2008 Fall
Software Modeling & Analysis

Part 3. Design

- Application Architectures
- Object-Oriented Design

X This lecture note is based on materials from Ian Sommerville 2006.

Lecturer: JUNBEOM YOO
Jbyoo@konkuk.ac.kr



Chapter 13.
Application Architectures



\7

nlf\:hf“l'l 'aY e
UIJCULLIVEDS

To explain two fundamental models of business systems - batch
processing and transaction processing systems

To describe abstract architecture of resource management systems
To explain how generic editors are event processing systems
To describe structure of language processing systems



vr~lA -|-A,--|-.. A e
Frcnitecuures

jene

)

ric Applic

« Application systems are designed to meet an organizational need.

« As businesses have much in common, their application systems also tend
to have a common architecture that reflects the application requirements.

« Application types:
1. Data processing applications

« Data driven applications that process data in batches without explicit user
intervention uring the processing. Ex) Billing system, Payroll system

2. Transaction processmq appllcatlons

« Data-centered applications that process user requests and update information
In a system database. Ex) E-commerce system, Reservation system

3. Event processmq systems

 System actions depend on interpreting events from the system’s
environment. Ex) Word processor, Real-time system

4. Language processing systems

« Users' intentions are specified in a formal language that is processed
and interpreted by the system. Ex) Compiler, Command interpreter




1. Data Proce |g y (em

« Systems that are data-centered where the databases used are usually
orders of magnitude larger than the software itself.

« Data is input and output in batches.
« Data processing systems usually have an input-process-output structure.

Input-Process-Output model System
Input Process Output >
Printer
Y
Database

Konkuk University



N

\A/J

M A~+ Cl
L/dLl 1IUVV

F

dla-rio

Diagr

Vv

aim

« Show how data is processed as it moves through a system.

« Transformations are represented as round-edged rectangles, data-flows

as arrows between them and files/data stores as rectangles.

Salary payment DFD

Employee
records
Y Decoded
Read employee employee
record record

Validate
employee data

Read monthly Pay information
pay data

A

Monthly pay
data

employee record y

Tax deduction + SS
number + tax office

Monthly pay
rates

Valid

Write tax
transactions

Tax
transactions

Write pension
data

Pension
deduction +
SS number

Compute
salary

A

Tax
tables

Social security
deduction + SS number

Konkuk University

Net payment + bank
account info.

Write bank
transaction

Pension data

>( Print payslip
PRINTER

Empoyee data
+ deductions

Bank
transactions

Write social
security data

Social security
data




D)
L

Tr tion P sing System

rocC

dinsSac

Processes user requests for information from a database or requests to
update the database.

From a user perspective a transaction Is:

— Any coherent sequence of operations that satisfies a goal

Users make asynchronous requests for service which are then processed
by a transaction manager.

1/0 Application Transaction
processing logic manager Database

Konkuk University



\AIJ

[ Uuuicvvdadil

IOCGSSiﬂg Vil

« Transaction management middleware or teleprocessing monitors handle
communications with different terminal types (e.g. ATMs and counter
terminals), serializes data and sends it for processing.

* Query processing takes place in the system database and results are sent
back through the transaction manager to the user’s terminal.

Account queries
and updates

Serialised
transactions

Teleprocessing Accounts
<< .
monitor database

ATMs and terminals

Konkuk University 8



\7

LIV OyolLCl

d

If'\'lcf\ sl '@

T
1H1TOLNTT]

a layered architecture.
« Layers include:

Vv

renitec

+y 10
L

re

Information systems have a generic architecture that can be organized as

LIBSYS organization

User interface

User communications

Information retrieval and modification

Transaction management
Database

Web browser interface
LIBSYS Forms and Print
login query manager manager
Distributed Document  Rights .
search retrieval manager Accounting
Library index
DBT1 DB2 DB3 DB4 DBn

Konkuk University



1 1vV/—

Df\(‘f\ 7\ AII 'I' 7N\ C\It"‘l'f\m
NCOoLUILC Al LIV OyolLCill

OCad

« Manages fixed amount of some resource and allocate this to users.

« Examples of resource allocation systems:
— Timetabling systems where the resource being allocated is a time period
— Library systems where the resource being managed is books for loan
— Air traffic control systems where the resource being managed is the airspace

« Layer resource allocation architecture

User interface

User Resource Query
authentication delivery management
Resource Resource policy Resource
management control allocation

Transaction management

Respyrce database, 10




T
¢-'I-
(D

D
(@)
—+

D
r_‘s

e E-commerce systems are Internet-based resource management
systems that accept electronic orders for goods or services.

e They are usually organized using a multi-tier architecture with
application layers associated with each tier.

Web Application Database
browser Web server < server > server

Konkuk University

11



FOC |gy

\ W 4

d LCh/inn
>. £vVen

\ I~ ‘l' 'aY a'a)
LC

+ Dy c
L I 1S

» These systems respond to events in the system’s environment.

« Their key characteristic is that event timing is unpredictable so the
architecture has to be organized to handle this.

¢ Many common systems: word processors, games, etc.



CAq+
u

\I v\

LNg JSYS tem

» Real-time systems and editing systems are the most common types of
event processing system.

« Editing system characteristics:

Single user systems
Must provide rapid feedback to user actions

Organized around long transactions so may
include recovery facilities

Konkuk University

File System
Save [
Open
Y
Ancillary data Editor data
Ancillary Editing
commands commands
Command

Display

Update

Interpret

Event

Screen

Process

Refresh

13



/]
4

I U Dy
Pl

\I Vv

SING JSYS tem

alg ge

Accept a natural or artificial language as input and generate some other
representation of that language.

May include an interpreter to act on the instructions in the language that
IS being processed.

Components of language processing systems
— Lexical analyser
— Symbol table
— Syntax analyser
— Syntax tree

Translator

Instructions > | Check syntax
Check semantics

Generate

— Semantic analyser i
— Code generator Abstract m/c
instructions
Y
Interpreter
Data Fetch _ Results
Execute

Konkuk University 14



Lexical Syntax
analyser analyser

Pretty-
printer

\

Q)
R
O

|

§

Semantic

analyser

Code
generator

Abstract Grammar
syntax tree definition
Symbol Output
table definition

Repository

Konkuk University

15



C
®

Na'2Ya'a \7

||||||ai’y

Generic models of application architectures help us understand and
compare applications.

Important classes of application are data processing systems, transaction
processing systems, event processing systems and language processing
system.

Data processing systems operate in batch mode and have an input-
process-output structure.

Transaction processing systems allow information in a database to be
remotely accessed and modified by multiple users.

Event processing systems include editors and real-time systems.

In an editor, user interface events are detected and an in-store data
structure is modified.

Language processing systems translate texts from one language to
another and may interpret the specified instructions.



Chapter 14.
Object-Oriented Design



\7

nlf\:hf“l'l 'aY e
UIJCULLIVEDS

To explain how a software design may be represented as a set of
interacting objects that manage their own states and operations

To describe the activities in object-oriented design process

To introduce various models that can be used to describe an object-
oriented design

e To show how the UML may be used to represent these models



N A
\

At NvriantaAdA NAavialArnmAANF
CLL™UI C' ILCU L/CVC |JIII IL

« Object-oriented analysis, design and programming are related but
distinct.

OOA : concerned with developing an object model of the application domain.

OOD : concerned with developing an object-oriented system model to
implement requirements.

OOP : concerned with realising an OOD using an OO programming language
such as Java or C++.

e Characteristics of OOD

Objects are abstractions of real-world or system entities.

Objects are independent and encapsulate state and representation
information.

System functionality is expressed in terms of object services.
Shared data areas are eliminated. Objects communicate by message passing.
Objects may be distributed and may execute sequentially or in parallel.



A” Jges ~f MNN
UV I dyto Ul UUU

Easier maintenance. Objects may be understood as stand-alone entities.

Objects are potentially reusable components.

For some systems, there may be an obvious mapping from real world
entities to system objects.



M)
\

MJCTLLS dIU UDJTLL Uidoot oS

Objects are entities in software system, which represent instances of real-
world and system entities.

Object classes are templates for objects, which used to create objects.

Object classes may inherit attributes and services from other object
classes.

An object is an entity that has a state and a defined set of operations which operate
on that state. The state is represented as a set of object attributes. The operations
associated with the object provide services to other objects (clients) which request
these services when some computation is required.

Obijects are created according to some object class definition. An object class definition
serves as a template for objects. It includes declarations of all the attributes and services
which should be associated with an object of that class.



Ir'\

"\ 7~ 1 I

Un ‘c"d Mo |g N ge

P ~A A
1€ unitie VU

Several different notations for describing object-oriented designs were
proposed in the 1980s and 1990s.

The Unified Modeling Language is an integration of these notations.

It describes notations for a number of different models that may be
produced during OO analysis and design.

It is now a de facto standard for OO modelling.




i

§

O

o

D

<

@M

®,
=}

D
(@)

—
O

Q)
n
n
)
C
=<

~
r—
N’

Employee

name: string

address: string

dateOfBirth: Date
employeeNo: integer
socialSecurityNo: string
department: Dept

manager: Employee

salary: integer

status: {current, left, retired}
taxCode: integer

join ()

leave ()

retire ()
changeDetails ()

Konkuk University

23



222l BEal

ommun

L Ul |

Nk A +
\JIJJCL L

Cd

Conceptually, objects communicate by message passing.

Messages

— Name of service requested by calling object

— Copies of information required to execute the service

« In practice, messages are often implemented by procedure calls
— Name = procedure name

— Information = parameter list

/I Call a method associated with a buffer object that returns the next value
/I in the buffer
v = circularBuffer.Get () ;

/I Call the method associated with a thermostat object that sets the
/[ temperature to be maintained
thermostat.setTemp (20) ;



)

I "'Alf'\ﬂ
1HZatliONn an

Zd

Jenera

Classes may be arranged in a class hierarchy where one class (a super-
class) is a generalisation of one or more other classes (sub-classes).

ATnL\ni
U 1LHiichi

'I"'\ Y\ N
Ldl ICLC

A sub-class inherits the attributes and operations from its super class and
may add new methods or attributes of its own.

Generalisation in the UML is implemented as an inheritance in OO

programming languages.

Employee
Manager Programmer
budgetsControlled project
dateAppointed proglanguages
Project Dept. Strategic
Manager Manager Manager
projects dept responsibilities
Kanl ] Un V\-V’(‘;"'\I

I_)ILy

25



C i £f Tl
[ L | 1

Avrit
ITITI1IL

eatures O ance

« Advantages:
— It is an abstraction mechanism which may be used to classify entities.
— It is a reuse mechanism at both the design and the programming level.

— Inheritance graph is a source of organisational knowledge about domains and
systems.

* Problems:
— Object classes are not self-contained. They cannot be understood without
reference to their super-classes.

— Designers have a tendency to reuse the inheritance graph created during
analysis. Can lead to significant inefficiency.

— Inheritance graphs of analysis, design and implementation have different
functions and should be separately maintained.



UIVIL ASS0UCIALIVUI

» Objects and object classes participate in relationships with other objects
and object classes.

« In the UML, a generalised relationship is indicated by an association.

« Associations may be annotated with information that describes the
association.

« Associations may indicate that an attribute of an object is an associated
object or that a method relies on an associated object.

Employee . Department
is-member-of

is-managed-by

manages

Manager

Konkuk University 27



r.l\ ~ /N
CUINICUTICI

m 11w

~nt NMNhiAaA~+
L UUJCK,L

The nature of objects as self-contained entities make them suitable for
concurrent implementation.

The message-passing model of object communication can be
implemented directly if objects are running on separate processors in a
distributed system.

Servers

— The object is implemented as a parallel process (server) with entry points corresponding
to object operations.

— If no calls are made to it, the object suspends itself and waits for further requests for
service.
Active objects

— Objects are implemented as parallel processes and the internal object state may be
changed by the object itself and not simply by external calls.

— Thread in Java is a simple construct for implementing concurrent objects.



\7

Jdvd |

~A
1H1SaAdlu

« Thread in Java is a simple construct for implementing concurrent objects.

e Threads must include a method called run() and this is started up by the
Java run-time system.

« Active objects typically include an infinite loop so that they are always
carrying out the computation.



UojecClt-ur C ntea ve N FIrocess

Structured design processes involve developing a number of different
system models.

They require a lot of effort for development and maintenance of these
models and, for small systems, this may not be cost-effective.

However, for large systems developed by different groups design models
are an essential communication mechanism.

« Common key activities for OOD processes
1. Define the context and modes of use of the system
Design the system architecture
Identify the principal system objects
Develop design models
Specify object interfaces

v W



)

o

T

A weather mapping system is required to generate weather maps on a regular basis
using data collected from remote, unattended weather stations and other data
sources such as weather observers, balloons and satellites. Weather stations transmit
their data to the area computer in response to a request from that machine.

The area computer system validates the collected data and integrates it with the data
from different sources. The integrated data is archived and, using data from this
archive and a digitised map database a set of local weather maps is created. Maps
may be printed for distribution on a special-purpose map printer or may be displayed
in @ number of different formats.



1. System Context and Models of System Use

« Develop an understanding of the relationships between the software
being designed and its external environment

« System context
— A static model that describes other systems in the environment.
— Use a subsystem model to show other systems.

« Model of system use

— A dynamic model that describes how the system interacts with its
environment.

— Use use-cases to show interactions



v'v\l\

N

Illf\t‘\lt"l'f\ f\fJI\I
SULOSYSLTTT 1IVIOUUC
Weather mapping system
«subsystem»
Data collection «subsystem»
Data display
— —
Observer Satellite —
. ~ User [VlaF
L Comms interface display
1
Weather 1 Map
station Balloon Map printer
«subsystem» «subsystem»
Data processing Data archiving
1
[ 1 Data
Data Data storage
checking integration
Map store Data store

Konkuk University

33



Q.
M

o N r-"\("f\ 7\
uoSC~Ldot 111V

Weather station use-case

z

Report

Calibrate

Use-case description

System Weather station

Use-case Report

Actors Weather data collection system, Weather station

Data The weather station sends a summary of the weather data that has been
collected from the instruments in the collection period to the weather data
collection system. The data sent are the maximum minimum and average
ground and air temperatures, the maximum, minimum and average air
pressures, the maximum, minimum and average wind speeds, the total
rainfall and the wind direction as sampled at 5 minute intervals.

Stimulus The weather data collection system establishes a modem link with the
weather station and requests transmission of the data.

Response The summarised data is sent to the weather data collection system

Comments  Weather stations are usually asked to report once per hour but this

frequency may differ from one station to the other and may be modified in
future.

Konkuk University

34



vr~lA +riral NMNA
. LII L | LJC

'a

D) +
L L

eC SiIgn
* Once interactions between the system and its environment have been
understood, you use this information for designing the system
architecture.
* A layered architecture is appropriate for the weather station
— Interface layer for handling communications

— Data collection layer for managing instruments
— Instruments layer for collecting data

Weather station
1
«subsystem» Mantages laII
Interface externa
communications
1
ssubsystems Collets and
Data collection
weather data
1]
«subsystem» Package of
Instruments instruments for raw
data collections
Kohkuk Universty




P,
J.

UVJCCL 1IUCITILTTICalliVUl |

Identifying objects (or object classes) is the most difficult part of object
oriented design.

There is no 'magic formula' for object identification. It relies on the skill,
experience and domain knowledge of system designers.

Object identification is an iterative process. You are unlikely to get it right
first time.

Approaches to object identification:

— Use a grammatical approach based on a natural language description of the
system (used in Hood OOD method).

— Base the identification on tangible things in the application domain.

— Use a behavioural approach and identify objects based on what participates
in what behaviour.

— Use a scenario-based analysis. The objects, attributes and methods in each
scenario are identified.



\A aathar <tatinn Ohiat Claccac
vvCdlLlIT]I oldllUll UIJJC\,L CidoottoS
WeatherStation WeatherData
identifier airTfemperatures
reportWeather () groundTemperatures
: - windSpeeds
calibrate (instruments) L OPEEY
test () windDirections
startup (instruments) pr_esfsTlres
shutdown (instruments) rainta
collect ()

Ground
thermometer

temperature

test ()
calibrate ()

summarise ()

Anemometer Barometer
windSpeed pressure
windDirection height
test () test ()

calibrate ()

Konkuk University

37



N\

g D

Developi odel

/]
%.

Sign M

« Design models show the objects and object classes and relationships
between these entities.

— Static models describe the static structure of the system in terms of object
classes and relationships.

— Dynamic models describe the dynamic interactions between objects.

e Examples of design models:

— Sub-system model : shows logical groupings of objects into coherent
subsystems.

— Sequence model : shows the sequence of object interactions.

— State machine model : show how individual objects change their state in
response to events.

— Other models include use-case models, aggregation models, generalisation
models, etc.




A\ I("l'f\m

I ¢ NAaAAal
Syolllll VUU I

S

Shows how the design is organised into logically related groups of
objects. In the UML, these are shown using packages.
This is a logical model. The actual organisation of objects in the system

may be different.

«subsystem» «subsystem»
Interface Data collection
CommsController WeatherData
Instrument
WeatherStation Status
«subsystem»
Instruments
Air .
thermometer RainGauge Anemometer
Ground .
thermometer Barometer WindVane
Konkuk University




U N

LI nce vioael

S

« Sequence models show the sequence of object interactions that take
place

— Objects are arranged horizontally across the top.
— Time is represented vertically so models are read top to bottom.

— Interactions are represented by labelled arrows, Different styles of arrow
represent different types of interaction.

— Thin rectangle in an object lifeline represents the time when the object is the
controlling object in the system.

i :CommsController :‘WeatherStation :‘WeatherData

i request (report)

-
>

Data collection

acknowledge ()

report ()

summarise ()

i send (report)

reply (report)

=€

: acknowledge ()

xonkuk Universi’:[y 40



$fa+an MNM-~a~rlhina NMAAAl ¢« CHa+tarhAarte
LaiLc Ividlllilic 1ivioucel . otaitcecdilidl L

C+An
Sld

« Show how objects respond to different service requests and the state
transitions triggered by these requests.

Operation calibrate () Calibrating

calibration OK

test )
Shutdown startup O > Waiting >—O>< Testing )

shutdown () A f transmission done test complete
Transmitting
clock collection
done reportWeather ()
weather summary
ummarising
Collecting

Weather station
Konkuk University

41



U

L

Nhin~+ Th+A CrA—~1fi~ +:An
UUJCK,L 11 ILC 1A C |J Cliicadtilioull

Object interfaces have to be specified so that the objects and other
components can be designed in parallel.

Objects may have several interfaces which are viewpoints on the
methods provided.

The UML uses class diagrams for interface specification.

interface WeatherStation {
public void WeatherStation () ;

public void startup () ;
public void startup (Instrument i) ;

public void shutdown () ;
public void shutdown (Instrumenti) ;

public void reportWeather () ;

public void test () ;
public void test ( Instrument i) ;

public void calibrate ( Instrument i) ;

public int getID () ;

} //WeatherStation




a2V a'a \7

C -~ -
SUllirtialy

OOD is an approach to design so that design components have their
own private state and operations.

« Objects should have constructor and inspection operations. They provide
services to other objects.

* Objects may be implemented sequentially or concurrently.

« The Unified Modeling Language provides different notations for defining
different object models.

« A range of different models may be produced during an object-oriented
design process. These include static and dynamic system models.

« Object interfaces should be defined precisely using e.g. a programming
language like Java.



