
Software Modeling & Analysis
2008 Fall

g y

Part 4. Development
- Rapid Software DevelopmentRapid Software Development
- Software Reuse
- Component-Based Software Engineering

Lecturer: JUNBEOM YOO
jbyoo@konkuk.ac.kr

※ This lecture note is based on materials from Ian Sommerville 2006.

Ch t 17Chapter 17.

Rapid Software Development

ObjectivesObjectives

T l i h it ti d i t l d l t l d• To explain how an iterative and incremental development process leads
to faster delivery of more useful software

• To discuss the essence of agile development methods
T l i th i i l d ti f t i• To explain the principles and practices of extreme programming

• To explain the roles of prototyping in the software process

3Konkuk University

Rapid Software DevelopmentRapid Software Development

B f idl h i b i i t b i h t• Because of rapidly changing business environments, businesses have to
respond to new opportunities and competition.

• This requires rapid software development, and delivery is not often the
most critical requirement for software systemsmost critical requirement for software systems.

• Businesses may be willing to accept lower quality software if rapid
delivery of essential functionality is possible.

• Because of the changing environment, it is often impossible to arrive at a
stable, consistent set of system requirements.
Th f t f ll d l f d l t i i ti l• Therefore a waterfall model of development is impractical

• Approach to development based on iterative specification and delivery is
the only way to deliver software quickly.

4Konkuk University

Characteristics of R S D ProcessCharacteristics of R.S.D. Process

P f ifi i d i d i l i• Processes of specification, design and implementation are concurrent.
• No detailed specification and design documentation is minimized.
• The system is developed in a series of increments. End users evaluate y p

each increment and make proposals for later increments.
• System user interfaces are usually developed using an interactive

development system.p y

5Konkuk University

Characteristics of Incremental DevelopmentCharacteristics of Incremental Development

Ad• Advantages:
– Accelerated delivery of customer services : Each increment delivers the

highest priority functionality to the customer.
U t ith th t U h t b i l d i th– User engagement with the system : Users have to be involved in the
development which means the system is more likely to meet their
requirements and the users are more committed to the system.

• Problems:
– Management problems : Progress can be hard to judge and problems hard to

find because there is no documentation to demonstrate what has been done.find because there is no documentation to demonstrate what has been done.
– Contractual problems : The normal contract may include a specification;

without a specification, different forms of contract have to be used.
– Validation problems : Without a specification, what is the system being tested

i t?against?
– Maintenance problems : Continual change tends to corrupt software structure

making it more expensive to change and evolve to meet new requirements.

6Konkuk University

PrototypingPrototyping

F l i l i i d l d d li• For some large systems, incremental iterative development and delivery
may be impractical. This is especially true when multiple teams are
working on different sites.

• Prototyping, where an experimental system is developed as a basis for
formulating the requirements, may be used. This system is thrown away
when the system specification has been agreed.

7Konkuk University

Conflicting ObjectivesConflicting Objectives

Th bj i f i l d l i d li ki• The objective of incremental development is to deliver a working system
to end-users. The development starts with those requirements which are
best understood.

• The objective of throw-away prototyping is to validate or derive the
system requirements. The prototyping process starts with those
requirements which are poorly understood.

8Konkuk University

Agile MethodAgile Method

Di i f i i h h h d i l d i d i h d l d h• Dissatisfaction with the overheads involved in design methods led to the
creation of agile methods.

– Focus on the code rather than the design
– Are based on an iterative approach to software development
– Are intended to deliver working software quickly and evolve this quickly to m

eet changing requirements

il h d b bl b i d ll di i d b i• Agile methods are probably best suited to small/medium-sized business
systems or PC products.

Principle DescriptionPrinciple Description

Customer involvement The customer should be closely involved throughout the
development process. Their role is provide and prioritise new
system requirements and to evaluate the iterations of the system.

Incremental delivery The software is developed in increments with the customer
specifying the requirements to be included in each i ncrementspecifying the requirements to be included in each i ncrement.

People not process The skills of the development team should be recognised and
exploited. The team should be left to develop their own ways of
working without prescriptive processes.

Embrace change Expect the system requirements to change and design the system
h i d h hso that it can acc ommodate th ese changes.

Maintain simplicity Focus on simplicity in both the software be ing developed and in
the development process used. Wherever possible, actively work
to eliminate complexity from the system. 9Konkuk University

Problems with Agile MethodProblems with Agile Method

I b diffi l k h i f h i l d i• It can be difficult to keep the interest of customers who are involved in
the process.

• Team members may be unsuited to the intense involvement that
characterizes agile methods.

• Prioritizing changes can be difficult where there are multiple
stakeholders.

• Maintaining simplicity requires extra work.
• Contracts may be a problem as with other approaches to iterative

development.de e op e t.

10Konkuk University

Extreme ProgrammingExtreme Programming

P h th b t k d t id l d il th d• Perhaps the best-known and most widely used agile method.
• Extreme Programming (XP) takes an ‘extreme’ approach to iterative

development.
New versions may be built several times per day– New versions may be built several times per day.

– Increments are delivered to customers every 2 weeks.
– All tests must be run for every build and the build is only accepted if tests

run successfully.y

• XP release cycle:

11Konkuk University

Testing in XPTesting in XP

SP i fi d l• SP is a test-first development.
• Incremental test development from scenarios
• Users are involved in test development and validation.p
• Automated test harnesses are used to run all component tests each time

that a new release is built.

• Test-first development:
W iti t t b f d l ifi th i t t b i l t d– Writing tests before code clarifies the requirements to be implemented.

– Tests are written as programs rather than data so that they can be executed
automatically. The test includes a check that it has executed correctly.

– All previous and new tests are automatically run when new functionality isAll previous and new tests are automatically run when new functionality is
added. Thus checking that the new functionality has not introduced errors.

12Konkuk University

Test First DevelopmentTest-First Development

W iti t t b f d l ifi th i t t b i l t d• Writing tests before code clarifies the requirements to be implemented.
• Tests are written as programs rather than data so that they can be

executed automatically. The test includes a check that it has executed
correctlycorrectly.

• All previous and new tests are automatically run when new functionality
is added. Thus checking that the new functionality has not introduced
errors.errors.

13Konkuk University

Pair Programming in XPPair Programming in XP

I XP k i i itti t th t d l d• In XP, programmers work in pairs, sitting together to develop code.
• This helps develop common ownership of code and spreads knowledge

across the team.
It i f l i h li f d i l k d t• It serves as an informal review process as each line of code is looked at
by more than 1 person.

• It encourages refactoring as the whole team can benefit from this.

• Measurements suggest that development productivity with pair
programming is similar to that of two people working independently.

14Konkuk University

RAD (Rapid Application Development)RAD (Rapid Application Development)

A il h d h i d l f i b h h• Agile methods have received a lot of attention but other approaches to
rapid application development have been used for many years.

• These are designed to develop data-intensive business applications and
rely on programming and presenting information from a database.

• RAD environment:
– Database programming language - Interface generator
– Links to office applications - Report generators

15Konkuk University

Interface GenerationInterface Generation

M li i b d l f d d l i h• Many applications are based on complex forms and developing these
forms manually is a time-consuming activity.

• RAD environments include support for screen generation including:
– Interactive form definition using drag and drop techniques
– Form linking where the sequence of forms to be presented is specified
– Form verification where allowed ranges in form fields is defined

• Visual Programming:
– Scripting languages such as Visual Basic support visual programming where p g g g pp p g g

the prototype is developed by creating a user interface from standard items
and associating components with these items

– A large library of components exists to support this type of development
– These may be tailored to suit the specific application requirements

16Konkuk University

Visual Programming with ReuseVisual Programming with Reuse

17Konkuk University

COTS ReuseCOTS Reuse

A ff i h id d l i fi d li k• An effective approach to rapid development is to configure and link
existing off the shelf systems.

• For example, a requirements management system could be built by
using:

– A database to store requirements
– A word processor to capture requirements and format reports
– A spreadsheet for traceability management

18Konkuk University

Software PrototypingSoftware Prototyping

A i i i i l i f d d• A prototype is an initial version of a system used to demonstrate
concepts and try out design options.

• A prototype can be used in:
– The requirements engineering process to help with requirements elicitation

and validation
– In design processes to explore options and develop a UI design
– In the testing process to run back-to-back tests

• Benefits of prototyping
– Improved system usability
– A closer match to users’ real needs
– Improved design qualityp g q y
– Improved maintainability
– Reduced development effort Back-to-back test

19Konkuk University

Prototyping ProcessPrototyping Process

20Konkuk University

SummarySummary

A it ti h t ft d l t l d t f t d li f• An iterative approach to software development leads to faster delivery of
software.

• Agile methods are iterative development methods that aim to reduce
development overhead and so produce software fasterdevelopment overhead and so produce software faster.

• Extreme programming includes practices such as systematic testing,
continuous improvement and customer involvement.

• Testing approach in XP is a particular strength where executable tests are• Testing approach in XP is a particular strength where executable tests are
developed before the code is written.

• Rapid application development (RAP) environments include database
programming languages, form generation tools and links to office p og a g a guages, o ge e at o too s a d s to o ce
applications.

• A throw-away prototype is used to explore requirements and design
options.

• When implementing a throw-away prototype, start with the requirements
you least understand, on the other hands, in incremental development,
start with the best-understood requirements.

21Konkuk University

Ch t 18Chapter 18.

Software Reuse

ObjectivesObjectives

T l i b fit f ft d bl• To explain benefits of software reuse and some reuse problems
• To discuss several different ways to implement software reuse
• To explain how reusable concepts can be represented as patterns or

b dd d i tembedded in program generators
• To discuss COTS reuse
• To describe the development of software product lines

23Konkuk University

Software ReuseSoftware Reuse

I t i i di i li t d i d b i• In most engineering disciplines, systems are designed by composing
existing components that have been used in other systems.

• Software engineering has been more focused on original development,
but it is now recognised that to achieve better software more quicklybut it is now recognised that to achieve better software, more quickly
and at lower cost, we need to adopt a design process that is based on
systematic software reuse.

• Reuse-based software Engineering:
– Application system reuse

• The whole of an application system may be reused either by incorporating it
without change into other systems (COTS reuse) or by developing applicationwithout change into other systems (COTS reuse) or by developing application
families.

– Component reuse
• Components of an application from sub-systems to single objects may be reused.

Covered in Chapter 19Covered in Chapter 19.
– Object and function reuse

• Software components that implement a single well-defined object or function may
be reused.

24Konkuk University

Benefits of ReuseBenefits of Reuse

Increased dependability Reused software that has been tried and tested in working systemsIncreased dependability Reused software, that has been tried and tested in working systems,
should be m ore dependable than new software. The initial use of the
software reveals any design and implementation faults. These are then
fixed, thus reducing the number of failures when the software is reused.

Reduced process risk If software exists, there is less uncertainty in the costs of reusing thatp , y g
software than in the costs of development. This is an important factor
for project management as it reduces the margin of error in project cost
estimation. This is particularly true when relatively large software
components such as sub-systems are reused.

i i li d li i i li d i h k diEffective use of specialists Instead of application specialists doing the same work on different
projects, these specialists can develop reusable software that
encapsulate their knowledge.

Standards compliance Some standards, such as user interface standards, can be
implemented as a set of standard reusable components. For
example, if menus in a user interfaces are implemented using
reusable components, all applications present the same menu
formats to users The use of standard user interfaces improvesformats to users. The use of standard user interfaces improves
dependability as users are less likely to make mistakes when
presented with a familiar interface.

Accelerated development Bringing a system to market as early as possible is o ften more
important than overall development costs. Reusing software canimportant than overall development costs. Reusing software can
speed up system production because both development and
validation time should be reduced.

25Konkuk University

Problems in ReuseProblems in Reuse

Increased maintenance If the source code of a reused software system or component is n otIncreased maintenance
costs

If the source code of a reused software system or component is n ot
available then maintenance costs may be increased as the reused
elements of the system may become increasingly incompatible with
system changes.

Lack of tool support CASE toolsets may not support development with reuse. It may beLack of tool support CASE toolsets may not support development with reuse. It may be
difficult or impossible to integrate these tools with a component
library system. The software process assumed by these tools may not
take reuse into account.

Not-invented-here Some software engineers sometimes prefer to re-write components as
syndrome

g p p
they believe that they can improve on the reusable component. This is
partly to do with trust and partly to do with the fact that writing
original software is s een as more challenging than reusing other
peopleÕs software.

Creating and maintaining a
component library

Populating a reusable component library and ensuring the software
developers can use this library can be expensive. Our current techniques
for classifying, cataloguing and retrieving software components are
immature.

Finding, understanding and
adapting reusable components

Software components have to be discovered in a library, understood and,
sometimes, adapted to work in a n ew environment. Engineers must be
reasonably confident of finding a component in the library before they will
make routinely include a component search as part of their normal
d l tdevelopment process.

26Konkuk University

Reuse LandscapeReuse Landscape

Al h h i f i l h h f h f• Although reuse is often simply thought of as the reuse of system
components, there are many different approaches to reuse that may be
used.

• Reuse is possible at a range of levels from simple functions to complete
application systems.

• The reuse landscape covers the range of possible reuse techniques.

27Konkuk University

Reuse ApproachesReuse Approaches
Design patterns Generic abstractions that occur across applications are

represented as design patterns that show abstract and concretep g p
objects and interactions.

Component-based
development

Systems are developed by integrating components
(collections of objects) that conform to component-model
standards. This is covered in Chapter 19.

A li i C ll i f b d l h bApplication
frameworks

Collections of abstract and concrete classes that can be
adapted and extended to create application systems.

Legacy system
wrapping

Legacy systems (see Chapter 2) that can be ŌwrappedÕ by
defining a set of interfaces and providing access to these
legacy systems through these interfaces.

Service-oriented
systems

Systems are developed by linking shared services that may be
externally provided.

Application product
lines

An application type is generalised around a common
architecture so that it can be adapted in different ways for
different customersdifferent customers.

COTS integration Systems are developed by integrating existing application
systems.

Configurable vertical
applications

A generic system is designed so that it can be configured to
the needs of specific system customers.pp p y

Program libraries Class and function libraries implementing commonly-used
abstractions are available for reuse.

Program generators A generator system embeds knowledge of a particular types
of application and can generate systems or system fragments
i th t d iin that domain.

Aspect-oriented
software development

Shared components are woven into an application at different
places when the program is compiled.

28Konkuk University

Reuse: Concept ReuseReuse: Concept Reuse

Wh d i t h t f ll th• When you reuse program or design components, you have to follow the
design decisions made by the original developer of the component.

• This may limit the opportunities for reuse.

• However, a more abstract form of reuse is concept reuse when a
particular approach is described in an implementation independent way
and an implementation is then developedand an implementation is then developed.

• Two main approaches to concept reuse are:
Design patterns– Design patterns

– Generative programming (Program generator)

29Konkuk University

Design PatternDesign Pattern

A d i i f i b k l d b• A design pattern is a way of reusing abstract knowledge about a
problem and its solution.

• A pattern is a description of the problem and the essence of its solution.
• It should be sufficiently abstract to be reused in different settings.
• Patterns often rely on object characteristics such as inheritance and

polymorphism.p y p

• Pattern element
Name : Meaningful pattern identifier– Name : Meaningful pattern identifier.

– Problem description
– Solution description : Not a concrete design but a template for a design

solution that can be instantiated in different wayssolution that can be instantiated in different ways.
– Consequences : Results and trade-offs of applying the pattern.

30Konkuk University

Design Pattern Example: Multiple DisplaysDesign Pattern Example: Multiple Displays

31Konkuk University

Observer PatternObserver Pattern

Name : Obse e• Name : Observer
• Description : Separates the display of object state from the object itself
• Problem description : Used when multiple displays of state are needed
• Solution description : See slide with UML description• Solution description : See slide with UML description
• Consequences : Optimisations to enhance display performance are impractical.

32Konkuk University

Generator Based ReuseGenerator-Based Reuse

P t i l th f t d d tt d• Program generators involve the reuse of standard patterns and
algorithms.

• These are embedded in the generator and parameterised by user
commands A program is then automatically generatedcommands. A program is then automatically generated.

• Generator-based reuse is possible when domain abstractions and their
mapping to executable code can be identified.

• A domain specific language is used to compose and control these• A domain specific language is used to compose and control these
abstractions.

33Konkuk University

Types of Program GeneratorTypes of Program Generator

T f t• Types of program generator
– Application generators for business data processing
– Parser and lexical analyser generators for language processing

Code generators in CASE tools– Code generators in CASE tools

• Generator-based reuse is very cost-effective but its applicability is limited
to a relatively small number of application domainsto a relatively small number of application domains.

• It is easier for end-users to develop programs using generators
compared to other component-based approaches to reusecompared to other component based approaches to reuse.

34Konkuk University

Reuse: Aspect Oriented DevelopmentReuse: Aspect-Oriented Development

A i d d l dd j f i i• Aspect-oriented development addresses a major software engineering
problem - the separation of concerns.

• Concerns are often not simply associated with application functionality
but are cross-cutting - e.g. all components may monitor their own
operation, all components may have to maintain security, etc.

• Cross-cutting concerns are implemented as aspects and are dynamically
woven into a program. The concern code is reused and the new system
is generated by the aspect weaver.

35Konkuk University

Reuse: Application FrameworksReuse: Application Frameworks

F k b d i d f ll i f b• Frameworks are a sub-system design made up of a collection of abstract
and concrete classes and the interfaces between them.

• The sub-system is implemented by adding components to fill in parts of
the design and by instantiating the abstract classes in the framework.

• Frameworks are moderately large entities that can be reused.

• Framework Classes:
– System infrastructure frameworks

• Support the development of system infrastructures such as communications, user
i f d ilinterfaces and compilers.

– Middleware integration frameworks
• Standards and classes that support component communication and information

exchange.g

– Enterprise application frameworks
• Support the development of specific types of application such as

telecommunications or financial systems.

36Konkuk University

Reuse: Application System ReuseReuse: Application System Reuse

I l th f ti li ti t ith b fi i• Involves the reuse of entire application systems either by configuring a
system for an environment or by integrating two or more systems to
create a new application.

• Two approaches covered here:
– COTS product integration
– Product line development– Product line development

37Konkuk University

COTS Product ReuseCOTS Product Reuse

COTS C i l Off Th Sh lf• COTS - Commercial Off-The-Shelf

• COTS systems are usually complete application systems that offer an API
(A li ti P i I t f)(Application Programming Interface).

• Building large systems by integrating COTS systems is now a viable
development strategy for some types of system such as E-commerce
systemssystems.

• The key benefit is faster application development and, usually, lower
development costs.

38Konkuk University

COTS Design ChoicesCOTS Design Choices

Whi h COTS d t ff th t i t f ti lit ?• Which COTS products offer the most appropriate functionality?
– There may be several similar products that may be used.

• How will data be exchanged?
I di id l d t th i d t t t d f t– Individual products use their own data structures and formats.

• What features of the product will actually be used?
– Most products have more functionality than is needed.

You should try to deny access to unused functionality– You should try to deny access to unused functionality.

• COTS system integration problems:
Lack of control over functionality and performance– Lack of control over functionality and performance

• COTS systems may be less effective than they appear

– Problems with inter-operability
• Different COTS systems may make different assumptions that means integration is difficult

– No control over system evolution
• COTS vendors do not control system evolution

– Support from COTS vendors
• COTS vendors may not offer support over the lifetime of the productCOTS vendors may not offer support over the lifetime of the product

39Konkuk University

Example: E Procurement SystemExample: E-Procurement System

O h li d d il• On the client, standard e-mail
and web browsing programs are
used.

• On the server, an e-commerce
platform has to be integrated
with an existing ordering system.

– This involves writing an adaptor
so that they can exchange data.

– An e-mail system is also
integrated to generate e-mail for
clients. This also requires an
adaptor to receive data from theadaptor to receive data from the
ordering and invoicing system.

40Konkuk University

Software Product LineSoftware Product Line

S f d li li i f ili li i i h• Software product lines or application families are applications with
generic functionality that can be adapted and configured for use in a
specific context.

• Adaptation may involve:
– Component and system configuration
– Adding new components to the system
– Selecting from a library of existing components
– Modifying components to meet new requirementsy g p q

41Konkuk University

Product Instance DevelopmentProduct Instance Development

• Elicit stakeholder requirements
– Use existing family member as a prototype

• Choose closest-fit family member
– Find the family member that best meets the requirements

• Re-negotiate requirements
– Adapt requirements as necessary to capabilities of the software

• Adapt existing system
– Develop new modules and make changes for family member

• Deliver new family member
– Document key features for further member development

42Konkuk University

Summary

Ad t f l t f t ft d l t d

Summary

• Advantages of reuse are lower costs, faster software development and
lower risks.

• Design patterns are high-level abstractions that document successful
design solutionsdesign solutions.

• Program generators are also concerned with software reuse - the
reusable concepts are embedded in a generator system.

• Application frameworks are collections of concrete and abstract objects• Application frameworks are collections of concrete and abstract objects
that are designed for reuse through specialisation.

• COTS product reuse is concerned with the reuse of large, off-the-shelf
systemssystems.

• Problems with COTS reuse include lack of control over functionality,
performance, and evolution and problems with inter-operation.
S ft d t li l t d li ti d l d d• Software product lines are related applications developed around a
common core of shared functionality.

43Konkuk University

Ch t 19Chapter 19.

Component-Based Software Engineering

ObjectivesObjectives

T l i th t CBSE i d ith d l i t d di d• To explain that CBSE is concerned with developing standardized
components and composing these into applications

• To describe components and component models
T h i i l ti iti i CBSE• To show principal activities in CBSE process

• To discuss approaches to component composition and problems that
may arise

45Konkuk University

Component Based DevelopmentComponent-Based Development

C t b d ft i i (CBSE) i h t• Component-based software engineering (CBSE) is an approach to
software development that relies on software reuse.

• It emerged from the failure of object-oriented development to support
effective reuse Single object classes are too detailed and specificeffective reuse. Single object classes are too detailed and specific.

• Components are more abstract than object classes and can be
considered to be stand-alone service providers.

46Konkuk University

CBSE EssentialsCBSE Essentials

I d d ifi d b h i i f• Independent components specified by their interfaces
• Component standards to facilitate component integration
• Middleware that provides support for component inter-operabilityp pp p p y
• A development process that is geared to reuse

• Apart from the benefits of reuse, CBSE is based on sound software
engineering design principles:

– Components are independent so do not interfere with each other– Components are independent so do not interfere with each other.
– Component implementations are hidden.
– Communication is through well-defined interfaces.
– Component platforms are shared and reduce development costs.Component platforms are shared and reduce development costs.

47Konkuk University

CBSE ProblemsCBSE Problems

C hi• Component trustworthiness
– How can a component with no available source code be trusted?

• Component certification
– Who will certify quality of the components?

• Emergent property prediction
– How can the emergent properties of component compositions be predicted?g p p p p p

• Requirements trade-offs
– How do we do trade-off analysis between the features of one component and

another?

48Konkuk University

ComponentsComponents

C t id i ith t d t h th t i• Components provide a service without regard to where the component is
executing or its programming language
- A component is an independent executable entity that can be made up of

one or more executable objects.one or more executable objects.
- The component interface is published and all interactions are through the

published interface.

Councill and Heinmann:
A software component is a software element that conforms
to a component model and can be independently deployeto a component model and can be independently deploye
d and composed without modification according to a com
position standard.

Szyperski:Szyperski:
A software component is a unit of composition with contra
ctually specified interfaces and explicit context dependenci
es only. A software component can be deployed independe
ntly and is subject to composition by third-partiesntly and is subject to composition by third parties.

49Konkuk University

Characteristics of ComponentsCharacteristics of Components

Standardised Component standardisation means that a component that is
used in a CBSE process has to conform to some standardised
component model. This model may define component
interfaces, component meta-data, documentation, composition
and deployment.

Independen t A component should be independen t Š it should be possible to
compose and deploy it without having to use other specific
components. In situations where the component needs
externally provided services, these should be explicitly set out
in a ŌrequiresÕinterface specificationin a ŌrequiresÕ interface specification.

Composable For a component to be composable, all external interactions
must take place through publicly defined interfaces. In
addition, it must provide external access to information about
itself such as its methods and attributes.

Deployable To be deployable, a component has to be se lf-contained and
must be able to operate as a stand-alone entity on some
component platform that implements the component model.
This usually means that the component is a binary component
that does not have to be compiled before it is deployedthat does not have to be compiled before it is deployed.

Documented Components have to be fully documented so that potential
users of the component can decide whether or not they meet
their needs. The syntax and, ideally, the semantics of all
component interfaces have to be specified.p p

50Konkuk University

Component InterfaceComponent Interface

P id i f• Provides interface
– Defines the services that are provided by the component to other

components.

i i f• Requires interface
– Defines the services that specifies what services must be made available for

the component to execute as specified.

51Konkuk University

Example: A Data Collector Component InterfaceExample: A Data Collector Component Interface

52Konkuk University

Component ModelComponent Model

A d l i d fi i i f d d f• A component model is a definition of standards for component
implementation, documentation and deployment.

• Examples of component models
– EJB model (Enterprise Java Beans)
– COM+ model (.NET model)
– CORBA Component Model

C t d l ifi h i t f h ld b d fi d d th• Component model specifies how interfaces should be defined and the
elements that should be included in interface definition.

Elements of component models

53Konkuk University

Middleware SupportMiddleware Support

C t d l th b i f iddl th t id t• Component models are the basis for middleware that provides support
for executing components.

• Component model implementations provide:
Platform services that allow components written according to the model to communicate– Platform services that allow components written according to the model to communicate

– Horizontal services that are application-independent services used by different
components

• To use services provided by a model, components are deployed in a
h f f d hcontainer. This is a set of interfaces used to access the service

implementations.

54Konkuk University

Component Development for ReuseComponent Development for Reuse

C t d l d f ifi li ti ll h t b• Components developed for a specific application usually have to be
generalized to make them reusable.

• A component is most likely to be reusable if it associated with a stable
domain abstraction (business object)domain abstraction (business object).

– In a hospital, stable domain abstractions are associated with the fundamental
purpose - nurses, patients, treatments, etc.

• Component reusability
– Should reflect stable domain abstractions
– Should hide state representationp
– Should be as independent as possible
– Should publish exceptions through the component interface

• There is a trade-off between reusability and usability
– The more general the interface, the greater the reusability.
– But it is then more complex and hence less usable.

55Konkuk University

Legacy System ComponentsLegacy System Components

E i i l h f lfill f l b i f i b• Existing legacy systems that fulfill a useful business function can be re-
packaged as components for reuse.

• This involves writing a wrapper component that implements provides and
requires interfaces then accesses the legacy system.

• Although costly, this can be much less expensive than rewriting the
legacy system.

56Konkuk University

Cost of Reusable ComponentCost of Reusable Component

Th d l f bl b hi h h h• The development cost of reusable components may be higher than the c
ost of specific equivalents.

• This extra reusability enhancement cost should be an organization rather
than a project cost.

• Generic components may be less space-efficient and may have longer ex
ecution times than their specific equivalents.

57Konkuk University

CBSE ProcessCBSE Process

Wh i t it i ti l t k t d ff b t• When reusing components, it is essential to make trade-offs between
ideal requirements and the services actually provided by available
components.

• This involves:• This involves:
– Developing outline requirements
– Searching for components then modifying requirements according to

available functionalityy
– Searching again to find if there are better components that meet the revised

requirements

58Konkuk University

Component Identification IssuesComponent Identification Issues

T t• Trust
– You need to be able to trust the supplier of a component. At best, an un-

trusted component may not operate as advertised. at worst, it can breach
your security.y y

• Requirements
– Different groups of components will satisfy different requirements.g p p y q

• Validation
– The component specification may not be detailed enough to allow

comprehensive tests to be developed.
– Components may have unwanted functionality. How can you test this will not

interfere with your application?

59Konkuk University

Example: Ariane Launcher FailureExample: Ariane Launcher Failure

I 1996 h 1 fli h f h A i 5 k d d i di h• In 1996, the 1st test flight of the Ariane 5 rocket ended in disaster when
the launcher went out of control 37 seconds after take off.

• The problem was due to a reused component from a previous version of
the launcher (the Inertial Navigation System) that failed because
assumptions made when that component was developed did not hold
for Ariane 5.

• The functionality that failed in this component was not required in Ariane
5.

60Konkuk University

Component CompositionComponent Composition

P f bli• Process of assembling components to create a system
• Composition involves integrating components with each other and with

the component infrastructure.
• Normally you have to write ‘glue code’ to integrate components.

• Types of compositionTypes of composition
– Sequential composition where the composed components are executed in

sequence. This involves composing the provides interfaces of each
component.

f– Hierarchical composition where one component calls on the services of
another. The provides interface of one component is composed with the
requires interface of another.

– Additive composition where the interfaces of two components are putAdditive composition where the interfaces of two components are put
together to create a new component.

61Konkuk University

Types of CompositionTypes of Composition

62Konkuk University

Interface IncompatibilityInterface Incompatibility

P i ibili h i h h b• Parameter incompatibility where operations have the same name but are
of different types.

• Operation incompatibility where the names of operations in the
composed interfaces are different.

• Operation incompleteness where the provides interface of one
component is a subset of the requires interface of another.

63Konkuk University

Adaptor ComponentAdaptor Component

Add h bl f i ibili b ili h• Address the problem of component incompatibility by reconciling the
interfaces of the components that are composed.

• Different types of adaptor are required depending on the type of
composition.

• An addressFinder and a mapper component may be composed through pp p y p g
an adaptor that strips the postal code from an address and passes this
to the mapper component.

address = addressFinder.location (phonenumber) ;
postCode = postCodeStripper.getPostCode (address) ;
mapper displayMap(postCode 10000)mapper.displayMap(postCode, 10000)

64Konkuk University

Adaptor for Data Collector ComponentAdaptor for Data Collector Component

65Konkuk University

Interface SemanticsInterface Semantics

Y h l d i d id if i f• You have to rely on component documentation to decide if interfaces
that are syntactically compatible are actually compatible.

• Object Constraint Language (OCL)
– OCL has been designed to define constraints that are associated with UML

models.
– It is based around the notion of pre and post condition specification - similar

to the approach used in Z.

-- The context keyword names the component to which the conditions apply
context addItem

-- The preconditions specify what must be true before execution of addItem
pre: PhotoLibrary.libSize() > 0

PhotoLibrary.retrieve(pid) = null

-- The postconditions specify what is true after execution The postconditions specify what is true after execution
post: libSize () = libSize()@pre + 1

PhotoLibrary.retrieve(pid) = p
PhotoLibrary.catEntry(pid) = photodesc

context delete

pre: PhotoLibrary retrieve(pid) <> null ;pre: PhotoLibrary.retrieve(pid) <> null ;

post: PhotoLibrary.retrieve(pid) = null
PhotoLibrary.catEntry(pid) = PhotoLibrary.catEntry(pid)@pre
PhotoLibrary.libSize() = libSize()@pre - 1 66Konkuk University

Trade Offs in CompositionTrade-Offs in Composition

Wh i fi d fli b f i l• When composing components, you may find conflicts between functional
and non-functional requirements, and conflicts between the need for
rapid delivery and system evolution.

• You need to make decisions such as:
– What composition of components is effective for delivering the functional

requirements?
– What composition of components allows for future change?
– What will be the emergent properties of the composed system?

67Konkuk University

SummarySummary

CBSE i b d h t d fi i d i l ti l l• CBSE is a reuse-based approach to defining and implementing loosely
coupled components into systems.

• A component is a software unit whose functionality and dependencies
are completely defined by its interfacesare completely defined by its interfaces.

• A component model defines a set of standards that component
providers and composers should follow.

• During the CBSE process the processes of requirements engineering and• During the CBSE process, the processes of requirements engineering and
system design are interleaved.

• Component composition is the process of ‘wiring’ components together
to create a system.to c eate a syste .

• When composing reusable components, you normally have to write
adaptors to reconcile different component interfaces.

• When choosing compositions, you have to consider required functionality, g p , y q y,
non-functional requirements and system evolution.

68Konkuk University

