Competencies needed to Software
Engineers in the Forthcoming IT

Industrieu,

Lee, Joon-Sang
LG Electronics Advanced Research Institute




What makes software difficult?

Future competencies




OMPUTL

g% . No
‘/ A Siluer
TE Y L Bullet

What Makes




Negative phenomena at IT work places
No precise estimation of effort and schedule
Instant coding from unwritten requirements
Low reusability, and no trust on SW from others
Repeated & overtime work (6 code lines a year)
Frequent changes in requirements
Side work for hardware system ?
None asks about SW quality seriously (even end-users)
Always being dreadful about any little change
No time buffer to consider maintainability or robustness
Is learning programming language all ?
No objective & systematic qualification criteria on experts

Is software so inherently easy and simple to be not worthy ?
There’s been no matured software engineering yet ?

SW is the most creative, complex, and difficult work, but too easy to startup and
partially demonstrate with no concept of quality!
HW engineers < SW developers < SW engineers

4 |24




Theories about what exists and how we know
that is exists

notice that software is invisible.

Essential or accidental characteristics ?

this horse is white vs. this horse is a Rind of brute
fact

How to define SW’s beings & their behaviors

form & matter via state-based lifecycle model




What exist in the computqtional space

Ontology
o process or object ? aggregate of them?

Epistemology

o What do components know about one another ?
o Scoping rule ? Or connectivity via naming server ?

Protocols
o Dictations of how to interact among components ?
o Synchronous or asynchronous ? with a type of IPC?

Lexicon
o Vocabulary of component interactions




and Accidents

Invisibility
No geometric abstraction
o e.g. land (map), silicon chips (diagrams), computers
(connectivity schema), building (floor plan)
Just superimposed directed graphs on upon
another

o control/data flow, data dependency, time sequence,
name-space relationships, module structure, etc.

o Even planar so inherently hierarchical




and Accidents

Complexity

No repeated elements are abound

o Scaling-up does not merely mean a repetition of the same
elements

Order-of-magnitude more states than digital computers
o Flow-like architecture vs. invocation-like architecture
© No black-box abstraction; low reusability & optimizability
The most complex entities than any other human
construct, for its size
o Inherently hierarchical structure
o Non-linear increase with size

Not only technical problem, management problems come




and Accidents

Conformity

No unifying principles as with Physics

o “there must be simplified explanations of nature, because
God is not capricious or arbitrary” said Einstein

Arbitrary complexity caused by various people
o last arrival on the scene & most conformable

Changeability
Infinitely malleable and easy for change
o SW is hero or zero?

Embedded in a cultural matrix of applications
o Various stakeholders with different interests and knowledge




and Accidents

Infinitely malleable no geometric

i ‘ ’ abstraction

Changeability

®

no unified principles no repeated building blocks




Essences and

Breakthroughs against accidents

High-level languages

o conceptual constructs: operations, data types, sequences, and
communication

Unified programming environments
o Integrated libraries, file format, tool benches, testing & debugging,

Hopes for the silver

Object-Oriented Programming
o ADT & hierarchical types
Automatic programming (since 1985)
Graphical programming
Program verification




Revolutionary or incremental advances towards
“essences” and “accidents”?
Productivity equation

time_of task=>__ _. (frequency), x (time).

nei

Promising attacks on Conceptual Essence
Buy vs. build

o Firstly mentioned in the NATO Software Engineering
Conferences, 1968

Requirements refinement and rapid prototyping
Great designers




domain-specific
proprietary industry-wide
el lined platformized platformized
modularity feature-
oriented
assembly
hardcoded

service- high-level construction

architecture-
based

collaboration 3) RAPID PROTOTYPING
-based
object- aspect-
J { d future SW platform
oriented oriente 2) NON-FUNCIOTNAL § 1) PRODUCTIVITY
: QUALITY
subject- « core-functionality-proven (buy)

oriented * usability-centric (refinement/rapid prototyping)

oriented
model-
driven
structured

Computational business logic & roles » architecture-level optimization (great designer)
Reflection B/ 24




Definition
“a computational process that is able to reason about
itself” by Brian Smith (1982)

“self-referential behaviors” in computational process

Analogies
program expression < program data
metaphor < object
control program <> robot arm

M {0, 8k Itfua®

< the Matrix




In high-level programming

Class cls = Class.forName("Foo");

Object foo = cls.newlnstance();

Method method = new Method("hello() { System.out(“hello”); }");
cls.add(method);

cls.invoke(foo, "hello”, null); // ok?




For further evolvability
Dynamically evolvable
Autonomously adaptable
Context-aware

For higher modularity & reusability
Separation of cross-cutting concerns

Late binding to non-functional requirements
Building blocks with black-box abstraction







What'’s Major Volume in SW industries

b4 b4

I3 £X

- S— SHgCic
= ) Apaey

I_:-rl: I-IEIET;'E il-l I.I w
WA WP '
CIXIETy MBR :rlzlli
& dA HEYT




Resource-constrained development and usage
environments

e.g. an objective function of cost, memory, performance,
and physical dimension

Targeted at single or restricted tasks

shorter obsolescence cycle and no general scheme for
SW/HW optimization (e.g. router software)

HW replacement for flexibility or cost
Mostly small-sized but manually optimized

Embedded to infrastructures, utilities, or automotive
mechanics

Mostly, quality can not be compromised for cost




Smart products

available resources as in desktop application
o e.g. TI's OMAP3430 (ARM v7, SOOMH?2)

general-purposed and open platform
o e.g. Windows mobile, Android, LiMo, Symbian

major part of system in both function and size
major volume of market: mobile, home & work
Needs for seamless cooperation (IT convergence)

Change in priority precedence

time-to-market >> cost > quality
o getting generous about system shut-down (Microsoft)
o contributed to a fast growth in the market ?




Life-care products

embedded in all types of living spaces

o brains, skins, bones, internal organs, artificial muscles, clothes,
dlasses, personal vehicle, healthcare or medical assistant, etc.

o endow-able, or printable software system ?

commoditized and standardized platform of IT
convergence

Further change in priority precedence
quality >> time-to-market > cost

Liability to show certifications in quality




Requirements engineer
modeling & analysis

Usability engineer
system modeling in a usability view
usability evaluation

Software architect
architectural design & analysis
trade-off optimization

Software system tester
integration/system testing
formal verification of protocol
non-functional quality analysis

Software developer
communication-enabling technology
system or infra software (e.g. OS or platform)

22 | 24




Software is still high for its age, difficulty, and
importance

The point is to prepare software competencies

demanded in future




Edward A. Lee, “What’s Ahead for Embedded Software?,”
IEEE Computer, pp. 18-26, Sept. 2000.

"No Silver Bullet - Essence and Accidents of Software Engine
ering", Brooks, F. P., IEEE Computer, vol. 20, no. 4, pp. 10-19,
April 1987.

Robert L. Glass, "Software: Hero or Zero?," IEEE Software, ”
vol. 25, no. 3, pp. 96, 95, May/June 2008

Kiczales, G, “Beyond the black box: open implementation,”
IEEE Software, vol. 13, no. 1, Jan 1996.




