2008 Fall
Software Modeling & Analysis

Part 2. Requirements

- Software Requirements
- Requirements Engineering Processes
- System Models

Lecturer: JUNBEOM YOO
Jbyoo@konkuk.ac.kr

X This lecture note is based on materials from Ian Sommerville 2006.

Chapter 6.
Software Requirements

N A
UV

\7

I\I"l'l 'aY e
CLLIVEDS

To introduce concepts of user and system requirements
To describe functional and non-functional requirements

To explain how software requirements may be organised in a
requirements document

I I v\

C| ements

|g ne |g

The process of establishing the services that the customer requires from
a system and the constraints under which it operates and is developed.

The requirements themselves are the descriptions of the system services

and constraints that are generated during the requirements engineering
process.

Df\ﬂ
NnTyu

Ir'f\lf\f\f\lf'\'l‘t"
ICITICIILS

« It ranges from a high-level abstract statement of service or of system
constraint to detailed mathematical functional specification.

« Types of requirements
— User requirements

« Statements in natural language plus diagrams of the services the system
provides and its operational constraints.

« Written for customers.
— System requirements

 Structured document setting out detailed descriptions of the system'’s
functions, services and operational constraints.

« Defines what should be implemented
« May be part of a contract between client and contractor.

Requirements Definitions and Specifications

User requirement definition

1. The software must provide a means of representing and
accessing external files created by other tools.

System requirements specification

1.1 The user should be provided with facilities to define the type of
external files.

1.2 Each external file type may have an associated tool which may be
applied to the file.

1.3 Each external file type may be represented as a specific icon on
the user’s display.

1.4 Facilities should be provided for the icon representing an
external file type to be defined by the user.

1.5 When a user selects an icon representing an external file, the
effect of that selection is to apply the tool associated with the type of
the external file to the file represented by the selected icon.

Konkuk University

) DQ 11

N V Oua! |\Cqu

Ciintinnal C
I UTICLULIVIIAI VO.

NAan_EirinA+
INUITL T UlTLICU L

rorfmaoantc
ITIIITIILOD

« Functional requirements
— Statements of services the system should provide.
— How the system should react to particular inputs.
— How the system should behave in particular situations.

* Non-functional requirements

— Constraints on the services or functions offered by the system such as timing
constraints, constraints on the development process, standards, etc.

 Domain requirements

— Requirements that come from the application domain of the system and that
reflect characteristics of that domain.

C
L

)\dlllple.

| TRCVC Gy/ce
LIDoTo OYo

7 ™ Y\ i

v\

+A
LCI11

A library system that provides a single interface to a number of database
s of articles in different libraries.

Users can search for, download, and print these articles for personal
study.

Function requirements:

— The user shall be able to search either all of the initial set of databases or
select a subset from it.

— The system shall provide appropriate viewers for the user to read documents
in the document store.

— Every order shall be allocated a unique identifier (ORDER_ID) which the user
shall be able to copy to the account’s permanent storage area.

Requirements Completeness and Consistency

* Problems arise when requirements are not precisely stated.

* Ambiguous requirements may be interpreted in different ways by
developers and users.

« In principle, requirements should be both complete and consistent.
— Complete
* They should include descriptions of all facilities required.

— Consistent
» There should be no conflicts or contradictions in the descriptions of the
system facilities.

« In practice, it is impossible to produce a complete and consistent
requirements document.

I\

'Y o I:II 'I' I II 'aY ' 2aVYala 'I't"
NUITITT L I CIIHICIILWS

OnNa

v — Dﬂ
110 NTyu

Define system properties and constraints e.qg. reliability, response time
and storage requirements, constraints on I/O device capability, system
representations, etc.

Non-functional requirements may be more critical than functional
requirements. If these are not met, the system is useless.

Classification of non-functional requirements

— Product requirements
» Specify that the delivered product must behave in a particular way.
« e.g. execution speed, reliability, etc.
— Organisational requirements
» Requirements which are a consequence of organisational policies and procedures.
* e.g. process standards used, implementation requirements, etc.
— External requirements

» Requirements which arise from factors which are external to the system and its
development process, e.g. interoperability requirements, legislative requirements, etc.

L

requirements

requirements

requirements

requirements

f'\lf'_l:l Ilf\f“l':f\lf'\ﬂl Df\ﬂl I:Iﬁf\m’\lf'\ 'l 'aVaYe
U= uricuiovlidi RCL'UIIC'IIIC _ypt'b
Non-functional
requirements
Product Organisational External
requirements requirements requirements
Efficiency Reliability Portability Interoperability Ethical

requirements

Usability
requirements

Performance
requirements

Space
requirements

Delivery
requirements

Implementation
requirements

Standards
requirements

Konkuk University

Legislative
requirements

Privacy
requirements

Safety
requirements

11

I\I

§

FD

§

7N\ I:II f"l'l\ ID 7\ /N
NON-runctiona I NCTUu

W
r||'|
fs

Product requirement

8.1The user interface for LIBSYS shall be implemented as simple HTML without
frames or Java applets.

« Organisational requirement

9.3.2 The system development process and deliverable documents shall conform
to the process and deliverables defined in XYZCo-SP-STAN-95.

« External requirement

7.6.5 The system shall not disclose any personal information about customers
apart from their name and reference number to the operators of the system.

)

v

emen

f\"\lf‘ A 1 'I't"
10dld U Lo

ain Rq

Non-functional requirements may be very difficult to state precisely and
imprecise requirements may be difficult to verify.

Goal
— A general intention of the user such as ease of use.

— "The system should be easy to use by experienced controllers and should be
organised in such a way that user errors are minimised.”

Verifiable non-functional requirement
— A statement using some measure that can be tested objectively.

— "Experienced controllers shall be able to use all the system functions after a
total of two hours training. After this training, the average number of errors
made by experienced users shall not exceed two per day.

v\ ™ Ilf'\ II 7\ Y

nf\ 'aYea B 'aY a 'I'
LU Al NCQYQUITTTTITTIL

S

» Derived from the application domain
» Describe system characteristics and features that reflect the domain.

« Domain requirements may be
— new functional requirements
— constraints on existing requirements
— define specific computations

« If domain requirements are not satisfied, the system may be unworkable.

v\ ™ I [’}

nf\ 'aYea B II 'aY ' 2aVala)
LUl idll] Li CITIClH |

nt V
L

E, A rm RCVC
LA DOTO

|||'p

T
1

c |
S L

« There shall be a standard user interface to all databases which shall be
based on the Z39.50 standard.

« Because of copyright restrictions, some documents must be deleted
immediately on arrival. Depending on the user’s requirements, these
documents will either be printed locally on the system server for
manually forwarding to the user or routed to a network printer.

Problems with Natural Language Specification

« Ambiguity
— Readers and writers of the requirement must interpret the same words in the
same way. NL is naturally ambiguous so this is very difficult.
« Over-flexibility
— The same thing may be said in a number of different ways in the specification.
* Lack of modularisation
— NL structures are inadequate to structure system requirements.

« Alternatives to NL specifications
— Structural language specification
— Design description language
— Graphical notations
— Mathematical specifications

+ 1 -|-.. ~ | U AN C
LI L U 11D

:!7

+
L

Cd

C ~ A\ 2 aVea !
® C 1C Ldligu

age Spec

The freedom of the requirements writer is limited by a predefined templa
te for requirements.

e Form-based specifications

Insulin Pump/Control Software/SRS/3.3.2
Function Compute insulin dose: Safe sugar level

Description Computes the dose of insulin to be delivered when the current measured sugar level is in
the safe zone between 3 and 7 units.

Inputs Current sugar reading (12), the previous two readings (10 and r1)
Source Current sugar reading from sensor. Other readings from memory.
OutputsCompDose S the dose in insulin to be delivered

Destination Main control loop

Action: CompDose is zero if the sugar level is stable or falling or if the level is increasing but the rate of
increase is decreasing. If the level is increasing and the rate of increase is increasing, then CompDose is
computed by dividing the difference between the current sugar level and the previous level by 4 and
rounding the result. If the result, is rounded to zero then CompDose is set to the minimum dose that can
be delivered.

Requires Two previous readings so that the rate of change of sugar level can be computed.
Pre-condition The insulin reservoir contains at least the maximumallowed single dose of insulin..
Post-condition 10 is replaced by r1 then 1 is replaced by 12

Side-effects None

G\

Al I\IA
dl INU

p |

Graphical models are most useful when you need to show how state
changes or where you need to describe a sequence of actions.

+
L

d

+
L

'Y aYe

1S

Different graphical models are explained in Chapter 8.

Sequence diagram :
(ATM example)

X

ATM Database

Card M

1

PIN request
PIN

N |\ BN
Option menu

<<exception>>

invalid card

Withdraw request L

Amount request

Amount

<<exception>>
insufficient cash

Card I

Card removed

Cash

Cash removed

KRsesiptjle |
T

Card number

Card OK

Validate card

Balance request

Balance

Handle request

Debit (amount)

Debit response

Complete
transaction

versity

18

Ty
11

'aY a 'c If'\
errace S

:‘.".

'I'I\If'\
alliVUll

+
L

Most systems must operate with other systems and the operating
interfaces must be specified as part of the requirements.
Three types of interface may have to be defined
— Procedural interfaces
— Data structures that are exchanged
— Data representations
Formal notations are an effective technique for interface specification.

interface PrintServer {

Il defines an abstract printer server
Il requires: interface Printer, interface PrintDoc
/I provides: initialize, print, displayPrintQueue, cancelPrintJob, switchPrinter

void initialize (Printerp) ;

void print (Printer p, PrintDoc d) ;

void displayPrintQueue (Printer p) ;

void cancelPrintJob (Printer p, PrintDoc d) ;

void switchPrinter (Printer p1, Printer p2, PrintDoc d) ;
} /IPrintServer

1 1V

ocumen

I I 'aY a'a)

aYal nnt N+
L,l CITICIIL L

S

Requirements document is an official statement of what is required of
the system developers. Should include both a definition of user
requirements and a specification of the system requirements.

It is NOT a design document. As far as possible, it should be a set of
WHAT the system should do rather than HOW it should do it.

IEEE standard on requirements document
— Introduction

— General description - Preface
— Specific requirements - Introduction
— Appendices - Glossary

- User requirements definition

- System architecture

- System requirements specification
- System models

- System evolution

- Appendices

- Index

— Index

C
®

Na'2Ya'a \7

||||||ai’y

Requirements set out what the system should do and define constraints
on its operation and implementation.

Functional requirements set out services the system should provide.

Non-functional requirements constrain the system being developed or
the development process.

User requirements are high-level statements of what the system should
do. User requirements should be written using natural language, tables
and diagrams.

System requirements are intended to communicate the functions that the
system should provide.

A software requirements document is an agreed statement of the system
requirements.

The IEEE standard is a useful starting point for defining more detailed
specific requirements standards.

Chapter 7.
Requirements Engineering Processes

\7

nlf\:hf“l'l 'aY e
UIJCULLIVEDS

To describe principal requirements engineering activities and their
relationships

To introduce techniques for requirements elicitation and analysis
To describe requirements validation and the role of requirements reviews
To discuss the role of requirements management

Requ

m

en

A+~
L

N\

ngin

rng P

€S55eS

The processes used for RE vary widely depending on application domain,

people involved and organisation developing the requirements.
However, there are a number of generic activities common to all

processes

— Feasibility Study
— Requirements Validation

Y

Feasibility
study

Feasibility
report

Requirements
elicitation and

analysis

Y

- Requirements Elicitation and Analysis
- Requirements Management

System

models

Requirements
specification

Y

User and system
requirements

Requirements
validation

Y

Y'Y

Konkuk Unive

-

Requirements
document

ty

24

M
ks
="
D
=3
D

I

)
)

D
D

)
—t
3,
=

Qo

U
=5

OcCesses

Requirements

Vg
EI'I
Q

specification

System requirements
specification and
modeling

User requirements
specification

Business requirements
specification

System ibili
requirements User Fe:tsL: dl ity
elicitation requirements Y
elicitation
Prototyping
Requirements
elicitation Reviews Requirements
validation

System requirements
document

Konkuk University

25

\7

FCAdoIVINLY O

4 IIJ\I
LU

y

g
L.

« A feasibility study decides whether or not the proposed system is
worthwhile.
* A short focused study that checks
— If the system contributes to organisational objectives
— If the system can be engineered using current technology and within budget
— If the system can be integrated with other systems that are used

» Questions for feasibility:
— What if the system wasn’t implemented?
— What are current process problems?
— How will the proposed system help?
— What will be the integration problems?
— Is new technology needed? What skills?
— What facilities must be supported by the proposed system?

N

bl ements cilicCitation and

"\I\l
ANAdi

S a VSis

Called requirements elicitation or requirements discovery.

Involves technical staff working with customers to find out about the
application domain, the services that the system should provide, and the
system'’s operational constraints.

May involve end-users, managers, engineers involved in maintenance,
domain experts, trade unions, etc. These are called stakeholders.

Problems of Requirements Analysis:

Stakeholders don't know what they really want.

Stakeholders express requirements in their own terms.

Different stakeholders may have conflicting requirements.

Organisational and political factors may influence the system requirements.

The requirements change during the analysis process. New stakeholders may
emerge and the business environment change.

Requirements discovery

— Interacting with stakeholders to discover their requirements.
— Domain requirements are also discovered at this stage.
Requirements classification and organisation

— Groups related requirements and organises them into coherent clusters.
Prioritisation and negotiation

— Prioritising requirements and resolving requirements conflicts
Requirements documentation

— Requirements are documented and input into
the next round of the spiral.
Requiremen t Requirements

eq s
classification and prioritization and
organisation negotiation

Requirements Requirements
discovery documentation

III Vv

q Ille I h \7 r\ 7

'I't" o area 7\
Lo VILLUVCELY

The process of gathering information about the proposed and existing sy

stems, and distilling the user and system requirements from this informat
lon.

Sources of information include
— documentation

— system stakeholders

— specifications of similar systems

\II \AII

T 'I'f\ ¥\ 7~
LTI VITWITIY

N

« In formal or informal interviewing, the RE team puts questions to stakeho
|ders about the system that they use and the system to be developed.

e There are two types of interview

— Closed interviews : pre-defined set of questions are answered.

— Open interviews : no pre-defined agenda and a range of issues are explored
with stakeholders.

« Normally a mix of closed and open-ended interviewing

Cf"f\
SLC

[’

OS

1al’

Scenarios are real-life examples of how a system can be used.
They should include

A description of the starting situation

A description of the normal flow of events

A description of what can go wrong

Information about other concurrent activities

A description of the state when the scenario finishes

Example: LIBSYS Scenario

Initial assumption: The user has logged on to the LIBSYS system and has located the journal containing
the copy of the article.

Normal: The user selects the article to be copied. He or she is then prompted by the system to ei ther
provide subscriber information for the journal or to indicate how they will pay for the article. Alternative
payment methods are by credit card or by quoting an organisational account number.

The user is then asked to fill in a copyright form that maintains details of the transaction and they then
submit this to the LIBSYS system.

The copyright form is checked and, if OK, the PDF version of the article is downloaded to the LIBSYS
working area on the userOscomputer and the user is informed that it is available. The user is asked to select
a printer and a copy of the article is printed. If the article has been flagged as @rint-onlyQitis deleted from
the user@ system once the user has confirmed at stikiting) is €oitiplete.

UOoSC LdoSCO

« Use-cases are a scenario based technique in the UML
« Identify actors in an interaction and describe the interaction itself.
« Use cases should describe all possible interactions with the system.

LIBSYS use cases O

/ Article search

T —CO

Library Article printing
User

COoO—7%

User administration Library
Staff
r—C O
Supplier Catalogue services

Konkuk University

I If‘f\ r"\(‘f\f‘ \AI:'I'I/\ C ﬂl 7~ M\
USC LdoCOoS WILlIlI OC L,i nce

§

Y
L/ld

agra

» Sequence diagrams may be used to add detail to use-cases by showing
the sequence of event processing in the system.

item: copyrightForm: myWorkspace: myPrinter:
Article Form W orkspace Printer
User
request
L request
| >
- complete
return
[-
copyright OK
deliver
article OK I
Pl send
B inform T confirm
Ronkuk-gmiversity >t

delete

o

III 'aY a'a)

bl ement U

> V L

ation

Concerned with demonstrating that the requirements defined the system
that the customer really wants.

Requirements error costs are high, so validation is very important

— Fixing a requirements error after delivery may cost up to 100 times the cost
of fixing an implementation error.

Requirements Checking:

— Validity : Does the system provide the functions which best support the
customer’s needs?

— Consistency : Are there any requirements conflicts?
— Completeness : Are all functions required by the customer included?

— Realism : Can the requirements be implemented given available budget and
technology

— Verifiability : Can the requirements be checked?

N r 11
Uil ICUCllili

rniramantce \/al ANliIAC
ITCTIIITIILD vdIi qUCD

At
UUd L

-
d

* Requirements reviews
— Systematic manual analysis of the requirements
— Review focus:
» Verifiability (Testability)
« Comprehensibility
» Traceability
» Adaptability

* Prototyping

— Using an executable model of the system to check re

Jirements.

« Test-case generation
— Developing tests for requirements to check testability

..[:>

Requ

Vv

emen

r_-l-
wn

>
>

nNage

3

* Requirements management is the process of managing changing
requirements during the requirements engineering process and system
development.

* Requirements are inevitably incomplete and inconsistent

— New requirements emerge during the process as business needs change and
a better understanding of the system is developed

— Different viewpoints have different requirements and these are often
contradictory.

Identified

problem
—_—

Problem analysis and
change specification

Change analysis
and costing

Konkuk University

Change
implementation

Revised
requirements

>

36

III 'aY a'a)

bl ement L

~ -~ AN nl 1
S IVidinad dyt ement ria

|||g

* During the requirements engineering process, we have to plan:
— Requirements identification
* How requirements are individually identified
— Change management process
» The process followed when analysing a requirements change
— Traceability policies

* The amount of information about requirements relationships that is
maintained

— CASE tool support
* The tool support required to help manage requirements change
» Requirements storage
« Change management
» Traceability management

Traceability is concerned with the relationships between requirements,
their sources and the system design

Source traceability

— Links from requirements to stakeholders who proposed these requirements
Requirements traceability

— Links between dependent requirements

Design traceability
— Links from the requirements to the design

Traceability Matrix

Req. 1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2
id

1.1 D
1.2

1.3 R R

2.1 R D
2.2

2.3 R D

3.1 R
3.2 R

il
w)
)

wliw;

C
®

Na'2Ya'a \7

||||||ai’y

The requirements engineering process includes a feasibility study,
requirements elicitation and analysis, requirements specification and
requirements management.

Requirements elicitation and analysis is iterative involving domain
understanding, requirements collection, classification, structuring,
prioritisation and validation.

Systems have multiple stakeholders with different requirements.
Social and organisation factors influence system requirements.

Requirements validation is concerned with checks for validity, consistency,
completeness, realism and verifiability.

Business changes inevitably lead to changing requirements.
Requirements management includes planning and change management.

Chapter 8.
System Models

N A
UV

\7

I\I"l'l 'aY e
CLLIVEDS

To explain why the context of a system should be modelled as part of
the RE process

To describe behavioural modelling, data modelling and object modelling
To show how CASE workbenches support system modelling

~A A
uc

em Mo

ling

System modelling helps the analyst to understand the functionality of the
system and models are used to communicate with customers.

Different models present the system from different perspectives

— External perspective : showing the system’s context or environment

— Behavioural perspective : showing the behaviour of the system

— Structural perspective : showing the system or data architecture

Model types

Data processing model: showing how the data is processed at different stages
Composition model: showing how entities are composed of other entities
Architectural model: showing principal sub-systems

Classification model: showing how entities have common characteristics
Stimulus/response model: showing the system’s reaction to events

Many ones

N+ |
L |

N A~ v+ N
ClIT Ul L

7\ AA
CAL IVIUU

S

System Context (models) are used to illustrate the operational context of
a system - they show what lies outside the system boundaries.

Social and organisational concerns may affect the decision on where to
position system boundaries.

Architectural models show the system and its relationship with other
systems.

Security

system
Brancl:! Account

accounting database
system
Auto-teller

system
Branch Usage
counter database
system

Maintenance
system

Konk&R-OnRversity 45

rFrocess IV UUCi

* Process models show the overall process and the processes that are

supported by the system.

Equipment

: Validate
specification

Specify
equipment
required

Delivery
note

Checked
spec.

Accept
delivery of
equipment

Get cost
estimates

Spec. + A
EETTTLEEEEE TS O EE TP T EEPE PP PP PLEE supplier +
' Equipment estimate ~ Order
e Supplier list ' notification
: - Place
] Supplier @ Cho?_se equipment
i | database suppliers SUpPPlier /" order order
; details plus
blank order
; form

Equipment procurement process

Checked and
signed order form

Konkuk University

Delivery
note

Check
delivered
items

Installation
instructions

\

i
Install
equipment

Installation
acceptance

Y

Accept
delivered
equipment

Equipment
details
Y
Equipment
database

46

f\lf'\"\\ A W e
CIICIVIU

Al NAAAal
ral vioael

Behavioural models are used to describe the overall behaviour of a
system.
Two types:

— Data processing models : show how data is processed as it moves through

the system
— State machine models : show the systems response to events

These models show different perspectives so both of them are required
to describe the system’s behaviour.

N A~+ D. ~AAl
L/dl 1 UUuUICT

dlad-rrocC

|gv

« Data flow diagrams (DFDs) is used to model the system'’s data processing.
« These show the processing steps as data flows through a system.

« Simple and intuitive notation that customers can understand.

« Show end-to-end processing of data.

Checked and

Completed Signed Signed Send to signed order
Order order form order form order form suppller el
details + Complete Valldate Record e
blank order form order order
order form Adjust
Order si available
igned budget
details order form 8
Order
amount
+ account
Order processing DFD Y y details
Orders Budget
file file

Konkuk University 48

C
®

Microwave model

+
L

I
1

N

N
VI

+ ~
L VI U

M

ne ivio

alte viacnin

Models the behaviour of the system in response to external and internal
events. It show the system’s responses to stimuli.

Often used for modelling real-time systems.

State machine models show system states as nodes and events as arcs
between these nodes. When an event occurs, the system moves from
one state to another.

Full
power

Full power

do: set power
=600

Waiting
do: di

Operation

do: operate
oven

Half

power Cancel

N4

Waiting

do: display
time

Door
open

do: display
'Ready'

Half power

do: set power
=300

Door
closed

Disabled
do: display
K Owwsitle

Ljniversity 49

Cf\ N
SCIliAdll

LIC Ldld

Used to describe the logical structure of data processed by the system.

An entity-relation-attribute model sets out the entities in the system,
relationships between these entities, and the entity attributes

Widely used in database design. Can readily be implemented using

relational databases.

NMAA
U

IVIU

Al
Cl

Article . . Source
published-in -
title m n | title
authors > publisher
. . pdf file : g issue
Library semantic model fee fee-payable-to 1| e
K pages
1
delivers :
1 m
n v!
Order Copyright Country
order number Agency Ui 1; copyright form

date

total payment

tax status

ok

1

places

Buyer

name
address
e-mail
billing info

name
address

Konkuk University

tax rate

50

UVJjCcCLl IVIUUC]

Object models describe the system in terms of object classes and their
associations.

An object class is an abstraction over a set of objects with common
attributes and the services (operations) provided by each object.

Object classes reflecting domain entities are reusable across systems

« Various object models may be produced
— Inheritance models

— Annranatinn mndealc
I \33'\;3”\.'\/" 1TINVAUALG LD

— Interaction models

"k

Arit
IIIC‘ 1L

ance vi

N

10

~
U

Al
Cl

Organizes domain object classes into a hierarchy.
Classes at the top of the hierarchy reflect common features of all classes.

Object classes inherit their attributes and services from one or more
super-classes. These may then be specialised as necessary.

User class hierarchy

Library user

Name
Address
Phone
Registration #

Register ()
De-register ()

7

Reader

Affiliation

Borrower

Items on loan
Max. loans

T

Staff

Department
Department phone

Student

Major subject
Home address

A let

Illn

o
INUT l\

ek
vIeToTl

52

|J e 1nner

'I'ﬁ | aYalal
Ldl ICC

Multiple inheritance allows object classes to inherit from several super-
classes.

This can lead to semantic conflicts where attributes/services with the
same name in different super-classes have different semantics.

Multiple inheritance makes class hierarchy reorganisation more complex.

Book Voice recording
Author Speaker
Edition Duration
Publication date Recording date
ISBN
Talking book
Tapes

Konkuk University

UVJCLL I-\yy

—

egat

If'\

NMAA
VIUU

S

An aggregation model shows how classes are composed of other classes.

Aggregation models are similar to the part-of relationship in semantic
data models.

Study pack

Course title
Number
Year
Instructor

/

1"

Y

Assignment OHP slides Lecture Videotape
notes
Credits Slides Toxt Tape ids.
Exercises Solutions
#Problems Text
Description Diagrams
kerkuk University

54

M)
\

If'\:f\ﬁ'l‘ f\lf'\"\\l:f\l 1
MJTLL C'IICIVIUUI

Mo

~ A
ucCc

A behavioural model shows the interactions between objects to produce

some particular system behaviour specified as a use-case.
Sequence diagrams (or collaboration diagrams) in the UML

1

:Library User

Ecat:
Catalog

Lookup

<
S

Y

Display

‘Library ltem

Lib1:
NetServer

A

Issue

Issue licence

Y

Accept licence

A

>
>

T Compress

-
>

33+ H

Deliver

Konkuk University

55

+If'l [] +I 1w
LI L

A~ NA
uicu

® C IVIC LI IUU

Structured methods incorporate system modelling as an inherent part of
the method.

* Methods define

— a set of models,

— a process for deriving these models, and

— rules and guidelines that should apply to the models.

o CASE tools support system modelling as part of a structured method.

e CASE Workbench:

— A coherent set of tools that is designed to support related software process
activities such as analysis, design or testing.

— Analysis and design workbenches support system modelling during both
requirements engineering and system design.

— May support a specific design method.
— May support to create several different types of system model.

Analysis and Design Workbench: Example

Data Structured Report
dictiona diagramming generation
v tools facilities

Central ue
Code : , Query
information language
generator) >
repository facilities
Forms Design, ana_ly5|s Import/export
creation and checking e
facilities
tools tools

Konkuk University 57

C
®

Na'2Ya'a \7

||||||ai’y

A model is an abstract system view. Complementary types of model
provide different system information.

Context models show the position of a system in its environment with
other systems and processes.

Data flow models is used to model the data processing in a system.

State machine models model the system'’s behaviour in response to
internal or external events.

Semantic data models describe the logical structure of data which is
imported to or exported by the systems.

Object models describe logical system entities, their classification and
aggregation.

Sequence models show the interactions between actors and the system
objects that they use.

Structured methods provide a framework for developing system models.

