Systems and Software Verification

Chapter 7. Safety Properties

Lecturer: JUNBEOM YOO jbyoo@konkuk.ac.kr http://dslab.konkuk.ac.kr

7. Safety Properties

Safety property

- Under certain conditions, an (undesirable) event never occur.
- Examples:
 - (S1) "Both processes will never be in their critical sections simultaneously (mutual exclusion) "
 - (S2) " Memory overflow will never occur "
 - (S3) " The situation ... is impossible "
 - (S4) " As long as the key is not in the ignition position, the car won't start " ← with conditions
 - ¬ safety property = reachability property
 - ¬ reachability property = safety property

Organization of Chapter 7

- Safety Properties in Temporal Logic
- A Formal Definition
- Safety Properties in Practice
- The history Variables Method

7.1 Safety Properties in Temporal Logic

- AG Φ
 - σ never occurs. "
 - (S1) "Both processes will never be in their critical sections simultaneously "
 - AG ¬(crit_sec₁ ∧ crit_sec₂)
 - (S2) " Memory overflow will never occur "
 - AG ¬overflow
 - (S3) " The situation ... is impossible "
 - AG ¬situation
 - (S4) " As long as the key is not in the ignition position, the car won't start "
 - A (¬start W key) (using weak until)
 - A (¬start U key) ← Not a safety property!

7.2 A Formal Definition

- Syntactic characterization
 - Safety properties can be written in the form AG ϕ^-
 - ϕ^- is a past temporal formula
 - When a safety property is violated, it should be possible to instantly notice it.
 - We can only notice it, in the current state, relying on events which occurred earlier.
- Temporal logic with past
 - CTL* does not provide past combinators
 - But, we can use a mirror image of future combinators (F-1, X-1)

• AG ϕ^- in practice

- (S1) AG \neg (crit_sec₁ \land crit_sec₂)
 - $\neg (\text{crit_sec}_1 \land \text{crit_sec}_2) \text{ is a } \phi^-$
- (S4) A ¬start W key
 - Can be rewritten in the form: AG (start \Rightarrow F⁻¹ key)
 - "It is always true (AG) that if the car starts, then (⇒) the key was inserted beforehand (F-1). "
- If Ψ_1 and ψ_2 are safety properties, then $\Psi_1 \wedge \psi_2$ again a safety property.
 - But, $\Psi_1 \vee \Psi_2$ is in general not

Safety properties and diagnostic

- If AG ϕ^- is not satisfied, then there necessarily exists a finite path leading from *init* to it.
- Since ϕ^- is a past formula.

7.3 Safety Properties in Practice

- Safety properties are verified simply by submitting it to a model checker.
- But, in real life, hurdles spring up.
- A simple case: non-reachability
 - The most safety properties
 - $\neg EF (crit_in_1 \land crit_in_2) = AG \Phi^-$
 - ¬(crit_in₁ ^ crit_in₂) is a present formula

Safety without past

- A (\neg start W key) is used more often than AG (start \Rightarrow F⁻¹ key)
- But, no model checker is able to deal with past formulas. So, mixed logics are used.
- The problem is their identification.
 - → If they are identified, then it can be dealt with similarly
 - → Otherwise, we have to use the method of history variables (in section 7.4)

Safety with explicit past

- No model checker is able to handle temporal formula with past.
- Two approaches:
 - 1. Eliminate the past (in principle, it is possible to translate mixed formulas to pure-future ones)
 - AG $(\phi \Rightarrow F^{-1}\psi) \equiv A (\neg \phi W \psi)$, but not easy.
 - 2. History variable method (section 7.4)

7.4 The History Variables Method

• Skipped !!!