2008 Spring

Software Special Development 1

Discussion

- Facts and Fallacies of Software Engineering
(Part I

Lecturer: JUNBEOM YOO
jbyoo@konkuk.ac.kr



e 55 Facts & 10 Fallacies

*‘

Facts and Fallacies of
Software Engineering

Robert L. Glass
Foreword by Alan M. Davis

Az Eo] F5Lo)

SRR

Konkuk University

>3



The most important fact in software work is the quality of
the programmers.

Hype (about tools and techniques) is the plague on the
house of software.

Konkuk University 3



Fact 1. The most important fact in software work Is the

quality of the programmers.

 The most important factor in software work is not the tools, processes,
methods, or techniques used by the programmers, but rather the quality of
the programmers themselves.

 “The major problems of our work are not so much technological
as sociological in nature.” (Peopleware, 1999)

 “The prime factor in affecting the reliability of software is in the
selection, motivation, and management of the personnel who

: L _ SOFTWARE
design and maintain it” (Rubey, 1978) l—.hé&hl—ﬂ-l[ﬁg

WARRY W BOEH

* Question: “If your life depended on a particular piece of software, what
would you want to know about it?”

— Answer:

» Issues: “We don’'t know how to identify the ‘best’ people’”

Konkuk University 4



Fact 5. Hype (about tools and techniques) is the plague

on the house of software.

 Exaggerated advertisements are the plague on the house of software.
They claim that improvement in tools and technologies can increase
productivity and quality of software up to 5~35%. But, the person who is
superior to others by 10 times can also achieve the same improvement.

« It has been a long time since the last true breakthrough in 1950s.
* There is no silver bullets in this age.

 There is very little supporting evidence for most claims.

 The highest benefit from reuse in process improvement was
10 ~ 35%. (Grady, 1997)

* Question: Why we’'ve kept believing exaggerated advertisements for a
long time?

Konkuk University 5



0
(q))]
Q
=
D
=3
M
-
~+
0
Q
m
N
—t
=3
QD
—+
@)
-

Software estimation usually occurs at the wrong time.

There iIs a disconnect between software management and
their programmers.

Explicit requirements "explode" as implicit (design)
requirements for a solution evolve.

Konkuk University 6



Fact 9. Software estimation usually occurs at the wrong

time.

« Estimation usually occurs before determining what the requirements are and
understanding the problem itself, but no one found any problem until
noticing this fact.

« The first phase of a project is to determine what the requirements are.

— Why do we make estimates before we understand what the problem is that we are
trying to solve?

e Question: “What causes run-away projects?”
— Answer: unstabie requirements and poor estimation.

 Marketing manager said to project manager, “You don’t have to understand
.. we've already announced the release date”

e Issues: How and When we can estimate the project well?

Konkuk University 7



Fact 13: There is a disconnect between software

management and their programmers

* In one research study of a project that failed to meet its estimates and was
seen by its management as a failure, the technical participants saw it as the
most successful project they had ever worked on.

« Many problems have their origin at the very beginning of project
. ill-defined scope, unrealistic schedule, missing requirements

* Engineers can forecast that the die was cast on this project from day one.

* “Projects where no estimates were prepared at all fared best on
productivity.”(Jeffery and Lawrence, 1985)

« “A very strong correlation between level of productivity and a feeling of
control” (Landsbaum and Glass, 1992)

* Question: What do you think the most important factor from an aspect of
management?

Konkuk University 8



Fact 26: Explicit requirements "explode" as implicit

(design) requirements for a solution evolve.

When things gets messy from requirements to design, it's derived
requirements grow factor of up to 50.

» Traceability from requirements to design, code, test cases, and all
documents are considered desirable.

* But, traceability has proven to be an illusive Grail because of its
complexity.

» Question:

— How do we manage requirements when they are continuously being
discovered?

— What is the use of traceability?

Konkuk University 9



