
Software Modeling & Analysis
2008 Fall

g y

Part 5. Verification and Validation
- Verification and ValidationVerification and Validation
- Software Testing

Lecturer: JUNBEOM YOO
jbyoo@konkuk.ac.kr

※ This lecture note is based on materials from Ian Sommerville 2006.

Ch t 22Chapter 22.

Verification and Validation

ObjectivesObjectives

T i d f ifi i d lid i• To introduce software verification and validation
• To discuss the distinction between them
• To describe program inspection process and its role in V & Vp g p p
• To explain static analysis as a verification technique
• To describe the Cleanroom software development process

3Konkuk University

Verification vs Validation

V ifi i

Verification vs. Validation

• Verification:
– “Are we building the product right”.
– The software should conform to its specification.

• Validation:
– "Are we building the right product”.g g p
– The software should do what the user really requires.

4Konkuk University

V & V Process

V&V i h l lif l I b li d h i

V & V Process

• V&V is a whole life-cycle process : It must be applied at each stage in
the software process.

• Two principal objectives
– Discovery of defects in a system
– Assessment of whether or not the system is useful and useable in an

operational situation

• Goals of V&V
– V&V should establish confidence that the software is suitable for purpose.
– This does NOT mean completely free of defects.
– Rather, it must be good enough for its intended use and the type of use will g g yp

determine the degree of confidence that is needed.

5Konkuk University

V & V ConfidenceV & V Confidence

D d t ’ t ti d k ti• Depends on system’s purpose, user expectations, and marketing
environment

– Software function
• The level of confidence depends on how critical the software is to an organisationThe level of confidence depends on how critical the software is to an organisation.

– User expectations
• Users may have low expectations of certain kinds of software.

– Marketing environment
• Getting a product to market early may be more important than finding defects in

the program.

6Konkuk University

Static and Dynamic VerificationStatic and Dynamic Verification

S f I i• Software Inspections :
– Analyze static system representation to discover problems (Static Verification)
– May be supplemented by tool-based document and code analysis

• Software Testing :
– Exercising and observing product behaviour (Dynamic Verification)
– System is executed with test data and its operational behaviour is observed.

7Konkuk University

Program Testing

C l h f NOT h i b

Program Testing

• Can reveal the presence of errors, NOT their absence.
• Can validate non-functional requirements because software is executed

to see how it behaves.
• Should be used in conjunction with static verification to provide full V&V

coverage.

• Types of testing
– Defect testing

• Tests designed to discover system defectsTests designed to discover system defects
• A successful defect test is one which reveals the presence of defects in a system.
• Covered in Chapter 23 (Soon)

– Validation testing
• Intended to show that the software meets its requirements.
• A successful test is one that shows that a requirements has been properly

implemented.

8Konkuk University

Testing and Debugging

D f i d d b i di i

Testing and Debugging

• Defect testing and debugging are distinct processes.
– Testing is concerned with establishing the existence of defects in a program.
– Debugging is concerned with locating and repairing these errors.

• Debugging involves formulating a hypothesis about program behaviour
then testing these hypotheses to find the system error.g yp y

• Debugging process:

9Konkuk University

V & V Planning

V&V Pl i h ld t t l i th d l t

V & V Planning

• V&V Planning should start early in the development process.
– The plan should identify the balance between static verification and testing.
– Test planning is about defining standards for testing process rather than

describing product testsdescribing product tests.

• V-Model for Software Testing

10Konkuk University

Software Test PlanSoftware Test Plan

The testing process
A description of the major phases of the testing process. These might be
as described earlier in this chapter.

Requirements traceability
Users are most interested in the system meeting its requirements andUsers are most interested in the system meeting its requirements and
testing should be planned so that all requirements are individually tested.

Tested items
The products of the software process that are to be tested should be
specified.

Testing schedule
An overall testing schedule and resource allocation for this schedule.
This, obviously, is linked to the more general project development
schedule.

Test recording procedures
It is not enough simply to run tests. The results of the tests must be
systematically recorded. It must be possible to audit the testing process
to check that it been carried out correctly.

Hardware and software requirementsHardware and software requirements
This section should set out software tools required and estimated
hardware utilisation.

Constraints
Constraints affecting the testing process such as staff shortages should
be anticipated in this section.

11Konkuk University

Software InspectionSoftware Inspection

I l l i i h i i h i f• Involves people examining the source representation with aim of
discovering anomalies and defects.

• Does not require execution of system, so may be used before
implementation.

• May be applied to any representation of the system (requirements,
design, configuration data, test data, etc.).

• Effective technique for discovering program errors

• Advantages:
– Many different defects may be discovered in a single inspection.

I t ti d f t k th l ti i d– In testing, one defect may mask another so several executions are required.
– Using domain and programming knowledge, reviewers are likely to have seen

the types of error that commonly arise.

12Konkuk University

Inspection and TestingInspection and Testing

I i d i l d i ifi i• Inspection and testing are complementary and not opposing verification
techniques.

• Both should be used during the V & V process.

• Inspections
– Can check conformance with a specification but not conformance with theCan check conformance with a specification but not conformance with the

customer’s real requirements.
– Cannot check non-functional characteristics such as performance, usability, etc.

13Konkuk University

Program InspectionProgram Inspection

F li d h d i• Formalized approach to document reviews
• Intended explicitly for detecting defects (not correction).
• Defects may be y

– Logical errors
– Anomalies in the code that might indicate an erroneous condition

(e.g. an uninitialized variable)
– Non-compliance with standards

14Konkuk University

Pre Conditions for InspectionPre-Conditions for Inspection

A i ifi i b il bl• A precise specification must be available.
• Team members must be familiar with the organisation standards.
• Syntactically correct code or other system representations must be y y y p

available.
• An error checklist should be prepared.
• Management must accept that inspection will increase costs early in theManagement must accept that inspection will increase costs early in the

software process.
• Management should not use inspections for staff appraisal i.e. finding

out who makes mistakesout who makes mistakes.

15Konkuk University

Inspection ProcedureInspection Procedure

S t i t d t i ti t• System overview presented to inspection team.
• Code and associated documents are distributed to inspection team in

advance.
I ti t k l d di d t d• Inspection takes place and discovered errors are noted.

• Modifications are made to repair discovered errors.
• Re-inspection may or may not be required.

16Konkuk University

Inspection RolesInspection Roles

Author or owner The programmer or designer responsible for
producing the program or document. Responsible
for fixing defects discovered during the inspectionfor fixing defects discovered during the inspection
process.

Inspector Finds errors, omissions and inconsistencies in
programs and documents May also identifyprograms and documents. May also identify
broader issues that are outside the scope of the
inspection team.

Reader Presents the code or document at an inspectionp
meeting.

Scribe Records the results of the inspection meeting.

Chairman or moderator Manages the process and facilitates the inspectionChairman or moderator Manages the process and facilitates the inspection.
Reports process results to the Chief moderator.

Chief moderator Responsible for inspection process improvements,
checklist updating, standards development etc.p g, p

17Konkuk University

Inspection ChecklistInspection Checklist

Ch kli f h ld b d d i h i i• Checklist of common errors should be used to drive the inspection.
• Error checklists are programming language dependent and reflect the

characteristic errors that are likely to arise in the language.
• In general, the 'weaker' the type checking, the larger the checklist.

• Examples of common errors in checklists :Examples of common errors in checklists :
– Data faults
– Control faults
– Input/Output faults– Input/Output faults
– Interface faults
– Storage management faults

Exception management faults– Exception management faults

18Konkuk University

Automated Static AnalysisAutomated Static Analysis

S i l f l f i• Static analysers are software tools for source text processing.
• They parse the program text and try to discover potentially erroneous

conditions.
• They are very effective as an aid to inspections - they are a supplement

to but not a replacement for inspections.

Fault class Static analysis check

Data faults Variables used before initialisation
Variables declared but never used
Variables assigned twice but never used betweeng
assignments
Possible array bound violations
Undeclared variables

Control faults Unreachable code
Unconditional branches into loops

Input/output faults Variables output twice with no intervening
assignment

Interface faults Parameter type mismatches
Parameter number mismatches
Non-usage of the results of functionsNon usage of the results of functions
Uncalled functions and procedures

Storage management
faults

Unassigned pointers
Pointer arithmetic 19Konkuk University

Stages of Static AnalysisStages of Static Analysis

C l fl l i• Control flow analysis
– Checks for loops with multiple exit or entry points, finds unreachable code…

• Data use analysis
– Detects uninitialized variables, variables written twice without an intervening

assignment, variables which are declared but never used, etc.

• Interface analysis
– Checks the consistency of routine and procedure declarations and their use

• Information flow analysis
– Identifies the dependencies of output variables. Does not detect anomalies p p

itself but highlights information for code inspection or review

• Path analysis
– Identifies paths through the program and sets out the statements executed in de t es pat s t oug t e p og a a d sets out t e state e ts e ecuted

that path. It is potentially useful in the review process.

• Both these stages generate vast amounts of information. They must be
used with care.

20Konkuk University

Use of Static AnalysisUse of Static Analysis

P i l l l bl h• Particularly valuable when a
language such as C is used
which has weak typing and
h

138% more lint_ex.c
#include <stdio.h>
printarray (Anarray)
 int Anarray;

hence many errors are
undetected by the compiler.

{ printf(“%d?Anarray); }

main ()
{
int Anarray[5]; int i; char c;

• Less cost-effective for languages
like Java that have strong type
checking and can therefore
d d i

y[]; ; ;
 printarray (Anarray, i, c);
 printarray (Anarray) ;
}

139% cc lint ex cdetect many errors during
compilation.

139% cc lint_ex.c
140% lint lint_ex.c

lint_ex.c(10): warning: c may be used before set
lint_ex.c(10): warning: i may be used before set
printarra ariable # of args lint e c(4) lint e c(10)printarray: variable # of args. lint_ex.c(4) :: lint_ex.c(10)
printarray, arg. 1 used inconsistently lint_ex.c(4) :: lint_ex.c(10)
printarray, arg. 1 used inconsistently lint_ex.c(4) :: lint_ex.c(11)
printf returns value which is always ignored

Example of static analysis

21Konkuk University

Verification through Formal MethodsVerification through Formal Methods

F l h d b d h h i l ifi i f• Formal methods can be used when mathematical specification of system
is prepared.

• Formal methods are the ultimate static verification technique.
• They involve detailed mathematical analysis of the specification and may

develop formal arguments that a program conforms to its mathematical
specification.

22Konkuk University

Arguments about Formal MethodsArguments about Formal Methods

Ad• Advantages:
– Produce mathematical specifications which require detailed analysis of the

requirements and this is likely to uncover errors.
D t t i l t ti b f t ti h th i l d– Detect implementation errors before testing, when the program is analyzed
alongside the specification.

Di d t• Disadvantages:
– Require specialized notations that cannot be understood by domain experts.
– Very expensive to develop specification sand even more expensive to show

th t th t th t ifi tithat the program meets that specification.
– May be possible to reach the same level of confidence more cheaply using

other V & V techniques.

23Konkuk University

Cleanroom Software Development

Th i d i d f h 'Cl ‘ i i d

Cleanroom Software Development

• The name is derived from the 'Cleanroom‘ process in semiconductor
fabrication. The philosophy is defect avoidance rather than defect
removal.

• Based on
– Incremental development - Formal specification
– Static verification using correctness arguments
– Statistical testing to determine program reliability

24Konkuk University

Characteristics of Cleanroom ProcessCharacteristics of Cleanroom Process

F l ifi ti i t t t iti d l• Formal specification using a state transition model
• Incremental development where the customer prioritises increments
• Structured programming - limited control and abstraction constructs are

d i thused in the program.
• Static verification using rigorous inspections
• Statistical testing of the system

• Team organization:
– Specification team: Responsible for developing and maintaining the system

fspecification.
– Development team: Responsible for developing and verifying the software.

The software is NOT executed or even compiled during this process.
C tifi ti t R ibl f d l i t f t ti ti l t t t– Certification team: Responsible for developing a set of statistical tests to
exercise the software after development. Reliability growth models used to
determine when reliability is acceptable.

25Konkuk University

Evaluation of Cleamroon Process

Th lt f i th Cl h b i i

Evaluation of Cleamroon Process

• The results of using the Cleanroom process have been very impressive
with few discovered faults in delivered systems.

• Independent assessment shows that the process is no more expensive
than other approachesthan other approaches.

• There were fewer errors than in a 'traditional' development process.

However the process is not widely used It is not clear how this approach• However, the process is not widely used. It is not clear how this approach
can be transferred to an environment with less skilled or less motivated
software engineers.

26Konkuk University

SummarySummary

V ifi i d lid i h hi V ifi i h• Verification and validation are not the same thing. Verification shows
conformance with specification; validation shows that the program meets
the customer’s needs.

• Test plans should be drawn up to guide the testing process.
• Static verification techniques involve examination and analysis of the q y

program for error detection.
• Program inspections are very effective in discovering errors.
• Program code in inspections is systematically checked by a small team to og a code spect o s s syste at ca y c ec ed by a s a tea to

locate software faults.
• Static analysis tools can discover program anomalies which may be an

indication of faults in the code.
• Cleanroom development process depends on incremental development,

static verification and statistical testing.

27Konkuk University

Ch t 23Chapter 23.

Software Testing

ObjectivesObjectives

T di di i i b lid i i d d f i• To discuss distinctions between validation testing and defect testing
• To describe principles of system and component testing
• To describe strategies for generating system test casesg g g y
• To understand essential characteristics of tool used for test automation

29Konkuk University

Software TestingSoftware Testing

C i• Component testing
– Testing of individual program components
– Usually responsibility of component
– Tests are derived from the developer’s experience.

• System testing
– Testing of groups of components integrated to create a system or sub-system
– Responsibility of independent testing team
– Tests are based on system specification.y p

30Konkuk University

Software Testing ProcessSoftware Testing Process

31Konkuk University

Goals of Software TestingGoals of Software Testing

V lid i i• Validation testing
– To demonstrate to developer and system customer that the software meets its

requirements
A f l t t h th t th t t i t d d– A successful test shows that the system operates as intended.

• Defect testing
– To discover faults or defects in the software where its behavior is incorrect or

not in conformance with its specification
– A successful test is a test that makes the system perform incorrectly and so

d f i hexposes a defect in the system.

32Konkuk University

System TestingSystem Testing

I l i t ti t t t t b t• Involves integrating components to create a system or sub-system
• May involve testing an increment to be delivered to the customer

• Two phases:
– Integration testing

• Test team has access to system source code.
• System is tested as components are integrated• System is tested as components are integrated.

– Release testing
• Test team tests a complete system to be delivered as a black-box.

33Konkuk University

Integration TestingIntegration Testing

I l b ildi t f it t d t ti it f• Involves building a system from its components and testing it for
problems that arise from component interactions.

– Top-down integration
• Develop the skeleton of the system and populate it with components• Develop the skeleton of the system and populate it with components

– Bottom-up integration
• Integrate infrastructure components then add functional components

• Incremental integration testing

34Konkuk University

Integration Testing ApproachesIntegration Testing Approaches

A hit t l lid ti• Architectural validation
– Top-down integration testing is better at discovering errors in the system

architecture.

• System demonstration
– Top-down integration testing allows a limited demonstration at an early stage

in the development.t e de e op e t.

• Test implementation
– Often easier with bottom-up integration testing.p g g

• Test observation
– Problems with both approaches. Extra code may be required to observe tests.pp y q

35Konkuk University

Release TestingRelease Testing

P f t ti t l th t ill b di t ib t d t t• Process of testing a system release that will be distributed to customers.
• Primary goal is to increase the supplier’s confidence that the system mee

ts its requirements.

• Release testing is usually black-box or functional testing
– Based on the system specification only

T t d t h k l d f th t i l t ti– Testers do not have knowledge of the system implementation.

• Release testing may include
Performance testing– Performance testing

– Stress testing

Black-box testing

36Konkuk University

Performance TestingPerformance Testing

R l i i l i i f h• Release testing may involve testing emergent properties of system, such
as performance and reliability.

• Performance tests usually involve planning a series of tests where the
load is steadily increased until the system performance becomes
unacceptable.

37Konkuk University

Stress TestingStress Testing

E i h b d i i d i l d S i h• Exercises the system beyond its maximum design load. Stressing the
system often causes defects to come to light.

• Stressing the system to test failure behaviour. Systems should not fail
catastrophically. Stress testing checks for unacceptable loss of service or
data too.

• Stress testing is particularly relevant to distributed systems that can
exhibit severe degradation as network becomes overloaded.

38Konkuk University

Component TestingComponent Testing

C i i h f i i di id l i• Component testing is the process of testing individual components in
isolation.

• Defect testing process

• Components may be:
– Individual functions or methods within an objectIndividual functions or methods within an object
– Object classes with several attributes and methods
– Composite components with defined interfaces used to access their

functionalityy

39Konkuk University

Object Class TestingObject Class Testing

C l f l i l• Complete test coverage of a class involves
– Testing all operations associated with an object
– Setting and interrogating all object attributes
– Exercising object in all possible states

• Inheritance makes it more difficult to design object class tests as the
information to be tested is not localised.

Need to define test cases for all methods
W h lib- reportWeather, calibrate,

- test, startup and shutdown

Using a state model, identify sequences of state
transitions to be tested and the event sequencestransitions to be tested and the event sequences
to cause these transitions

For example:
Waiting -> Calibrating -> Testing -> Transmitting -> WaitingWaiting > Calibrating > Testing > Transmitting > Waiting

40Konkuk University

Interface Testing

T d f l d i f i lid i b

Interface Testing

• To detect faults due to interface errors or invalid assumptions about
interfaces

• Particularly important for object-oriented development as objects are
f fdefined by their interfaces.

• Guidelines for interface testing
– Design tests so that parameters to called procedure are at the extreme ends

of their rangesg
– Always test pointer parameters with null pointers
– Design tests which cause the component to fail
– Use stress testing in message passing systemsUse stress testing in message passing systems
– In shared memory systems, vary the order in which components are activated

41Konkuk University

Interface Types and ErrorsInterface Types and Errors

I t f t• Interface types
– Parameter interfaces

• Data passes from one procedure to another.

– Shared memory interfaces– Shared memory interfaces
• Block of memory is shared between procedures or functions.

– Procedural interfaces
• Sub-system encapsulates a set of procedures to be called by other sub-systems.

– Message passing interfaces
• Sub-systems request services from other sub-systems.

• Interface misuse : Calling component calls another component and makes an• Interface misuse : Calling component calls another component and makes an
error in its use of its interface e.g. parameters in the wrong order.

• Interface misunderstanding : Calling component embeds assumptions about
the behaviour of the called component which are incorrect.p

• Timing errors : The called and the calling component operate at different speeds
and out-of-date information is accessed.

42Konkuk University

Test Case DesignTest Case Design

I l d i i th t t (i t d t t) d t t t th• Involves designing the test cases (inputs and outputs) used to test the
system.

• Goal of test case design is to create a set of tests that are effective in
validation and defect testingvalidation and defect testing.

• Test case design approaches:
Requirements based testing– Requirements-based testing

– Partition testing
– Structural testing

43Konkuk University

Requirements based TestingRequirements based Testing

A l i i l f i i i i h i• A general principle of requirements engineering is that requirements
should be testable.

• Requirements-based testing is a validation testing technique where you
consider each requirement and derive a set of tests for that requirement.

44Konkuk University

Example : LIBSYS Requirements based TestingExample : LIBSYS Requirements based Testing

LIBSYS requirements

The user shall be able to search either all of the initial set of databases or select a
subset from it.

The system shall provide appropriate viewers for the user to read documents in the
document storedocument store.

Every order shall be allocated a unique identifier (ORDER_ID) that the user shall
be able to copy to the accountÕs permanent storage area.

• Initiate user search for searches for items that are known to
be present and known not to be present, where the set of
databases includes 1 database

LIBSYS test cases

databases includes 1 database.
• Initiate user searches for items that are known to be present

and known not to be present, where the set of databases
includes 2 databases

• Initiate user searches for items that are known to be present
d k t t b t h th t f d t band known not to be present where the set of databases

includes more than 2 databases.
• Select one database from the set of databases and initiate

user searches for items that are known to be present and
known not to be present.p

• Select more than one database from the set of databases
and initiate searches for items that are known to be present
and known not to be present. 45Konkuk University

Partition TestingPartition Testing

I d d l f f ll i diff l h ll• Input data and output results often fall into different classes where all
members of a class are related.

• Each of these classes is an equivalence partition or domain where the
program behaves in an equivalent way for each class member.

• Test cases should be chosen from each partition.

Equivalence partitioning

46Konkuk University

Structural Testing

S i ll d hi b i

Structural Testing

• Sometime called white-box testing.
• Derives test cases according to program structure.
• Knowledge of the program is used to identify additional test cases.g p g y
• Objective is to exercise all program statements.

– A number of structural testing techniques exist, i.e. path testing
– A number of testing coverage exist.A number of testing coverage exist.

47Konkuk University

Path TestingPath Testing

T th t ll th th i th t d• To ensure that all the paths in the programs are executed.
• The starting point for path testing is a program flow graph that shows

nodes representing program decisions and arcs representing the flow of
control Statements with conditions become nodes in the flow graphcontrol. Statements with conditions become nodes in the flow graph.

Flow-graph forFlow graph for
binary search Independent test paths:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14
1, 2, 3, 4, 5, 14
1, 2, 3, 4, 5, 6, 7, 11, 12, 5, …
1 2 3 4 6 7 2 11 13 51, 2, 3, 4, 6, 7, 2, 11, 13, 5, …

Test cases should be derived so that
all of these paths are executed

A dynamic program analyser may be
used to check that paths have been
executed

48Konkuk University

Test AutomationTest Automation

T i i i h T i kb h id• Testing is an expensive process phase. Testing workbenches provide a
range of tools to reduce the time required and total testing costs.

• Most testing workbenches are open systems, because testing needs are
organisation-specific.

• They are sometimes
difficult to integrate

Test workbench

with closed design and
analysis workbenches.

• Scripts may be developed
for user interface simulators
and patterns for test data

tgenerators.
• Test workbench adaptation

49Konkuk University

SummarySummary

T i h h f f l i b i• Testing can show the presence of faults in a system, but it cannot prove
there are no remaining faults.

• Component developers are responsible for component testing. System
ftesting is the responsibility of a separate team.

• Integration testing is testing increments of the system. Release testing
involves testing a system to be released to a customer.

• Interface testing is designed to discover defects in the interfaces of
composite components.

• Equivalence partitioning is a way of discovering test cases - all cases in a qu a e ce pa t t o g s a ay o d sco e g test cases a cases a
partition should behave in the same way.

• Structural analysis relies on analysing a program and deriving tests from
this analysis.this analysis.

• Test automation reduces testing costs by supporting the test process
with a range of software tools.

50Konkuk University

