
Software Engineering

Part 3. Design
- Application Architectures
- Object-Oriented Design
- Real-Time Software Design

JUNBEOM YOO
jbyoo@konkuk.ac.kr

http://dslab.konkuk.ac.kr
Ver. 1.7

※ This lecture note is based on materials from Ian Sommerville 2006.
※ Anyone can use this material freely without any notification.

Chapter 13.

Application Architectures

Objectives

• To explain two fundamental models of business systems - batch
processing system and transaction processing system

• To describe abstract architecture of resource management systems
• To explain how generic editors are event processing systems
• To describe the structure of language processing systems

3Konkuk University

Generic Application Architectures

• As businesses have much in common,
– their application systems also tend to have a common architecture that

reflects the application requirements.

4Konkuk University

Application Types

• Application types
1. Data processing application

• Data driven applications
• Process data in batches without user intervention during the processing.
• Ex) Billing system, Payroll system

2. Transaction processing application
• Data-centered applications
• Process user requests and update information in a system database.
• Ex) E-commerce system, Reservation system

3. Event processing system
• System actions depend on interpreting events from the system’s environment.
• Ex) Word processor, Real-time system

4. Language processing system
• Users’ intentions are specified in a formal language.
• Processed and interpreted by the system.
• Ex) Compiler, Command interpreter

5Konkuk University

1. Data Processing System

• Data-centered system, where databases used are usually orders of
magnitude larger than the software itself.

– Data is input and output in batches.
– Have an input-process-output structure

Input-Process-Output model

6Konkuk University

System

Process OutputInput

Database

Printer

Data-Flow Diagram

• DFD shows how data is processed as it moves through a system.
– Round-edged rectangles : transformations
– Arrows : data-flows
– Rectangles : data (input/output)

Konkuk University 7

Salary payment DFD

Read employee
record

Read monthly
pay data

Compute
salary

Write tax
transactions

Monthly pay
data

Tax
tables

Tax
transactions

Pension data

Validate
employee data

Write pension
data

Write bank
transaction

Write social
security data

Employee
records

Monthly pay
rates

Bank
transactions

Social security
data

Print payslip
PRINTER

Decoded
employee

record

Pay information

Valid
employee record

Tax deduction + SS
number + tax office

Pension
deduction +
SS number

Empoyee data
+ deductions

Net payment + bank
account info.

Social security
deduction + SS number

2. Transaction Processing System

• Transaction processing systems process
– User requests for information from a database or
– User requests to update the database.

– Users make asynchronous requests for service which are then processed by a
transaction manager.

– Many examples
• Transaction processing middleware
• Information system architecture
• Resource allocation system
• E-commerce system architecture

8Konkuk University

Application
Logic

I/O Processing
Transaction
Manager

Database

Transaction Processing Middleware

• Transaction management middleware or teleprocessing monitors
– Handle communications with different terminal types, serializes data and

sends it for processing
– Query processing takes place in the system database and results are sent

back through the transaction manager to the user’s terminal.

9Konkuk University

Teleprocessing
Monitor

Account
Database

Serialized
transaction

…

ATM and Terminals

Account queries
and updates

Information System Architecture

• Information systems can be organized as a layered architecture.

• LIBSYS example :

LIBSYS organization

10Konkuk University

Web browser interface

Distributed
search Accounting

LIBSYS
login

Forms and
query manager

Library index

Document
retrieval

DB1 DB2 DB3 DB4 DBn

Rights
manager

Print
manager

User Interface

User
Communication

Information Retrieval
and Modification

Transaction
Management

Database

Resource Allocation System

• Resource allocation systems manage fixed amount of resource and
allocate them to users.

– Timetabling system : the resource being allocated is a time period
– Library system : the resource being managed is books for loan
– Air traffic control system : the resource being managed is the airspace

• Layer resource allocation architecture

11Konkuk University

User inter face

Resource
management

Resource policy
control

Resource
allocation

User
authentication

Query
management

Resource database

Resource
delivery

Transaction management

E-commerce System Architecture

• E-commerce systems are internet-based resource management systems
– Accept electronic orders for goods or services
– Organized using a multi-tier architecture with application layers associated

with each tier

Konkuk University 12

Web ServerWeb Browser
Application

Server
Database Server

3. Event Processing Systems

• Event processing systems respond to events in the system’s environment.
– Event timing is unpredictable, so the architecture has to be organized to

handle this.
– Many common systems:

• Word processors
• Games
• Real-time systems
• Etc.

13Konkuk University

Editing System

• Editing systems are the most common types of event processing system.
– Single user system
– Must provide rapid feedback to user actions
– Organized around long transactions
– May include recovery facilities

Konkuk University 14

File System

Save
Open

Editor data

Editing
commands

Ancillary data

Ancillary
commands

Command

Interpret

Screen

Refresh

Display

Update

Event

Process

4. Language Processing System

• Language processing systems accept a natural or artificial language as
input and generate some other representation of that language.

– May include an interpreter

• Components of language processing systems
– Lexical analyzer
– Symbol table
– Syntax analyzer
– Syntax tree
– Semantic analyzer
– Code generator

15Konkuk University

Translator

Check syntax
Check semantics
Generate

Interpreter

Fetch
Execute

Abstract m/c
instructions

Data Results

Instructions

Repository Model of Compiler

16Konkuk University

Code
Generator

Abstract
Syntax Tree

Grammar
Definition

Symbol Table
Output

Definition

Repository

Optimizer

Syntax
Analyzer

Semantic
Analyzer

Lexical
Analyzer

Editor

Pretty-
Printer

• Generic models of application architectures help us understand and
compare applications.

• Important classes of application are data processing systems, transaction
processing systems, event processing systems and language processing
system.

• Data processing systems operate in batch mode and have an input-
process-output structure.

• Transaction processing systems allow information in a database to be
remotely accessed and modified by multiple users.

• Event processing systems include editors and real-time systems.
• In an editor, user interface events are detected and an in-store data

structure is modified.
• Language processing systems translate texts from one language to

another and may interpret the specified instructions.

Summary

17Konkuk University

Konkuk University 18

Chapter 14.

Object-Oriented Design

Objectives

• To explain how a software design may be represented as a set of
interacting objects that manage their own states and operations

• To describe the activities in object-oriented design process
• To introduce various models that can be used to describe an object-

oriented design
• To show how the UML may be used to represent these models

20Konkuk University

Object-Oriented Development

• Object-oriented analysis, design and programming are related but
distinct.

– OOA : concerned with developing an object model of the application domain
– OOD : concerned with developing an object-oriented system model to

implement requirements
– OOP : concerned with realizing an OOD using an OO programming language

such as Java or C++

• Characteristics of OOD
– Objects are abstractions of real-world or system entities.
– Objects encapsulate state and representation information.
– System functionality is expressed in terms of object services.
– Shared data areas are eliminated.
– Objects communicate by message passing.
– Objects may be distributed and may execute sequentially or in parallel.

21Konkuk University

Advantages of OOD

• Easier maintenance
– Objects may be understood as stand-alone entities.

• Objects are potentially reusable components.

• Easy to implement for some systems
– There may be an obvious mapping from real world entities to system objects.

22Konkuk University

Objects and Object Classes

• Objects are entities in software system
– Represent instances of real-world and system entities

• Object classes are templates for objects
– Used to create objects
– May inherit attributes and services from other object classes

23Konkuk University

An object is an entity that has a state and a defined set of operations which operate on that state.
The state is represented as a set of object attributes. The operations associated with the object
provide services to other objects (clients) which request these services when some computation is
required.

Objects are created according to some object class definition. An object class definition serves as a
template for objects. It includes declarations of all the attributes and services which should be
associated with an object of that class.

Unified Modelling Language

• Several different notations for describing object-oriented designs were
proposed in the 1980s and 1990s.

• Unified Modelling Language(UML) is an integration of these.
– Describes notations for a number of different models that may be produced

during OO analysis and design
– A de facto standard for OO modelling

24Konkuk University

Class Example: Employee Object

25Konkuk University

Employee

name: string
address: string
dateOfBirth: Date
employeeNo: integer
socialSecurityNo: string
department: Dept
manager: Employee
salary: integer
status: {current, left, retired}
taxCode: integer
. . .

join ()
leave ()
retire ()
changeDetails ()

Object Communication

• Conceptually, objects communicate by message passing.
• Messages

– Name of service requested by calling object
– Copies of information required to execute the service

• In practice, messages are often implemented by procedure calls.
– Name = procedure name
– Information = parameter list

// Call a method associated with a buffer object that returns the next value in the buffer
v = circularBuffer.Get () ;

// Call the method associated with a thermostat object that sets the temperature
// to be maintained

thermostat.setTemp (20) ;

26Konkuk University

Generalization and Inheritance

• Classes may be arranged in a class hierarchy, where one class (a super-
class) is a generalization of one or more other classes (sub-classes).

– A sub-class inherits the attributes and operations from its super class and
may add new methods or attributes of its own.

– Generalization in the UML is implemented as an inheritance in OO
programming languages.

Konkuk University 27

Employee

Programmer

project
progLanguages

Manager

Project
Manager

budgetsControlled

dateAppointed

projects

Dept.
Manager

Strategic
Manager

dept responsibilities

Features of Inheritance

• Advantages:
– Abstraction mechanism : may be used to classify entities.
– Reuse mechanism at both the design and the programming level.

– Inheritance graph is a source of organizational knowledge about domains and
systems.

• Problems:
– Object classes are not self-contained. They cannot be understood without

reference to their super-classes.
– Designers have a tendency to reuse the inheritance graph created during

analysis. It may lead to significant inefficiency.
– Inheritance graphs of analysis, design and implementation have different

functions and should be separately maintained.

28Konkuk University

UML Association

• Objects and object classes participate in relationships with other objects
and object classes.

• In the UML, a generalized relationship is indicated by an association.
– May be annotated with information that describes the association

• May indicate that an attribute of an object is an associated object
• May indicate that a method relies on an associated object

29Konkuk University

Employee Department

Manager

is-member-of

is-managed-by

manages

Concurrent Object

• The nature of objects :
– Self-contained entities are suitable for concurrent implementation.
– Message-passing model of object communication can be implemented

directly if objects are running on separate processors in a distributed system.

• Servers
– The object is implemented as a parallel process (server) with entry points

corresponding to object operations.
– If no calls are made to it, the object suspends itself and waits for further

requests for service.

• Active objects
– Objects are implemented as parallel processes and the internal object state

may be changed by the object itself and not simply by external calls.
– Thread in Java is a simple construct for implementing concurrent objects.

30Konkuk University

Java Thread

• Thread in Java is a simple construct for implementing concurrent objects.
– Threads must include a method called run() and this is started up by the Java

run-time system.
– Active objects typically include an infinite loop so that they are always

carrying out the computation.

31Konkuk University

Object-Oriented Design Process

• Structured design processes involve developing a number of different
system models.

– Require a lot of effort for development and maintenance of these models
– For small systems, it may not be cost-effective.
– However, for large systems developed by different groups, design models are

an essential communication mechanism.

• Common key activities for OOD processes
1. Define the context and modes of use of the system
2. Design the system architecture (Architectural design)
3. Identify the principal system objects (Object identification)
4. Develop design models
5. Specify object interfaces (Object interface specification)

32Konkuk University

Example: Weather Mapping System Description

A weather mapping system is required to generate weather maps on a regular basis
using data collected from remote, unattended weather stations and other data
sources such as weather observers, balloons and satellites. Weather stations transmit
their data to the area computer in response to a request from that machine.

The area computer system validates the collected data and integrates it with the data
from different sources. The integrated data is archived and, using data from this
archive and a digitised map database a set of local weather maps is created. Maps
may be printed for distribution on a special-purpose map printer or may be displayed
in a number of different formats.

33Konkuk University

1. System Context and Models of System Use

• Develop an understanding of the relationships between the software
being designed and its external environment

• System context
– A static model that describes other systems in the environment
– Use a subsystem model to show other systems

• Model of system use
– A dynamic model that describes how the system interacts with its

environment
– Use use-cases to show interactions

34Konkuk University

Subsystem Model

Weather mapping system

35Konkuk University

Data
storage

User
inter face

«subsystem»
Data collection

«subsystem»
Data processing

«subsystem»
Data archiving

«subsystem»
Data display

Weather
station

Satellite

Comms

Balloon

Observer

Map store Data store

Data
storage

Map

User
interface

Map
display

Map
printer

Data
checking

Data
integration

Use-Case Model

Weather station use-case

System Weather station

Use-case Report

Actors Weather data collection system, Weather station

Data The weather station sends a summary of the weather data that has been

collected from the instruments in the collection period to the weather data

collection system. The data sent are the maximum minimum and average

ground and air temperatures, the maximum, minimum and average air

pressures, the maximum, minimum and average wind speeds, the total rainfall

and the wind direction as sampled at 5 minute intervals.

Stimulus The weather data collection system establishes a modem link with the weather

station and requests transmission of the data.

Response The summarised data is sent to the weather data collection system

Comments Weather stations are usually asked to report once per hour but this frequency

may differ from one station to the other and may be modified in future.

Use-case description

36Konkuk University

Startup

Shutdown

Report

Calibrate

Test

2. Architectural Design

• Design the system architecture using the understanding about the
interactions between the system and its environment.

• A layered architecture is appropriate for the weather station
– Interface layer for handling communications
– Data collection layer for managing instruments
– Instruments layer for collecting data

37Konkuk University

Weather station

Manages all
external

communications

Collects and
summarises
weather data

Package of
instruments for raw

data collections

«subsystem»
Data collection

«subsystem»
Instruments

«subsystem»
Interface

3. Object Identification

• Identifying objects (or object classes) is the most difficult part of object
oriented design.

– No 'magic formula' for object identification.
– Relies on the skill, experience and domain knowledge of system designers
– An iterative process

• Approaches to object identification:
– Use a grammatical approach based on a natural language description of the

system (used in Hood OOD method)
– Based on the identification on tangible things in the application domain
– Use a behavioural approach and identify objects based on what participates

in what behaviour
– Use a scenario-based analysis. The objects, attributes and methods in each

scenario are identified.

38Konkuk University

Weather Station Object Classes

39Konkuk University

identifier

repor tWeather ()
calibrate (instruments)
test ()
star tup (instruments)
shutdown (instruments)

WeatherStation

test ()
calibrate ()

Gr ound
thermometer

temper ature

Anemometer

windSpeed
windDirection

test ()

Barometer

pressure
height

test ()
calibr ate ()

WeatherData

airTemper atures
groundTemper atures
windSpeeds
windDirections
pressures
rainf all

collect ()
summarise ()

4. Developing Design Model

• Design models show the objects, object classes and relationships
between these entities.

– Static models describe the static structure of the system in terms of object
classes and relationships.

– Dynamic models describe the dynamic interactions between objects.

• Examples of design models:
– Sub-system model : shows logical groupings of objects into coherent

subsystems
– Sequence model : shows the sequence of object interactions
– State machine model : show how individual objects change their state in

response to events.
– Other models include use-case models, aggregation models, generalisation

models, etc.

40Konkuk University

Subsystem Model

• Show how the design is organized into logically related groups of objects.
– A logical model
– The actual organization of objects may be different.
– In the UML, these are shown using packages

Konkuk University 41

«subsystem»
Interface

«subsystem»
Data collection

CommsController

WeatherStation

WeatherData

Instrument
Status

«subsystem»
Instruments

Air
thermometer

Ground
thermometer

RainGauge

Barometer

Anemometer

WindVane

Sequence Model

• Show the sequence of object interactions that take place
– Objects are arranged horizontally across the top.
– Time is represented vertically, so models are read top to bottom.
– Interactions are represented by labelled arrows.
– Different styles of arrow represent different types of interaction.
– Thin rectangle in an object lifeline represents the time when the object is the

controlling object in the system.

Konkuk University 42

Data collection

:CommsController

request (report)

acknowledge ()
report ()

summarise ()

reply (report)

acknowledge ()

send (report)

:WeatherStation :WeatherData

State Machine Model: Statecharts

• Show how objects respond to different service requests and the state
transitions triggered by these requests

Konkuk University 43
Weather station

transmission done

calibrate ()

test ()startup ()

shutdown ()

calibration OK

test complete

weather summary
complete

clock collection
done

Operation

reportWeather ()

Shutdown Waiting Testing

Transmitting

Collecting

Summarising

Calibrating

5. Object Interface Specification

• Object interfaces specification make the design of objects and other
components performed in parallel.

– Objects may have several interfaces (viewpoints).
– The UML uses class diagram for interface specification

interface WeatherStation {

 public void WeatherStation () ;

 public void startup () ;
 public void startup (Instrument i) ;

 public void shutdown () ;
 public void shutdown (Instrument i) ;

 public void reportWeather () ;

 public void test () ;
 public void test (Instrument i) ;

 public void calibrate (Instrument i) ;

 public int getID () ;

} //WeatherStation

44Konkuk University

• OOD is an approach to design so that design components have their
own private state and operations.

• Objects should have constructor and inspection operations. They provide
services to other objects.

• Objects may be implemented sequentially or concurrently.
• The Unified Modelling Language provides different notations for defining

different object models.
• A range of different models may be produced during an object-oriented

design process. These include static and dynamic system models.
• Object interfaces should be defined precisely using a programming

language like Java.

Summary

45Konkuk University

Konkuk University 46

Chapter 15.

Real-Time Software Design

Objectives

• To explain the concept of a real-time system and why these systems are
usually implemented as concurrent processes

• To describe a design process for real-time systems
• To explain the role of real-time operating systems
• To introduce generic process architectures for monitoring and control

and data acquisition systems

48Konkuk University

Real-Time systems

• Systems which monitor and control their environment

• Inevitably associated with hardware devices
– Sensors : collect data from the system environment
– Actuators : change the system's environment (in some way)

• Time is critical.
– Real-time systems MUST respond within specified times.

49Konkuk University

Definition

• Real-time system is a software system where the correct functioning of the
system depends on

– the results produced by the system and
– the time at which these results are produced

• Soft real-time system
– Operation is degraded if results are not produced according to the specified

timing requirements.

• Hard real-time system
– Operation is incorrect if results are not produced according to the timing

specification.

50Konkuk University

Stimulus/Response Systems

• Given a stimulus, the system must produce a response within a specified
time.

• Periodic stimuli
– Stimuli which occur at predictable time intervals
– Example: a temperature sensor may be polled 10 times per second.

• Aperiodic stimuli
– Stimuli which occur at unpredictable times
– Example: a system power failure may trigger an interrupt which must be

processed by the system.

51Konkuk University

Architectural Considerations

• Because of the need to respond to timing demands made by different
stimuli/responses, the system architecture must allow for fast switching
between stimulus handlers.

• Timing demands of different stimuli are different so a simple sequential
loop is not usually adequate.

• Real-time systems are therefore usually designed as cooperating
processes with a real-time executive controlling these processes.

– Cooperating processes
– One real-time executive

52Konkuk University

A Real-Time System Model

Real-time
Control System

Sensor

Actuator Actuator Actuator Actuator

Sensor Sensor Sensor Senseor

53Konkuk University

Sensor/Actuator Processes

Sensor Actuator

Sensor Control Data Process Actuator Control

ResponseStimulus

54Konkuk University

System Elements

• Sensor control processes
– Collect information from sensors
– May buffer collected information in response to a sensor stimulus.

• Data processor
– Carries out processing of collected information
– Computes the system response

• Actuator control processes
– Generates control signals for the actuators

55Konkuk University

Real-Time Programming

• Hard-real time systems may have to programmed in assembly language
to ensure that deadlines are met.

– Languages such as C allow efficient programs to be written, but do not have
constructs to support concurrency or shared resource management.

– Java supports lightweight concurrency (threads and synchronized methods)
and can be used for some soft real-time systems.

• Real-time versions of Java are now available addressing problems like
– Not possible to specify thread execution time
– Different timing in different virtual machines
– Uncontrollable garbage collection
– Not possible to discover queue sizes for shared resources
– Not possible to access system hardware
– Not possible to do space or timing analysis

56Konkuk University

System Design

• Design both the hardware and the software associated with system
– Partition functions to either hardware or software
– Design decisions should be made on the basis on non-functional system

requirements.

– Hardware delivers better performance but potentially longer development and
less scope for change.

57Konkuk University

Real-Time Systems Design Process

1. Identify the stimuli to be processed and the required responses to these
stimuli.

2. For each stimulus and response, identify the timing constraints.
3. Aggregate the stimulus and response processing into concurrent

processes. A process may be associated with each class of stimulus and
response.

4. Design algorithms to process each class of stimulus and response. These
must meet the given timing requirements.

5. Design a scheduling system which will ensure that processes are started
in time to meet their deadlines.

6. Integrate using a real-time operating system.

58Konkuk University

Timing Constraints

• May require extensive simulation and experiment to ensure that these
are met by the system

• May mean that certain design strategies such as object-oriented design
cannot be used because of the additional overhead involved

• May mean that low-level programming language features have to be
used for performance reasons

59Konkuk University

Real-Time System Modelling

• The effect of a stimulus in a real-time system may trigger a transition
from one state to another.

• Finite State Machines (FSM) can be used for modelling real-time systems.
– However, FSM models lack structure. Even simple systems can have complex

models.
– The UML includes notations for defining state machine models.

• See Chapter 8 for further examples of state machine models.

60Konkuk University

Petrol Pump State Model

Card
inserted

into reader

Timeout

Resetting
do: display CC

error

Initialising

do: initialise
display

Paying

Stopped

Reading

do: get CC
details

Waiting

do: display
welcome

do:
deliver fuel

do: debit
CC account

Payment ack.

Ready Delivering

update display
Nozzle

trigger on

Nozzle trigger off

Nozzle trigger on

Hose in
holster

do: validate
credit card

Validating

Invalid card

Card removed
Card OK

Hose out of holster

Timeout

61Konkuk University

Real-Time Operating Systems

• Real-time operating systems are specialized operating systems which
manage the processes in the RTS.

– Responsible for process management and resource (processor and memory)
allocation

– May be based on a standard kernel which is used unchanged or modified for
a particular application

– Do not normally include facilities such as file management

• Real-time operating system components
– Real-time clock : provides information for process scheduling
– Interrupt handler : manages aperiodic requests for service
– Scheduler : chooses the next process to be run
– Resource manager : allocates memory and processor resources
– Dispatcher : starts process execution

62Konkuk University

Real-Time OS Components

Process resource
requirements

Scheduler

Scheduling
information

Resource
manager

Despatcher

Real-time
clock

Processes
awaiting
resources

Ready
list

Interrupt
handler

Available
resource

list

Processor
list

Executing process

Ready
processes

Released
resources

63Konkuk University

Non-Stop System Components

• Configuration manager
– Responsible for the dynamic reconfiguration of the system software and

hardware.
– Hardware modules may be replaced and software upgraded without stopping

the systems.

• Fault manager
– Responsible for detecting software and hardware faults and taking

appropriate actions (e.g. switching to backup disks)
– To ensure that the system continues in operation

64Konkuk University

Process Priority

• The processing of some types of stimuli must sometimes take priority.
– Interrupt level priority

• Highest priority
• Allocated to processes requiring a very fast response

– Clock level priority
• Allocated to periodic processes

• Within these, further levels of priority may be assigned.

65Konkuk University

Interrupt Servicing

• Control is transferred automatically to a pre-determined memory
location.

– This location contains an instruction to jump to an interrupt service routine.
– Further interrupts are disabled, the interrupt serviced and the control returned

to the interrupted process.

• Interrupt service routines MUST be short, simple and fast.

66Konkuk University

Periodic Process Servicing

• In most real-time systems, there will be several classes of periodic
process, each with different periods (the time between executions),
execution times and deadlines (the time by which processing must be
completed).

• The real-time clock ticks periodically and each tick causes an interrupt
which schedules the process manager for periodic processes.

• The process manager selects a process which is ready for execution.

67Konkuk University

Process Management

• Concerned with managing the set of concurrent processes.
• Periodic processes are executed at pre-specified time intervals.

• The RTOS uses the real-time clock to determine when to execute a
process taking into account

– Process period : time between executions.
– Process deadline : the time by which processing must be complete.

Choose processes for
execution

Allocate memory and
processor

Start execution on
an available processor

Scheduler Resource Manager Dispatcher

RTOS Process Management

68Konkuk University

Process Switching

• The scheduler chooses the next process to be executed by the processor.
– Depends on a scheduling strategy.

• The resource manager allocates memory and a processor for the process
to be executed.

• The dispatcher takes the process from ready list, loads it onto a
processor and starts execution.

• Scheduling strategies
– Non pre-emptive scheduling

• Once a process has been scheduled for execution, it runs to completion or until it is
blocked for some reason (e.g. waiting for I/O).

– Pre-emptive scheduling
• The execution of an executing processes may be stopped if a higher priority process

requires service.
– Scheduling algorithms

• Round-robin , Rate monotonic , Shortest deadline first, many others.

69Konkuk University

Monitoring and Control Systems

• Continuously check sensors and take actions depending on sensor values.
• Monitoring systems examine sensors and report their results.
• Control systems take sensor values and control hardware actuators.

Testing
Process

S1

S2

S3

ATM and Terminals

P (S1)

P (S2)

P (S3)

Monitoring
Process

Control
Process

Control Panel
Processes

A1

A2

A3

A4

P (A1)

P (A2)

P (A3)

P (A4)

70Konkuk University

Summary

• Real-time system correctness depends not just on what the system does
but also on how fast it reacts.

• A general real-time system model involves associating processes with
sensors and actuators.

• Real-time systems architectures are usually designed as a number of
concurrent processes.

• Real-time operating systems are responsible for process and resource
management.

• Monitoring and control systems poll sensors and send control signal to
actuators.

71Konkuk University

