
RECOMMENDED SKILLS AND KNOWLEDGE RECOMMENDED SKILLS AND KNOWLEDGE
FOR SOFTWARE ENGINEERS

-By Steve Tockey-By Steve Tockey

컴퓨터공학부

200711422 김부년

ContentsContents

I d i1. Introduction.
2. Computer Science Versus Software Engineering,

From First PrinciplesFrom First Principles.
3. Recommended Software Engineering skills and

knowledge.knowledge.
1. Computing Theory
2. Software Practice
3. Engineering Economy
4. Customer and Business Environment

4. Practical Implications.
S5. Summary.

1. Introduction1. Introduction

컴퓨터 과학에 대한 적절한 기술이나 지식의 구성을 정립해야 하는 이유가 산컴퓨터 과학에 대한 적절한 기술이나 지식의 구성을 정립해야 하는 이유가 산
업에 걸쳐서 있다.

the Computing Sciences Accreditation Board has published
its “Criteria for Accrediting Programs in Computer Science”
A survey of curricula available on the World Wide Web. -
> 소프트웨어 엔지니어링을 위한 적절한 지식들이나 기술들을 무엇이 구성하는지에 대한
합의된 바가 거의 없었다합의된 바가 거의 없었다.

2. Computer Science Versus Software Engineering,
From First Principles.

S i Science :
- a department of systematized knowledge as an object of
study; knowledge or system of knowledge covering general y; g y g g g
truths or the operation of general laws, especially as obtained
and tested through scientific method.

Engineering :
- the profession in which a knowledge of the mathematical and p g
natural sciences gained study, experience, and practice is
applied with judgement to develop way to utilize, economically,
the materials and forces of nature for the benefit of mankind.the materials and forces of nature for the benefit of mankind.

2. Computer Science Versus Software Engineering,
From First Principles.

S 지식을 추구한다Science -> 지식을 추구한다
Engineering -> 사람에게 이로움을 주기 위해 그 지식을 적용한다.

(For Example)
Ch i t > 우리가 관찰 할 수 있는 화학작용에 대한 지식을 좀더 이해하기 편하도Chemistry -> 우리가 관찰 할 수 있는 화학작용에 대한 지식을 좀더 이해하기 편하도
록 체계화 하여 정립시켜 놓은 것.
Chemistry Engineering -> 화학적 지식과 함께 (공학적인)경제의 이해를 동반Chemistry Engineering > 학적 식 함 (공학적인)경 를 동반
하는 것.

Ex .압력용기 디자인의 고안, Waste-Heat-Removal 매커니즘.

2. Computer Science Versus Software Engineering,
From First Principles.

즉, 과학(Science)이라는 가지와 공학(Engineering)이라는 기술적 분야의 가지는 관즉, 학() 는 공학(g g) 는 술적 분 는 관
련이 있지만 구분 됨.
과학이라는 가지는 그 학문에 대한 이론적인 지식을 계속 확장시켜 나가는 것이라면 공학이
라는 가지는 그와 같은 이론적 지식을 실용적이고 경제적으로 적용한 것라는 가지는 그와 같은 이론적 지식을 실용적이고 경제적으로 적용한 것.

Engineering = Scientific theory + Practice
+ (E i i) E+ (Engineering) Economy

2. Computer Science Versus Software Engineering,
From First Principles.

C t i Computer science :
a department of systematized knowledge about computing as
an object of study; a system of knowledge covering general j y; y g g g
truths or the operation of general laws of computing especially
as obtained and tested through scientific method.

Software Engineering :
the profession in which a knowledge of the mathematical and p g
computing sciences gained by study, experience, and practice
is applied with judgement to develop ways to utilize,
economically, computing systems for the benefit of mankind.economically, computing systems for the benefit of mankind.

2. Computer Science Versus Software Engineering,
From First Principles.

Software Engineering = Computing theorySoftware Engineering = Computing theory
+ Practice + (Engineering) Economy

3. Recommended Software Engineering skills and
k l dknowledge.

사전적인 의미에서의 “Skill”과 “K l d ”사전적인 의미에서의 Skill 과 Knowledge

Skill a learned power of doing something competently a Skill : a learned power of doing something competently; a
developed aptitude or ability

Knowledge : facts or ideas acquired by study, investigation,
observation, or experience.

누구도 모든 엔지니어가 “이상적”인 위치까지 기대하지 않는다※ 누구도 모든 엔지니어가 “이상적”인 위치까지 기대하지 않는다!!

3.1 Computing Theory.3.1 Computing Theory.

f fKnowledge of computing theory allows software
engineers to:

Propose a larger number of diverse designs than would
th i b iblotherwise be possible.

Id tif d di d d d i th t ld t Identify and discard proposed design that could not
work (because they violate some known theory) earlier
than otherwise possible.than otherwise possible.

3 1 Computing Theory3.1 Computing Theory.

Recommended computing theory skills and knowledge

P i l t C t bilit th d T iProgramming language concepts

Data structure concepts

Database system concepts

Computability theory and Turing
machine theory

Complexity theory
Database system concepts

Relational Algebra

Operation system concepts

Linguistics and parsing theory

Computer graphics
Operation system concepts

Software architectures

Computer architectures

Set theory

Predicate logic
Computer architectures

Automata theory and Petri nets
Formal proofs

Induction

3.2 Software Practice3.2 Software Practice

Recommended software product engineering skills and knowledge

Requirements analysis and equirements engineeringRequirements, analysis, and equirements engineering

Software design

Code optimization and semantics preserving transformationsCode optimization and semantics preserving transformations

Human-computer interaction, and usability engineering

Specific programming languagep p g g g g

Debugging techniques

Software-software and software-hardware integration

Product family engineering techniques and reuse techniques

CASE/CASE tools

3.2 Software Practice3.2 Software Practice

R d d ft lit kill d k l dRecommended software quality assurance skills and knowledge

Task kick-offs, previews, and readiness reviews

Peer reviews, inspection, and walk-throughs

Software project audits

R i t t i /Q lit F ti D l t (QFD)Requirements tracing/Quality Function Deployment (QFD)

Software testing techniques

Proofs of correctnessProofs of correctness

Process definition and process improvement techniques

Statistical process controlStatistical process control

Technology innvation

3.2 Software Practice3.2 Software Practice

Recommended software product deployment skills and knowledgeRecommended software product deployment skills and knowledge

User documentation techniquesq

Product packaging techniques

System conversion techniques

Customer support techniques

General technology transfer issues

3.2 Software Practice3.2 Software Practice
Recommended software engineering management skills and knowledge

Risk assessment and risk management

Project planning

Alt ti ft lif lAlternative software lifecycles

Organizational structures

Organizational behaviorOrgani ational behavior

Project tracking and oversight

Cost management, schedule management, and resource management

Metrics, goal-question-metric paradigm, and measurement theory

Configuration management and change management

S li d b t t tSupplier and subcontract management

Effective meeting skills

Effective communication skills

Negotiation skills

3.3 Engineering Economy3.3 Engineering Economy

E h if d ffi i f Economy : thrifty and efficient use of resources.

E i i i li d i i h h Engineering economy is applied microeconomics, where the
fundamental question is, “Is it in the best interest of the
enterprise to invest its limited resources in a proposed technical p p p
endeavor, or would the same investment produce a higher
return elsewhere?”

Business적인 관점에서 Engineering 의 최후의 목표는 최소 비용으로 최대의 이익을 창
출하는 것이다출 는 것 .

3.3 Engineering Economy3.3 Engineering Economy

Leon Levy.
Software economics has often been misconceives as the
mean of estimating the cost of programming projects But mean of estimating the cost of programming projects. But
economics is primarily a science of choice, and software
economics should provide methods and models for analyzing
the choices that software projects must make.

In any software project there is always a balance between
short term and long term concerns…economic methods can
help us make enlightened choices.e p us a e e g e ed c o ces.

3.3 Engineering Economy3.3 Engineering Economy

R d d i i kill d k l dRecommended engineering economy skills and knowledge

Time value of money (interest)

Economic equivalenceEconomic equivalence

Inflation

DepreciationDepreciation

Income taxes

Decision making among alternativesDecision making among alternatives

Decision making under risk and uncertainty

Evaluating public alternativesEvaluating public alternatives

Evaluating public activities

Breakeven

Optimization

3.4 Customer and Business Environment3.4 Customer and Business Environment

Wh i h d h i h i b i ?Who is the customer and what is their business?
What do they use our products and services for?
Wh h d h d d i d?When, where, and why are our products and services used?
Are our products and services being used in a way different
than originally intended? If so why?than originally intended? If so, why?
How do our products and services affect the customers’
business?
What external restrictions or regulations impact the ability to
deliver products and services to the customer(s)?

3.4 Customer and Business Environment3.4 Customer and Business Environment

Recommended engineering economy skills and knowledge

Customer satisfaction assessment techniques

Competitive benchmarking techniquesCompetitive benchmarking techniques

Technical communication

Intellectual property lawIntellectual property law

Ethics and professionalism

4. Practical implications4. Practical implications

질적으로 나은 사람을 제공하는 것은 소프트웨어 학위 프로그램의 첫 목표가 되어야질적으로 나은 사람을 제공하는 것은 소프트웨어 학위 프로그램의 첫 목표가 되어야
한다.

이러한 지식과 기술을 배우기 위해선 정형화된 소프트웨어 엔지니어링 학위 컬
리큘럼의 기초 형식이 요구된다리큘럼의 기초 형식이 요구된다.

이러한 간단한 바람으로부터의 조언을 진정한 과정으로 바꾸기 위해서 산업과
대학이 연동하는 포럼 같은 것을 해야한다.

5 Summary5. Summary

The end.
- Thanks -

