
Competencies needed to Software Competencies needed to Software
Engineers in the Forthcoming IT Engineers in the Forthcoming IT

IndustriesIndustries

Lee, Joon-Sang
LG Electronics Advanced Research Institute

/ 24

Contents

¢What makes software difficult?

¢Future competencies

2

What Makes Software Difficult ?What Makes Software Difficult ?

3

/ 24

Current Status of Software Engineers

¢ Negative phenomena at IT work places
¢ No precise estimation of effort and schedule
¢ Instant coding from unwritten requirements
¢ Low reusability, and no trust on SW from others
¢ Repeated & overtime work (6 code lines a year)
¢ Frequent changes in requirements
¢ Side work for hardware system ?
¢ None asks about SW quality seriously (even end-users)
¢ Always being dreadful about any little change
¢ No time buffer to consider maintainability or robustness
¢ Is learning programming language all ?
¢ No objective & systematic qualification criteria on experts

¢ Is software so inherently easy and simple to be not worthy ?
¢ There’s been no matured software engineering yet ?

¢ SW is the most creative, complex, and difficult work, but too easy to startup and
partially demonstrate with no concept of quality!
¢ HW engineers < SW developers < SW engineers

4

/ 24

Aristotle’s Metaphysics

¢Theories about what exists and how we know
that is exists
¢notice that software is invisible.

¢Essential or accidental characteristics ?
¢ this horse is white vs. this horse is a kind of brute

fact

¢How to define SW’s beings & their behaviors
¢ form & matter via state-based lifecycle model

5

/ 24

Philosophical Approach

¢ What exist in the computational space
¢ Ontology

¢ process or object ? aggregate of them?

¢ Epistemology
¢ What do components know about one another ?
¢ Scoping rule ? Or connectivity via naming server ?

¢ Protocols
¢ Dictations of how to interact among components ?
¢ Synchronous or asynchronous ? with a type of IPC?

¢ Lexicon
¢ Vocabulary of component interactions

6

/ 24

Essences and Accidents

¢ Invisibility
¢No geometric abstraction

¢e.g. land (map), silicon chips (diagrams), computers
(connectivity schema), building (floor plan)

¢ Just superimposed directed graphs on upon
another
¢ control/data flow, data dependency, time sequence,

name-space relationships, module structure, etc.

¢Even planar so inherently hierarchical

7

/ 24

Essences and Accidents

¢ Complexity
¢ No repeated elements are abound

¢ Scaling-up does not merely mean a repetition of the same
elements

¢ Order-of-magnitude more states than digital computers
¢ Flow-like architecture vs. invocation-like architecture
¢ No black-box abstraction; low reusability & optimizability

¢ The most complex entities than any other human
construct, for its size
¢ Inherently hierarchical structure
¢ Non-linear increase with size

¢ Not only technical problem, management problems come

8

/ 24

Essences and Accidents

¢ Conformity
¢ No unifying principles as with Physics

¢ “there must be simplified explanations of nature, because
God is not capricious or arbitrary” said Einstein

¢ Arbitrary complexity caused by various people
¢ last arrival on the scene & most conformable

¢ Changeability
¢ Infinitely malleable and easy for change

¢ SW is hero or zero?

¢ Embedded in a cultural matrix of applications
¢ Various stakeholders with different interests and knowledge

9

/ 24

Essences and Accidents

10

Invisibility

Complexity

Conformity

Changeability

no geometric
abstraction ☞ order or magnitude

no repeated building blocks
☞ no scalability

Infinitely malleable
☞ enforced rework

no unified principles
☞ arbitrary complexity

/ 24

Essences and Accidents

¢ Breakthroughs against accidents
¢ High-level languages

¢ conceptual constructs: operations, data types, sequences, and
communication

¢ Unified programming environments
¢ Integrated libraries, file format, tool benches, testing & debugging,

¢ Hopes for the silver
¢ Object-Oriented Programming

¢ ADT & hierarchical types
¢ Automatic programming (since 1985)
¢ Graphical programming
¢ Program verification

11

/ 24

No Silver Bullet

¢ Revolutionary or incremental advances towards
“essences” and “accidents”?

¢ Productivity equation
¢ time_of_task = ån Î i (frequency)i ´ (time)i

¢ Promising attacks on Conceptual Essence
¢ Buy vs. build

¢ Firstly mentioned in the NATO Software Engineering
Conferences, 1968

¢ Requirements refinement and rapid prototyping
¢ Great designers

12

/ 24

Evolution of SW Development Methods

assembly
hardcoded

structured

object-
oriented

architecture-
based

collaboration
-based

aspect-
oriented

subject-
oriented

product-
lined

proprietary
platformized

industry-wide
platformizedstructural

modularity

business logic & roles

domain-specific

future SW platform
1) PRODUCTIVITY2) NON-FUNCIOTNAL

QUALITY
• core-functionality-proven (buy)
• usability-centric (refinement/rapid prototyping)
• fully-customizable UI/UX/Look-and-Feel
• architecture-level optimization (great designer)
• OS-integrated UIMS + app.

model-
driven

high-level construction

3) RAPID PROTOTYPING

service-
oriented

feature-
oriented

DSSA

13

Computational
Reflection • Open Implementation

• Meta-object protocol

/ 24

Computational Reflection

¢ Definition
¢ “a computational process that is able to reason about

itself” by Brian Smith (1982)
¢ “self-referential behaviors” in computational process

¢ Analogies
¢ program expression Û program data
¢ metaphor Û object
¢ control program Û robot arm
¢ Û the Matrix

14

/ 24

Computational Reflection

¢ In view of Instruction Set Architecture (ISA)

¢ In high-level programming

15

L1 …
load r10, [pc+6]
i-code r11, “add”
cmp b0, r10, r11
br b0, L2
i-code r10, “br L1”
store [pc+1], r10
add r01, r02

L2 …

L1 …
load r10, [pc+6]
i-code r11, “add”
cmp b0, r10, r11
br b0, L2
i-code r10, “br L1”
store [pc+1], r10
add r01, r02

L2 …

Class cls = Class.forName("Foo");
Object foo = cls.newInstance();
Method method = new Method("hello() { System.out(“hello”); }”);
cls.add(method);
cls.invoke(foo, “hello”, null); // ok?

Class cls = Class.forName("Foo");
Object foo = cls.newInstance();
Method method = new Method("hello() { System.out(“hello”); }”);
cls.add(method);
cls.invoke(foo, “hello”, null); // ok?

/ 24

Computational Reflection

¢For further evolvability
¢Dynamically evolvable

¢Autonomously adaptable

¢Context-aware

¢For higher modularity & reusability
¢Separation of cross-cutting concerns

¢Late binding to non-functional requirements

¢Building blocks with black-box abstraction

16

Future CompetenciesFuture Competencies

17

/ 24

What’s Major Volume in SW industries

18

/ 24

Classic Embedded Software

¢ Resource-constrained development and usage
environments
¢ e.g. an objective function of cost, memory, performance,

and physical dimension
¢ Targeted at single or restricted tasks

¢ shorter obsolescence cycle and no general scheme for
SW/HW optimization (e.g. router software)

¢ HW replacement for flexibility or cost
¢ Mostly small-sized but manually optimized
¢ Embedded to infrastructures, utilities, or automotive

mechanics
¢ Mostly, quality can not be compromised for cost

19

/ 24

Modern Embedded Software

¢ Smart products
¢ available resources as in desktop application

¢ e.g. TI’s OMAP3430 (ARM v7, 800MHz)
¢ general-purposed and open platform

¢ e.g. Windows mobile, Android, LiMo, Symbian
¢ major part of system in both function and size
¢ major volume of market: mobile, home & work
¢ Needs for seamless cooperation (IT convergence)

¢ Change in priority precedence
¢ time-to-market >> cost > quality

¢ getting generous about system shut-down (Microsoft)
¢ contributed to a fast growth in the market ?

20

/ 24

Future’s Embedded Software

¢ Life-care products
¢ embedded in all types of living spaces

¢ brains, skins, bones, internal organs, artificial muscles, clothes,
glasses, personal vehicle, healthcare or medical assistant, etc.

¢ endow-able, or printable software system ?

¢ commoditized and standardized platform of IT
convergence

¢ Further change in priority precedence
¢ quality >> time-to-market > cost

¢ Liability to show certifications in quality

21

/ 24

Needed Roles & Activities

¢ Requirements engineer
¢ modeling & analysis

¢ Usability engineer
¢ system modeling in a usability view
¢ usability evaluation

¢ Software architect
¢ architectural design & analysis
¢ trade-off optimization

¢ Software system tester
¢ integration/system testing
¢ formal verification of protocol
¢ non-functional quality analysis

¢ Software developer
¢ communication-enabling technology
¢ system or infra software (e.g. OS or platform)

22

/ 24

Closing Remarks

¢Software is still high for its age, difficulty, and
importance

¢The point is to prepare software competencies
demanded in future

23

/ 24

References

1. Edward A. Lee, “What’s Ahead for Embedded Software?,”
IEEE Computer, pp. 18-26, Sept. 2000.

2. "No Silver Bullet - Essence and Accidents of Software Engine
ering", Brooks, F. P., IEEE Computer, vol. 20, no. 4, pp. 10-19,
April 1987.

3. Robert L. Glass, "Software: Hero or Zero?," IEEE Software,
vol. 25, no. 3, pp. 96, 95, May/June 2008

4. Kiczales, G, “Beyond the black box: open implementation,”
IEEE Software, vol. 13, no. 1, Jan 1996.

24

