difficult as you don’t know what to measure.

— A process may have to be defined before any measurement is possible.

* Process measurements should be used to assess process improvements
— But, this does not mean that measurements should drive the improvements.
— The improvement driver should be the organizational objectives.

r.lf'\t"t"f\f‘ A; nv‘f\f‘f\f‘t“ “AI\’\!“I IIF’\M/'\V'\"'
1Ido>CTOS Ul FTULCOO IVICASUICTITITIIL

« Time taken for process activities to be completed
— E.g. Calendar time or effort to complete an activity or process

« Resources required for processes or activities
— E.g. Total effort in person-days

* Number of occurrences of a particular event
— E.g. Number of defects discovered

r
<
M

§

1 1A~

Odi-JUeESst ol

Y
Q)
)
Q)
o

S

—
-5

Q)
O

* Goals
— What is the organisation trying to achieve?
— The objective of process improvement is to satisfy these goals.

e Questions
— Questions about areas of uncertainty related to the goals.
— You need process knowledge to derive these.

* Metrics
— Measurements to be collected to answer the questions

D
>

el

<
)

)

Q

|’

'aVYarfaYel @ A N
ULCOS A\lld

I\lt":t" "\If'\IJ
lyslo dlilu

Q.
D

Process analysis
— Study existing processes to understand the relationships between parts of the
process and to compare them with other processes.

Process modelling
— Documentation of a process which records the tasks, the roles and the
entities used
— May be presented from different perspectives.

Study an existing process to understand its activities.

Produce an abstract model of the process.
— Normally represent the model graphically.
— Several different views (e.g. activities, deliverables, etc.) may be required.

Analyse the model to discover process problems.
— Involves discussing process activities with stakeholders and discovering
problems and possible process changes.

C ~lhn
S cnn

7~ I

LI

n ' aValfaYel @ A ~~N
rrocess ANnad

I\I
l

y

S

« Published process models and process standards
— It is always best to start process analysis with an existing model.

— People then may extend and change it.

* Questionnaires and interviews

— Must be carefully designed.
— Participants may tell you what they think you want to hear.

« Ethnographic analysis
— Involves assimilating process knowledge by obsen
— Best for in-depth analysis of process fragments rather han for whole-process
understanding.

—

Process
Model
Elements

Activity

Process

Deliverable

Condition

Role

Exception

Communication

Graphical
Notation

A round-edged
rectangle with
no drop shadow

A round-edged
rectangle with
drop shadow

A rectangle with
drop shadow

A parallelogram

A circle with
drop

May be
represented as a
double edged
box

An arrow

Description

An activity has a clearly defined objective, entry and exit conditions. Examples of
activities are preparing a set of test data to test a module, coding a function or a module,
proof-reading a document, etc. Generally, an activity is atomic i.e. it is the responsibility
of one person or group. It is not decomposed into sub-activities.

A process is a set of activities which have some coherence and whose objective is
generally agreed within an organisation. Examples of processes are requirements analysis,
architectural design, test planning, etc.

A deliverable is a tangible output of an activity that is predicted in a project plan.

A condition is either a pre-condition that must hold before a process or activity can start
or a post-condition that holds after a process or activity has finished.

A role is a bounded area of responsibility. Examples of roles might be configuration
manager, test engineer, software designer, etc. One person may have several different
roles and a single role may be associated with several different people.

An exception is a description of how to modify the process if some anticipated or
unanticipated event occurs. Exceptions are often undefined and it is left to the ingenuity
of the project managers and engineers to handle the exception.

An interchange of information between people or between people and supporting
computer systems. Communications may be informal or formal. Formal communications
might be the approval of a deliverable by a project manager; informal communications
might be the interchange of electronic mail to resolve ambiguities in a document.

D
>

el

'aVYarfaYel @ E\Iﬁ/\lf'\'l':f\lf\f‘
ULCOSS LALTPUUIS

Software processes are complex and process models cannot effectively
represent how to handle exceptions
— Several key people becoming ill just before a critical review.
— A breach of security that means all external communications are out of action
for several days.
— Organizational reorganization
— A need to respond to an unanticipated request for new proposals.

Under these circumstances, the model is suspended and managers use
their initiative to deal with the exception.

We have to avoid the exceptions or change the process itself.

n ' aValfaYel @ If'\ 2Ve Va
FTOULCOO lidIyc

« Process changes involve making modifications to existing processes.
— Introduce new practices, methods or processes.
— Change the ordering of process activities.
— Introduce or remove deliverables.
— Introduce new roles or responsibilities.

e Change should be driven by measurable goals.

Process change stages

— Improvement identification
— Improvement prioritization
— Process change introduction
— Process change training

— Change tuning

)

nv)
-3
§)
()
0

M)
>

U

-

@
()
M
n
wn
O
()
D
n
n

Introduce
process change
Prioritize Tune process

improvements changes

Identify
improvements

Train engineers

Process Model Process Model Process Model Process Model

Process Model

Konkuk University 63

Iﬂf\ FI\AI\AT I: "\MI\\AIAIFII
1TIT CIVIIVIL T'IdITICVWUI K

« The CMMI framework is the current stage of work on process assessment
and improvement.
— Started at the SEI(Software Engineering Institute) in the 1980s.

— The SEI's mission is to promote software technology transfer particularly to US
defence contractors.

« It has had a profound influence on process improvement
— Capability Maturity Model introduced in the early 1990s.
— Revised maturity framework (CMMI) introduced in 2001.

Dy
Pl

7\

froce

)

I \7 Vv

At“f‘f\t“t" 'Y e ‘l'
Ly MOOTOOITITIHIL

Capab

Intended as a means to assess the extent to which an organization’s
processes follow best practice.

— It is possible to identify areas of weakness for process improvement.

— There have been various process assessment and improvement models but
the SEI work has been most influential.

In

A CLCT AN
IC OLl dpd
Initial

— Essentially uncontrolled.

Repeatable
— Product management procedures defined and used.

Defined
— Process management procedures and strategies defined and used.

Viar ‘lageo
— Quality management strategies defined and used.

Optimizing

— Process improvement strategies defined and used.

I\ i+l A NANA
1 L

V7 7\ o~ 1 7\ F
IVUVICIHTIS VVILIT LTI CIVIIVI

e Practices associated with model levels

— Companies could be using practices from different levels at the same time,
but if all practices from a lower level were not used, it was not possible to

move beyond that level.

» Discrete rather than continuous
— Did not recognize distinctions between the top and the bottom of levels.

» Practice-oriented
— Concerned with how things were done (the practices) rather than the goals to
be achieved.

Th I\/II\/II

111C CIVIIVI V UUCl

* An integrated capability model that includes software and systems
engineering capability assessment.

« Two instantiations
— Staged where the model is expressed in terms of capability levels.
— Continuous where a capability rating is computed.

I ﬁt\mr\t\v‘\nv\-l-
1 CUII IIJUI ICIIL

C NANT c
(& 1 S

~A
IVIIVIL 1T1TOU

S

e Process areas

— 24 process areas that are relevant to process capability and improvement are
identified.

— Organized into 4 groups.

« @Goals
— Goals are descriptions of desirable organizational states.
— Each process area has associated goals.

» Practices
— Practices are ways of achieving a goal.
— They are just advisory and other approaches to achieve the goal may be used.

Process Management

Project Management

Engineering

Support

Organisational process definition
Organisational process focus
Organisational training

Organisational process performance
Organisational innovation and deployment

Project planning

Project monitoring and control
Supplier agreement management
Integrated project management
Risk management

Integrated teaming

Quantitative project management

Requirements management
Requirements development
Technical solution

Product integration
Verification

Validation

Configuration management

Process and product quality management
Measurement and analysis

Decision analysis and resolution
Organisational environment for integration
Causal analysis and resolution

Konkuk University

70

Corrective actions are managed to closure when the project’s
performance or results deviate significantly from the plan.

Actual performance and progress of the project is monitored
against the project plan.

The requirements are analysed and validated and a definition
of the required functionality is developed.

Root causes of defects and other problems are systematically
determined.

The process is institutionalised as a defined process.

Konkuk University

Project Monitoring and control

Project monitoring and control

Requirements development

Causal analysis and resolution

Generic goal

71

Analyse derived requirements to ensure that they are necessary
and sufficient

Validate requirements to ensure that the resulting product will
perform as intended in the user’s environment using multiple
techniques as appropriate.

Select the defects and other problems for analysis.

Perform causai analysis of seiected defects and other probiems
and propose actions to address them.

Establish and maintain an organisational policy for planning
and performing the requirements development process.

Assign responsibility and authority for performing the process,
developing the work products and providing the services of
the requirements development process.

Konkuk University

The requirements are analysed and
validated and a definition of the
required functionality is developed.

Root causes of defects and other
problems are systematically
determined.

The process is institutionalised as a
defined process.

72

C NANAT
CIVIIVIL

v\ If'\'l'
L

At“t“/\t“t" 7\
MAOOCOSIITICII

« Examines the processes used in an organization and assesses their
maturity in each process area.

« Based on a 6-point scale (6 levels)
— Not performed
— Performed
— Managed
— Defined
— Quantitatively managed
— Optimizing

Tha <+a1n
i< oldytc

C NANAT
- 1

NAaAal
IVIIVI V UUCH

« Comparable with the software CMM.
« Each maturity level has process areas and goals.

L Optimizing]

s

I Defined

D

.

Quantitatively
Managed

~

J

J

| Managed }

[Initial

]

Konkuk University

74

« Institutions operating at the managed level should have institutionalized
practices that are geared to standardization. (Level 2 - Level 3)

— Establish and maintain policy for performing the project management
process.

— Provide adequate resources for performing the project management process.
— Monitor and control the project planning process.
— Review the activities, status and results of the project planning process.

If'\f\ rt‘\
1 Ne Lon

-|- ™Il
L

~ NANAT
1IUV 1

SO CUIVIIVI V ULl

« A finer-grain model that considers individual or groups of practices and
assesses their use.

— The maturity assessment is not a single value but is a set of values showing
the organisations maturity in each area.

— The CMMI rates each process area from levels 1 to 5.

— The advantage of a continuous approach is that organizations can pick and
choose process areas to improve according to their local needs.

Project monitoring
and control

Supplier agreement
management

Risk management

Configuration
management

Requirements
management

Verification

Validation

Konkuk University

77

C
®

N a2 22NN aAW/

Hrrial'y

Process improvement involves process analysis, standardisation,
measurement and change.

Processes can be classified as informal, managed, methodical and
improving. This classification can be used to identify process tool support.

The process improvement cycle involves process measurement, process
analysis and process change.

Process measurement should be used to answer specific process
questions, based on organisational improvement goals.

The three types of process metrics used in the measurement process are
time metrics, resource utilisation metrics and event metrics.

Process models include descriptions of tasks, activities, roles, exceptions,
communications, deliverables and other processes.

The CMMI process maturity model integrates software and systems
engineering process improvement.

Process improvement in the CMMI model is based on reaching a set of
goals related to good software engineering practice.

Konkuk University

79

Chapter 29.
Configuration Management

N A
UV

\7

I\I"l'l 'aY e
CLLIVEDS

To explain the importance of software configuration management (CM)

To describe key CM activities namely CM planning, change management,
version management and system building

To discuss the use of CASE tools to support configuration management
processes

C A
LV

I ‘l' If'\ “A 2Ve Vala aVal
ation iviand H emen

r-'l-

nfigur

New versions of software systems are created as they change

For different machines/OS
Offering different functionality
Tailored for particular user requirements

Configuration management(CM) is concerned with managing evolving

software systems

System change is a team activity.
Aims to control the costs and effort involved in making changes.

Involves the development and application of procedures and standards to
manage an evolving software product.

May be seen as part of a more general quality management process.
When released to CM, software systems are sometimes called baselines.

e

C N\ ~
- dl

vl oldlil U UoS

« CM should always be based on a set of standards which are applied
within an organization.

— Standards should define how items are identified, how changes are controlled
and how new versions are managed.

— Standards may be based on external CM standards
(e.g. IEEE standard for CM).

— Some existing standards are based on a waterfall process model.
— New CM standards are needed for evolutionary development.

I:Ir'f\ﬂl If\lf'\'l' C\lt"'l'f\m DI I:IA.V'\
FICTQUCTTIL OyoSlLTIlT DUllU

INg

Frequent system building

— A new version of a system is built from components by compiling and linking
them.

— This new version is delivered for testing using pre-defined tests.

— Faults that are discovered during testing are documented and returned to the
system developers.

It is easier to find problems that stem from component interactions early
in the process.

— This encourages thorough unit testing - developers are under pressure not to
‘break the build',

— A stringent change management process is required to keep track of
problems that have been discovered and repaired.

Configuration Management Planning

« All products of the software process may have to be managed
— Specifications
— Designs
— Programs
— Test data
— User manuals

« Thousands of separate documents may be generated for a large,
complex software system.

ThA A m|-|-
11T UV Iy L

:5
E:
C)
3
;-I-
C_l)_

Defines the types of documents to be managed and a document naming
scheme.

Defines who takes responsibility for the CM procedures and creation of
baselines.

Defines policies for change control and version management.

Defines the CM records which must be maintained.

Describes the tools which should be used to assist the CM process and
any limitations on their use.

Defines the process of tool use.
Defines the CM database used to record configuration information.

May include information such as the CM of external software, process
auditing, etc.

C A
LV

Cl I I LCIL

U -|- v-\T-I- A 1A PR
adliUll 1L U 1UI1 |

eim 1

ntigur

Large projects typically produce thousands of documents which must be
uniquely identified.

Some of these documents must be maintained for the lifetime of the
software.

Document naming scheme should be defined so that related documents

have related names.
A hierarchical scheme with multi-level names is probably the most
flexible approach.

— PCL-TOOLS/EDIT/FORMS/DISPLAY/AST-INTERFACE/CODE

O

)

;:nl Ilf"'\+:f\lf'\ I—I:AIF"\IF,'IA\I
||9 IdliVUIl | |_||C'|d|L||y
PCL -TOOLS
COM PILE BIND EDIT MAKE- GEN
T~ /I\/N\
FORM STRUCTURES HELP
DISP LAY QUERY
/\/\
FOR M-SP ECS AST-INTER FA CE FOR M-IO
OB JECTS CODE TES TS

Konkuk University

88

C A
LV

L 11 LUdldidoT

nfigur
All CM information should be maintained in a configuration database.

This should allow queries about configurations to be answered
— Who has a particular system version?
— What platform is required for a particular version?
— What versions are affected by a change to component X?
— How many reported faults in version T?

The CM database should preferably be linked to the software being
managed.

v\

dotC lIPICITICT

May be part of an integrated environment to support software
development.

— The CM database and the managed documents are all maintained on the
same system.

CASE tools may be integrated.
— A close relationship between the CASE tools and the CM tools.

More commonly, the CM database is maintained separately as this is
cheaper and more flexible.

A nge NMA~a

LNange Ivianage

3

« Software systems are subject to continual change requests
— from users
— from developers
— from market forces

« (Change management is concerned with
— Keeping track of these changes
— Ensuring that they are implemented in the most cost-effective way.

I,-\

L

ange ivianagemen

rOCESS

Request change by completing a change request form
Analyze change request
if change is validthen
Assess how change might be implemented
Assess change cost
Submit request to change control board
if change is acceptedthen
repeat
make changes to software
submit changed software for quality approval
until software quality is adequate
create new system version
else
reject change request
else
reject change request

hlg

7\ sl 2 'e

ye 'I'Ef\
OUL TVl

DA
Requ

« A change request form records
— The change proposed
— Requestor of change
— The reason why change was suggested
— The urgency of change (from requestor of the change)

e It also records
— Change evaluation
— Impact analysis
— Change cost
— Recommendations from system maintenance staff

_T

aVea Val 'laVYe B I 'I' I:f\ sl ‘&'

IyC L| OL ITVUILI1I
Change Request Form
Project: Proteus/PCL-T ools Number: 23/02
Change r equester: 1. Sommerville Date: 1/12/02

Requested chan?e When a component is selected from the structure, display
the name of the file where it is stored.

Change analyser: G. Dean Analysis date: 10/12/02
Components affected: Display-Icon.Select, Display-Icon.Display

Associated components: FileT able

Change assessment: Relatively simple to implement as a file name table is
available. Requires the design and implementation of a display field. No changes
to associated components are required.

Change priority: Low

Change implementation:
Estimated effort: 0.5 days

Date to CCB: 15/12/02 CCB decision date: 1/2/03
CCB decision: Accept change. Change to be implemented in Release 2.1.

Change implementor: Date of change:
Date submitted to QA: QA decision:
Date submitted to CM:

Comments

Konkuk University

94

-\ I v\ N f\t‘\
al Iy 100

T
)

1 I

S

LE

* A major problem in change management is tracking change status.

« Change tracking tools
— Keep track the status of each change request .
— Ensure automatically that change requests are sent to the right people at the
right time.
— Integrated with E-mail systems allowing electronic change request distribution.

I,-\

COoNtrolr boara

LNange

Changes should be reviewed by an external group who decide whether
or not they are cost-effective from a strategic and organizational
viewpoint rather than a technical viewpoint.

The group is called a change control board(CCB).
— May include representatives from client and contractor staff.

\ W 4

eva

| "ah W 4

D T ory

+
11 T11IoL

« Derivation history is a record of changes applied to a document or code
component.

— Should record, in outline,
» The change made
« The rationale for the change
 Who made the change
* When it was implemented.

— May be included as a comment in code.

Ul IIJUI ICIILU T'1ICSAUC] 111101111
// BANKSEC project (IST 6087)

//

// BANKSEC-TOOLS/AUTH/RBAC/USER_ROLE

//

// Object: currentRole

// Author: N. Perwaiz

// Creation date: 10th November 2002

//

// © Lancaster University 2002

//

// Modification history

// Version Modifier Date Change

// 1.0 J. Jones 1/12/2002 Add header
// 1.1 N. Perwaiz 9/4/2003 New field

Q)

O

)

Reason
Submitted to CM
Change req. R07/02

\In

VCI O U 1€asSe vidna 9

§

7N\ -~ Df\
Ull dll N\C

« Version and release management
— Invent an identification scheme for system versions.
— Plan when a new system version is to be produced.
— Ensure that version management procedures and tools are properly applied.
— Plan and distribute new system releases.

e \ersion

— An instance of a system which is functionally distinct in some way from other
system instances.

e Variant

— An instance of a system which is functionally identical but non-functionally
distinct from other instances of a system.

e Release

— An instance of a system which is distributed to users outside of the
development team.

\/o N TA
1U

VCIOoIVUII Ll

Cll 1ICalliVUll

« \Version identification should define an unambiguous way of identifying
component versions.

» Three basic techniques for component identification
— Version numbering
— Attribute-based identification
— Change-oriented identification

\II\ (‘f\lf'\ k IIMIf'\
VCIOoIVUII 111UC

ring

e Simple naming scheme uses a linear derivation.
— V1,V11, V12 V21, V22 etc.
e The actual derivation structure is a tree or a network rather than a
sequence.
— Version names are not meaningful.
— A hierarchical naming scheme leads to fewer errors in version identification.

.- ‘

Konkuk University 101

C~DdoCU 1UCTILITICALUIVUIL]

o Attributes can be associated with a version with the combination of
attributes identifying that version

— Examples of attributes are Date, Creator, Programming Language, Customer,
Status etc.

* More flexible than an explicit naming scheme for version retrieval.
— May cause problems with uniqueness.

— The set of attributes have to be chosen so that all versions can be uniquely
identified.

« In practice, a version also needs an associated name for easy reference.
 Example: AC3D (language =Java, platform = XP, date = Jan 2003)

hAa

¥\ 'Ff'
Clid Iy

I\n 'aY a -~
—\Ul C'IILCI

ntaAd TA +iAN
Ntea 1d LIOUI I

« Change-oriented identification integrates versions and the changes made
to create these versions.

— Used for systems rather than components.

— Each proposed change has a change set that describes changes made to
implement that change.

— Change sets are applied in sequence so that, in principle, a version of the
system that incorporates an arbitrary set of changes may be created.

NA N A

If\"\t“f\ a2Ve Fa
1ease 1vVidind dytcilitc N

r-'l-

Re

» Releases must incorporate changes forced on the system by errors
discovered by users and by hardware changes.

— Must also incorporate new system functionality.

« Release planning is concerned with when to issue a system version as a
release.

7\ f\lf\ﬁf‘f\t“
Clll CICCIDCD

« System release is not just a set of executable programs

« May also include

— Configuration files defining how the release is configured for a particular
installation

— Data files needed for system operation

— An installation program or shell script to install the system on target hardware
— Electronic and paper documentation

— Packaging and associated publicity

CICGDC Lecision ivia Iy

All files required for a release should be re-created when a new release is
installed.

Preparing and distributing a system release is an expensive process.

Factors such as the technical quality of the system, competition,
marketing requirements and customer change requests should all
influence the decision of when to issue a new system release.

\7

€gy

T T

If serious system faults are reported which affect the way in which many
customers use the system, it may be necessary to issue a fault repair release.
However, minor system faults may be repaired by issuing patches (often
distributed over the Internet) that can be applied to the current release of the
system.

CdoC olidl

Technical quality of the
system

You may have to create a new release of a software application when a new

Platform changes version of the operating system platform is released.

This suggests that the increment of functionality that is included in each release
is approximately constant. Therefore, if there has been a system release with
significant new functionality, then it may have to be followed by a repair release.

Lehman'’s fifth law
(See chapter 21)

Competition A new system release may be necessary because a competing product is

available.
Marketing The marketing department of an organisation may have made a commitment
requirements for releases to be available at a particular date.

For customised systems, customers may have made and paid for a specific set
of system change proposals and they expect a system release as soon as these
have been implemented.

Customer change
proposals

Konkuk University 107

| +1AN
I LIVUIL I

f\ 'l Yol a r‘lﬁf\"\
NCICTdoCT _ICd

Release creation involves collecting all files and documentation required
to create a system release.

— Configuration descriptions have to be written for different hardware.
— Installation scripts have to be written.

— The specific release must be documented to record exactly what files were
used to create it. This allows it to be re-created if necessary.

§

A
11U

(D

ng

« The process of compiling and linking software components into an
executable system
— Different systems are built from different combinations of components.
— Now always supported by automated tools that are driven by ‘build scripts’.

Version
System Builder Management Compiler Linker
System

Source Code
Build Script Component
Versions

Object Code Executable
Components System

Konkuk University 109

v\

A U A ~hlarmc
1HHUI UMICI DS

ng P

e Do the build instructions include all required components?

— When there are many hundreds of components making up a system, it is easy
to miss one out. This should normally be detected by the linker.

« [s the appropriate component version specified?

— A more significant problem. A system built with the wrong version may work
initially but fail after delivery.

e Are all data files available?

— The build should not rely on 'standard' data files. Standards vary from place
to place.

v\

A U A ~hlarmc
1HHUI UMICI DS

ng P

« Are data file references within components correct?

— Embedding absolute names in code almost always causes problems as naming
conventions differ from place to place.

« Is the system being built for the right platform
— Sometimes you must build for a specific OS version or hardware configuration.

» Is the right version of the compiler and other software tools specified?

— Different compiler versions may actually generate different code and the
compiled component will exhibit different behaviour.

1S TOI ation

AOL UU vidildytcClliTlit

nfigur

o CASE tool support for CM is essential, because
— CM processes are standardized and involve applying pre-defined procedures.
— Large amounts of data must be managed.

« Mature CASE tools to support configuration management are available
ranging from stand-alone tools to integrated CM workbenches.

‘G
-

N \A/

VI VVUI KMDCITICIICO

Open workbenches

— Tools for each stage in the CM process are integrated through organizational
procedures and scripts.

— Gives flexibility in tool selection.

Integrated workbenches
— Provide whole-process, integrated support for configuration management.
— More tightly integrated tools so easier to use.
— However, the cost is less flexibility in the tools used.

L |

Cha |y iVida |g ement Tools

« Change management is a procedural process so it can be modelled and
integrated with a version management system.

e Change management tools
— Form editor to support processing the change request forms

— Workflow system to define who does what and to automate information
transfer

— Change database that manages change proposals and is linked to a VM
system

— Change reporting system that generates management reports on the status
of change requests

\In

VIO L

7\ Ve Fa AAI
on i1viaina dyt emen 1VU0VI1S

Version and release identification

— Systems assign identifiers automatically when a new version is submitted to
the system.

« Storage management.

— System stores the differences between versions rather than all the version
code.

« Change history recording
— Record reasons for version creation.

« Independent development

— Only one version at a time may be checked out for change. Parallel working
on different versions.

* Project support

— Can manage groups of files associated with a project rather than just single
files.

A U A
1HHUI

Ng

Building a large system is computationally expensive and may take
several hours.

Hundreds of files may be involved.

System building tools may provide

— A dependency specification language and interpreter
— Tool selection and instantiation support

— Distributed compilation

— Derived object management

C
®

Na'2Ya'a \7

||||||ai’y

Configuration management is the management of system change to
software products.

A formal document naming scheme should be
established and documents should be managed in a database.

The configuration data base should record information about changes
and change requests.

A consistent scheme of version identification should be established using
version numbers, attributes or change sets.

System releases include executable code, data, configuration files and
documentation.

System building involves assembling components into a system.
CASE tools are available to support all CM activities.

CASE tools may be stand-alone tools or may be integrated systems
which integrate support for version management, system building and
change management.

